Chapter 2 Square Square Roots Cubes & Cubes Roots

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chapter 2 Square Square Roots Cubes & Cubes Roots as PDF for free.

More details

  • Words: 2,482
  • Pages: 23
Module PMR

CHAPTER 2 SQUARES,SQUARE ROOTS.CUBES AND CUBE ROOTS A. SQUARES -

a number multiply by itself a2 = a × a examples : a). 22 = 2 × 2 = 4 b). ( - 4 )2 = ( -4 ) × ( -4 ) = 16 3 3 3 9 c). ( ) 2 = ( ) × ( ) = 5 5 5 25 d). ( 0.3 )2 = 0.3 × 0.3 = 0.09

-

the square of any number is greater than zero and is always positive.

B. SQUARE ROOTS -

-

-

the square roots of any number is the number when multiplied by itself, equals to the given number.(inverse operation of squaring that number) If x = a2, then x = a 2 = a × a = a examples : a). 9 = 3 × 3 = 3 2× 2 2 = 3× 3 3

b).

4 = 9

c).

0.36 = 0.6 × 0.6 = 0.6

some fractions are required to reduce to the lowest terms in order to find the square roots. examples: 8 4 2× 2 2 a). = = = 18 9 3× 3 3

-

to find the square roots of a mixed number, change the mixed number into an improper fraction. example : 11 36 6×6 6 a). 1 = = = 25 25 5× 5 5

-

The square root of negative numbers do not exist

Squares, Square Roots,Cubes & Cube Roots 10

Module PMR

SQUARES

SQUARE ROOTS

12 = 1

1 = 1

22 = 4

4 = 2

32 = 9

9 = 3

42 = 16

16 = 4

52 = 25

25 = 5

62 = 36

36 = 6

72 = 49

49 = 7

82 = 64

64 = 8

92 = 81

81 = 9

102 = 100

100 = 10

112 = 121

121 = 11

122 = 144

144 = 12

132 = 169

169 = 13

142 = 196

196 = 14

152 = 225

225 = 15

162 = 256

256 = 16

172 = 289

289 = 17

182 = 324

324 = 18

192 = 361

361 = 19

202 = 400

400 = 20

Squares, Square Roots,Cubes & Cube Roots 11

Module PMR

C. CUBES -

a number multiply by itself twice a3 = a x a x a examples : a). 33 = 3 x 3 x 3 = 27 2 2 2 2 8 b). ( )3 = × × = 3 3 3 3 27 c). ( 0.2 )3 = 0.2 x 0.2 x 0.2 = 0.008 d). ( - 5 )3 = ( - 5 ) x ( - 5 ) x ( - 5 ) = - 125

- The cube of a positive number is positive - The cube of a negative number is negative.

D. CUBE ROOTS -

a number when multiply by itself twice, equal to the given number. a3 = 3 a × a × a = a examples : 3

a).

3

8 = 3 2× 2× 2 = 2

b).

3

8 2× 2× 2 2 =3 = 125 5×5×5 5

c).

3

0.216 = 3 0.6 × 0.6 × 0.6 = 0.6

d).

3

− 64 = 3 ( −4) × (−4) × (−4) = −4

- The cube root of a positive number is positive, the cube root of a negative number is negative.

Squares, Square Roots,Cubes & Cube Roots 12

Module PMR

CUBES

CUBE ROOTS

13 = 1

3

1 = 1

23 = 8

3

8 = 2

33 = 27

3

27 = 3

43 = 64

3

64 = 4

53 = 125

3

125 = 5

63 = 216

3

216 = 6

73 = 343

3

343 = 7

83 = 512

3

512 = 8

93 = 729

3

729 = 9

103 = 1000

Squares, Square Roots,Cubes & Cube Roots 13

3

1000 = 10

Module PMR

QUESTIONS : A. Find the value of the following. 1). 32 =

2). 62 =

3). 82 =

4). 92 =

5). 112 =

6). 122 =

7). ( - 2 )2 =

8). ( - 4 )2 =

9). ( - 5 )2 =

10). ( - 7 )2 =

11). ( - 9 )2 =

12). ( - 10 )2 =

2

2 14).   = 5

2

 1 16). 1  =  5

1 13).   = 2

3 15).   = 7 2

 4 17).  −  =  9 2

2

2

2

 1 18).  − 1  =  3 2

 2 19).  − 3  =  3

7 20).   =  12 

21). ( 0.4 )2 =

22). ( 1.2 )2 =

23). ( - 0.3 )2 =

24). ( - 0.05 )2 =

Squares, Square Roots,Cubes & Cube Roots 14

Module PMR

B. Find the value of the following.

1).

4 =

2).

25 =

3).

64 =

4).

81 =

5). 100 =

6).

144 =

7).

225 =

8).

196 =

9).

1 = 64

10).

4 = 25

12).

1

11).

9 = 100

9 = 16

13). 1

14). 11

1 = 9

1 = 4

16).

50 = 162

46 = 49

18).

4

15).

12

17).

2

19.

7 = 9

0.64 =

21. 1.21 =

Squares, Square Roots,Cubes & Cube Roots 15

21 = 25

20.

0.0025 =

22.

2.25 =

Module PMR

C. Find the values of the following: 1). 23 =

2). 43 =

3). 73 =

4). ( - 5 )3 =

5). ( - 3 )3 =

6). 103 =

3

3 8).   = 4

3

3

 1 10). 1  =  4

2 7).   = 5

3

1 9).   = 6

3

3

 2 11).  − 1  =  3

 7 12).  −  =  10 

13). ( 0.1 )3 =

14). ( 0.6 )3 =

15). ( - 0.2 )3 =

16). ( - 0.03 )3 =

17). ( 1.2 )3 =

18). ( - 0.4 )3 =

Squares, Square Roots,Cubes & Cube Roots 16

Module PMR

D. Find the value of the following.

1).

3

8 =

2).

3

27 =

3).

3

216 =

4).

3

− 125 =

5).

3

− 512 =

6).

3

343 =

7).

3

− 1000 =

8).

3

1 = 8

9).

3

11).

13).

15).

27 = 64

3

3

3

10).

1000 = 125

12).

0.343 =

14).

− 0.064 =

16).

Squares, Square Roots,Cubes & Cube Roots 17

3

3

3

3

3

3 = 8

−1

61 = 64

0.000216 =

− 0.125 =

Module PMR

Common Errors. Questions

Errors

Correct Steps

1. a). Find the value 0f 3 − 125 .

a). (-5) x (-5) x (-5) or 5 P0

a). – 5

b).Calculate the value of 1 3   × − 64  2 . 8 

1  b).  × 4  8  1 =  2

2

1  b).  × ( − 4 )  8 

2. a). Find the value of 3 0.216 .

K0

1 4

5 4 − 4 4

=

1 4

2

1m

 1  1 = −  × −   2  2 =

P0

b).Calculate the value of b).  5  − 13 3 4  25     16 − 1 .   5 1 − = 4 1 =

 1 = −   2

N0

a). 0.006

Squares, Square Roots,Cubes & Cube Roots 18

2

2

1 1 =  ×  2 2 =

1m

1 4

1m

a). 0.6

1m

5  b).  − 1 4 

3

5 4 = −  4 4 K0

1 =  4

N0 =

1 64

3

3

1m

1m

Module PMR

3. a). Find the value of 3  1 −   .  3

a).  1  1  1 − ×− ×−   3  3  3

 1  a).  −   27 

1m

or

b). Calculate the value of ( − 2) 3 × 9 16

1 27

P0

b). 8 x

9 16

9 2 1 = 4 2

K0

=

N0

Questions based on PMR format 2

1 1. a). Find the value of   .  3 b). Calculate the value of

2. a). Find the value of

(

)

3

36 − 8 .

0.008 . b). Calculate the value of 16 – 3

3

− 27 .

Squares, Square Roots,Cubes & Cube Roots 19

b). ( − 8) ×

3 4

= ( − 2) × 3

1m

= –6

1m

Module PMR

3. a). Find the value of

3

− 0.216 . 1 3 27 . − − 2 8

b). Calculate the value of

4. a). Find the value of

0.81 .

(

)

2

b). Calculate the value of 4.5 ÷ 3 27 .

5. a). Find the value of

343 . b). Calculate the value of 15 – 3

3

− 64 .

Squares, Square Roots,Cubes & Cube Roots 20

Module PMR 3

 1 6. a). Find the value of  −  .  4 9 1 b). Calculate the value of . ÷ 64 16

24 . 25 b). Calculate the value of 92 + 122 .

7. a). Find the value of

1

8. a). Find the value of

7

1 . 9

(

)

2

b). Calculate the value of 33 − 144 .

Squares, Square Roots,Cubes & Cube Roots 21

Module PMR

9. a). Find the value of (- 0.4)2 . 2 b). Calculate the value of 5.5 ÷ 25 .

(

)

3

 1 10. a). Find the value of  −  .  5 b). Calculate the value of 52 x

3

1 . 4 b). Calculate the value of 102 –

11. a). Find the value of



216 . 125

3

− 1000 .

20

Squares, Square Roots,Cubes & Cube Roots 22

Module PMR

12. a). Find the value of

3

0.216 .

b). Calculate the value of

(

0.81 + 0.3 .

)



27 . 8

( 3 marks )

)

( 3 marks )

2

PMR Past Years Questions 2004 a). Find the value of

3

0.512 .

b). Calculate the value of 42 x

3

2005 3

 1 a). Find the value of  −  .  4

(

2

b). Calculate the value of 4.2 ÷ 3 27 .

Squares, Square Roots,Cubes & Cube Roots 23

Module PMR

2006 a). Find the value of

0.49 .

 25  − 1 b). Calculate the value of  16  

3

( 3 marks )

2007 a). Find the value of

3

− 64 . 3

1  b). Calculate the value of  × 36  . 2 

( 3 marks )

2008 a). Find the value of

3



1 . 27

(

)

2

b). Calculate the value of 16 − 81 .

Squares, Square Roots,Cubes & Cube Roots 24

( 3 marks )

Module PMR

CHAPTER 2 : SQUARES ROOTS,CUBES,&CUBE ROOTS ANSWERS A. 1). 9

2). 36

3). 64

4). 81

5). 121

6). 144

7). 4

8). 16

9). 25

10). 49

11). 81

12). 100

13).

1 4

14).

4 25

15).

9 49

16).

36 11 =1 25 25

17).

16 81

18).

16 7 =1 9 9

19).

121 4 = 13 9 9

20).

49 144

21). 0.16

22). 1.44

23). 0.09

24). 0.0025

Squares, Square Roots,Cubes & Cube Roots 25

Module PMR

B. 1). 2

2). 5

3). 8

4). 9

5). 10

6). 12

7). 15

8). 14

9).

1 8

2 5

10).

11).

3 10

12).

4 1 =1 3 3

13).

5 1 =1 4 4

14).

10 1 =3 3 3

15).

7 1 =3 2 2

16).

5 9

17).

12 5 =1 7 7

18).

11 1 =2 5 5

19). 0.8

20). 0.05

21). 1.1

22). 1.5

Squares, Square Roots,Cubes & Cube Roots 26

Module PMR

C. 1). 8

2). 64

3). 343

4). – 125

5). – 27

6). 1000

7).

8 125

8).

9).

1 216

10).

11). −

125 17 = −4 27 27

27 64 125 61 =1 64 64

12). −

343 1000

13). 0.001

14). 0.216

15). – 0.008

16). – 0.00027

17). 1.728

18). – 0.064

Squares, Square Roots,Cubes & Cube Roots 27

Module PMR

D. 1). 2

2). 3

3). 6

4). – 5

5). – 8

6). 7

7). – 10

9).

11).

3 4 10 =2 5

8).

1 2

10).

3 1 =1 2 2

12). −

3 1 = −1 2 2

13). 0.7

14). 0.5

15). – 0.4

16). – 0.5

Squares, Square Roots,Cubes & Cube Roots 28

Module PMR

No.

Marking Scheme

Squares, Square Roots,Cubes & Cube Roots 29

Marks

Module PMR

1.

1 9

1

b). ( - 2 )3

1

-8

1

a).

=3

2. a). 0.2

1

b). 16 + 3

1

19

1 =3

3. a). – 0.6

1

1 3 + 2 2

1

4 =2 2

1

b).

=3

4. a). 0.9

1

b). ( 1.5 )2

1

2.25

1 =3

5. a). 7

1

b). 15 + 4

1

19

1 =3

6.

1 64

1

3 4 × 8 1

1

3 1 =1 2 2

1

a). −

b).

7. Squares, Square Roots,Cubes & Cube Roots 30

=3

Module PMR

a). b).

8.

7 2 =1 5 5 225

1 1 1 =3

15 8 2 =2 a). 3 3

1

b). 152

1

225

1 =3

9. a). 0.16

1

b). ( 1.1)2

1

1.21

1 =3

10.

a). −

1 125

1

b).

 6 25 ×  −   5

1

- 30

1 =3

11.

a).

9 1 =4 2 2

1

b). 100 + 10

1

110

1

a). 0.6

1

b). ( 1.2 )2

1

=3

12.

1.44

1 =3

2004 Squares, Square Roots,Cubes & Cube Roots 31

Module PMR

a). 0.8

1

b). 16 × −

2005

3 2

1

- 24

1

1 64

1

a). −

b). ( 1.4)2 1.96

=3

1 1 =3

2006 a). 0.7 1 b).   4

1 3

1

1 64

1

a). – 4

1

b). ( 3 )3

1

=3

2007

27

1 =3

2008

1 a). − 3

1

b). 72

1

49

1

Squares, Square Roots,Cubes & Cube Roots 32

=3

Related Documents