Chapter 3 (1)doc

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chapter 3 (1)doc as PDF for free.

More details

  • Words: 1,457
  • Pages: 31
CHAPTER 3 RESULTS AND DISCUSSION Twelve amphiphilic Schiff bases were synthesized as mentioned in chapter 2. Figures 3.1(a) (b) (c), 3.2 (a) (b) (c), 3.3 (a) (b) (c) and 3.4 (a) (b) (c) show the molecular models of the synthesized compounds 1A, 2A, 3A, 1B, 2B, 3B, 1C, 2C, 3C, 1D, 2D and 3D (geometrically optimized) with their molecular weights.

1A

a)

Molecular Weight: 374 2A

b)

Molecular Weight: 479 c)

3A

Molecular Weight: 402 Figure 3.1 Molecular models of compounds a) 1A, b) 2A and c) 3A

a) 1B

Molecular Weight: 372

b) 2B

Molecular Weight: 477

c) 3B

Molecular Weight: 400

Figure 3.2 Molecular models of compounds a) 1B, b) 2B and 3B

a)

1C

Molecular Weight: 354

b)

2C

Molecular Weight: 459 3C c)

Molecular Weight: 382 Figure 3.3 Molecular models of compounds a) 1C, b) 2C and c) 3C

a)

1D

Molecular Weight: 347

b) 2D

Molecular Weight: 452

c)

3D

Molecular Weight: 375

Figure 3.4 Molecular models of compounds a) 1D, b) 2D and c) 3D

Compounds synthesized were characterized using techniques mentioned in chapter 2.

3.1 Mass spectra Using mass spectroscopy, the molecular weights of the compounds were estimated. Figures 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 give the mass spectra of the samples.

Figure 3.5 Mass spectra of 1A

a)

b)

Figure 3.6 Mass spectra of a) 2A and b) 3A

a)

b)

Figure 3.7 Mass spectra of a) 1B and b) 2B

a)

b)

Figure 3.8 Mass spectra of a) 3B and b) 1C

a)

b)

Figure 3.9 Mass spectra of a) 2C and b) 3C

a)

b)

Figure 3.10 Mass spectra of a) 1D and b) 2D

Figure 3.11 Mass spectra of 3D

3.2 FT-IR spectra The functional groups present in the compounds were determined from the FT-IR spectra. The peak assignments of the FT-IR spectra are given in tables 3.1, 3.2, 3.3 and 3.4. The spectra are shown in figures 3.12, 3.13, 3.14 and 3.15. In all spectra a peak between 1600-1650cm-1 confirms the presence of -CH=N group and hence the

StC=N 1604.6 1613.8 1603.6

Table 3.1. Peak FTIR spectra of

P e rc e n ta g e

Sample 1A 2A 3A

T r a n s m itt a n c e

formation of Schiff’s base. St NO2(sym) 8 0 1342.6 7 0 1347.2 6 0 1341.2

StNO2(asym) 1528.9 1516.9 1528.8

StN-H -----3410.9 ------

StCH2(sym) 1 A 2848.3 2848.5 2847.6

StCH2(asym) 2922.1 2921.4 2921.3

BCH3&BCH2 1463.2 1468.9 1463.8

5 0 4 0

1 6 0 4 .6

3 0

1 4 6 3 .2

2 0 1 0 0

assignments for 1A, 2A and 3A

8 5 6 .6

2 8 4 8 .3 2 9 2 2 .1

1 5 2 8 . 91 3 4 2 . 6

4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0 5 0 0

W a v e n u m b e r (c m -1 )

a)

b)

c)

Percentage transmittance

3A 80 70 60 50 40

1603.6

845.7

30

1463.8

20

2847.6 2921.3

10 0 4000

3500

3000

2500

1528

2000

1341.2

1500

1000

500

Wavenumber (cm-1)

Figure 3.12 FT-IR spectra of a) 1A, b) 2A and c) 3A

Sample

StC=N

StalkylCN

StarylCN

StN-H

StCH2(sym)

StCH2(asym)

BCH3&BCH2

1B 2B 3B

1616.3 1606.8 1615.9

1230.5 1267.7 1230.2

1372.9 1370.8 1371.4

-----3277.9 ------

2849.4 2849.6 2849.3

2918.5 2917.7 2918.4

1464.9 1471.1 1467.1

P e rc e n ta g e

a)

T r a n s m it ta n c e

Table 3.2. Peak assignments for FTIR spectra of 1B, 2B and 3B

8 0

1 B

7 0 6 0 5 0

5 9 4 .3

4 0

7 2 3 .4 1 2 3 0 .5 1 4 6 4 .9 1 3 7 2 .9

3 0 2 0 1 0 0

2 8 4 9 .4 1 6 1 6 .3 2 9 1 8 .5

4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0 5 0 0

W a v e n u m b e r (c m -1 )

b)

Figure 3.13 FT-IR spectra of a) 1B, b) 2B

t r a n s m it ta n c e P e rc e n ta g e

c)

8 0

3 B

7 0 6 0 5 0 4 0 3 0 2 0 1 0

7 9 4 .2 1 2 3 0 .2 1 4 6 7 .1 2 8 4 9 .3 1 3 7 1 .4 1 6 1 5 .9 2 9 1 8 .4

0 4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0 5 0 0

W a v e n u m b e r (c m -1 )

Figure 3.13 c) FT-IR spectra of 3B

Sample 1C 2C 3C

StC=N 1650.2 1613.7 1649.0

StC≡N 2225.9 2229.3 2225.2

StN-H -----3319.5 ------

StCH2(sym) 2849.7 2851.6 2848.9

StCH2(asym) 2917.4 2918.2 2917.3

a)

P e r c e n ta g e T r a n s m it t a n c e

Table 3.3 Peak assignments for FTIR spectra of 1C, 2C and 3C

100

1 C 80

60

2 2 2 5 .9

5 5 3 .9

1 6 5 0 .2

40

8 3 5 .0

1 4 7 0 .9 20

2 8 4 9 .7 2 9 1 7 .4

0 400035003000 25002 00015001000 500

W a v e n u m b e r (c m -1 )

Figure 3.14 a) FT-IR spectra of 1C,

BCH3&BCH2 1470.9 1470.9 1469.9

b)

c)

Percentage transmittance

100

3C

80

60

2225.2

554.3

1649.0

40

845.7 1469.9

20

2848.9 2917.3

0 4000

3500

3000

2500

2000

1500

1000

500

Wavenumber (cm-1)

Figure 3.14 FT-IR spectra of b) 2C and c) 3C

StC=N 1644.1 1602.4 1644.1

Table3.4 Peak spectra of 1D, 2D a)

Percentage transmittance

Sample 1D 2D 3D

60 50

StC-F 1225.3 1225.3 1222.8

StN-H -----3373.1 ------

StCH2(sym) 2851.4 1D 2849.9 2849.9

40

BCH3&BCH2 1465.3 1466.4 1470.2

assignments for FTIR and 3D

30 20

715.9 843.2

1644.1

10 0 4000

StCH2(asym) 2912.6 2912.6 2912.6

2851.4

1225.3 1465.3

2912.6 3500

3000

2500

2000

1500

Wavenumber (cm-1)

1000

500

b)

100

2D

Percentage transmittance

80

512.6

60

40

828.4

3373.1

1602.4 1225.3 1466.4

20

0 4000

2848.9 2912.6 3500

3000

2500

2000

1500

1000

500

Wavenumber (cm-1)

c) 80

3D

Percentage transmittance

70 60 50

718.4

40

1470

20

1222.8

2848.9

10 0 4000

840.8

1644.1

30

2912.6 3500

3000

2500

2000

1500

1000

500

Wavenumber (cm-1)

Figure 3.15 FT-IR spectra of a) 1D, b) 2D and c) 3D 3.3 NMR spectra

The carbon skeletons of the compounds were determined from NMR spectra. Figures 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22, 3.23, 3.24, 3.25, 3.26 and 3.27 represents 1H NMR spectra of the samples 1A, 2A, 3A, 1B, 2B, 3B, 1C, 2C, 3C, 1D, 2D, 3D respectively. The interpretations of the spectra are tabulated in table 3.5

Sample

-CH3 (t)

-CH2-CH3 (m)

-(CH2)n(m)

=N-CH2 (t)

-CH=N (s)

Ph-H (d)

-Ph-NH (s)

=N-CH2Ph (s)

1A

0.87

1.71

1.24

3.66

8.34

----

----

2A

0.87

1.60

1.25

3.09

8.39

7.25

4.76

3A

0.87

1.71

1.24

3.66

8.34

----

----

1B

0.87

1.66

1.24

3.53

8.12

----

----

2B

0.87

1.59

1.25

3.08

8.19

7.25

4.65

3B

0.87

1.66

1.24

3.53

8.12

----

----

1C

0.87

1.69

1.24

3.64

8.28

----

----

2C

0.87

1.60

1.24

3.08

8.34

7.25

4.74

3C

0.87

1.69

1.24

3.63

8.28

----

----

1D

0.87

1.67

1.24

3.57

8.22

----

----

2D

0.87

1.60

1.25

3.08

8.29

7.12

4.69

3D

0.87

1.67

1.24

3.58

8.22

7.88, 8.25 6.59, 7.11, 7.90, 8.24 7.88, 8.25 6.68, 7.59 6.57, 6.68, 7.11, 7.64 6.68, 7.59 7.68, 7.81 6.58, 7.10, 7.67, 7.84 7.68, 7.81 7.07, 7.69 6.57, 7.08, 7.73, 7.75 7.07, 7.70

----

----

Table 3.5 Interpretation of 1H NMR spectra

1A

Figure 3.16 1H NMR spectrum of 1A

2A

F

igu re 3.17 1H NMR spectrum of 2A

Figure 3.18 1H NMR spectrum of 3A

Figure 3.19 1H NMR spectrum of 1B

Figure 3.20 1H NMR spectrum of 2B

Figure 3.21 1H NMR spectrum of 3B

F

igu

re

3.22 1H NMR spectrum of 1C

Figure 3.23 1H NMR spectrum of 2C

3C

Figure 3.24 1H NMR spectrum of 3C

1D

Figure 3.25 1H NMR spectrum of 1D

F re

igu 2D

3.26 1H NMR spectrum of 2D

Figure 3.27 1H NMR spectrum of 3D

Related Documents

Benchmarking 1doc
June 2020 45
Homework.1doc
October 2019 76
Chapter 3
May 2020 11
Chapter 3
June 2020 8
Chapter 3
June 2020 7
Chapter 3
May 2020 11