Module PMR
CHAPTER 2 SQUARES,SQUARE ROOTS.CUBES AND CUBE ROOTS A. SQUARES -
a number multiply by itself a2 = a × a examples : a). 22 = 2 × 2 = 4 b). ( - 4 )2 = ( -4 ) × ( -4 ) = 16 3 3 3 9 c). ( ) 2 = ( ) × ( ) = 5 5 5 25 d). ( 0.3 )2 = 0.3 × 0.3 = 0.09
-
the square of any number is greater than zero and is always positive.
B. SQUARE ROOTS -
-
-
the square roots of any number is the number when multiplied by itself, equals to the given number.(inverse operation of squaring that number) If x = a2, then x = a 2 = a × a = a examples : a). 9 = 3 × 3 = 3 2× 2 2 = 3× 3 3
b).
4 = 9
c).
0.36 = 0.6 × 0.6 = 0.6
some fractions are required to reduce to the lowest terms in order to find the square roots. examples: 8 4 2× 2 2 a). = = = 18 9 3× 3 3
-
to find the square roots of a mixed number, change the mixed number into an improper fraction. example : 11 36 6×6 6 a). 1 = = = 25 25 5× 5 5
-
The square root of negative numbers do not exist
Squares, Square Roots,Cubes & Cube Roots 10
Module PMR
SQUARES
SQUARE ROOTS
12 = 1
1 = 1
22 = 4
4 = 2
32 = 9
9 = 3
42 = 16
16 = 4
52 = 25
25 = 5
62 = 36
36 = 6
72 = 49
49 = 7
82 = 64
64 = 8
92 = 81
81 = 9
102 = 100
100 = 10
112 = 121
121 = 11
122 = 144
144 = 12
132 = 169
169 = 13
142 = 196
196 = 14
152 = 225
225 = 15
162 = 256
256 = 16
172 = 289
289 = 17
182 = 324
324 = 18
192 = 361
361 = 19
202 = 400
400 = 20
Squares, Square Roots,Cubes & Cube Roots 11
Module PMR
C. CUBES -
a number multiply by itself twice a3 = a x a x a examples : a). 33 = 3 x 3 x 3 = 27 2 2 2 2 8 b). ( )3 = × × = 3 3 3 3 27 c). ( 0.2 )3 = 0.2 x 0.2 x 0.2 = 0.008 d). ( - 5 )3 = ( - 5 ) x ( - 5 ) x ( - 5 ) = - 125
- The cube of a positive number is positive - The cube of a negative number is negative.
D. CUBE ROOTS -
a number when multiply by itself twice, equal to the given number. a3 = 3 a × a × a = a examples : 3
a).
3
8 = 3 2× 2× 2 = 2
b).
3
8 2× 2× 2 2 =3 = 125 5×5×5 5
c).
3
0.216 = 3 0.6 × 0.6 × 0.6 = 0.6
d).
3
− 64 = 3 ( −4) × (−4) × (−4) = −4
- The cube root of a positive number is positive, the cube root of a negative number is negative.
Squares, Square Roots,Cubes & Cube Roots 12
Module PMR
CUBES
CUBE ROOTS
13 = 1
3
1 = 1
23 = 8
3
8 = 2
33 = 27
3
27 = 3
43 = 64
3
64 = 4
53 = 125
3
125 = 5
63 = 216
3
216 = 6
73 = 343
3
343 = 7
83 = 512
3
512 = 8
93 = 729
3
729 = 9
103 = 1000
Squares, Square Roots,Cubes & Cube Roots 13
3
1000 = 10
Module PMR
QUESTIONS : A. Find the value of the following. 1). 32 =
2). 62 =
3). 82 =
4). 92 =
5). 112 =
6). 122 =
7). ( - 2 )2 =
8). ( - 4 )2 =
9). ( - 5 )2 =
10). ( - 7 )2 =
11). ( - 9 )2 =
12). ( - 10 )2 =
2
2 14). = 5
2
1 16). 1 = 5
1 13). = 2
3 15). = 7 2
4 17). − = 9 2
2
2
2
1 18). − 1 = 3 2
2 19). − 3 = 3
7 20). = 12
21). ( 0.4 )2 =
22). ( 1.2 )2 =
23). ( - 0.3 )2 =
24). ( - 0.05 )2 =
Squares, Square Roots,Cubes & Cube Roots 14
Module PMR
B. Find the value of the following.
1).
4 =
2).
25 =
3).
64 =
4).
81 =
5). 100 =
6).
144 =
7).
225 =
8).
196 =
9).
1 = 64
10).
4 = 25
12).
1
11).
9 = 100
9 = 16
13). 1
14). 11
1 = 9
1 = 4
16).
50 = 162
46 = 49
18).
4
15).
12
17).
2
19.
7 = 9
0.64 =
21. 1.21 =
Squares, Square Roots,Cubes & Cube Roots 15
21 = 25
20.
0.0025 =
22.
2.25 =
Module PMR
C. Find the values of the following: 1). 23 =
2). 43 =
3). 73 =
4). ( - 5 )3 =
5). ( - 3 )3 =
6). 103 =
3
3 8). = 4
3
3
1 10). 1 = 4
2 7). = 5
3
1 9). = 6
3
3
2 11). − 1 = 3
7 12). − = 10
13). ( 0.1 )3 =
14). ( 0.6 )3 =
15). ( - 0.2 )3 =
16). ( - 0.03 )3 =
17). ( 1.2 )3 =
18). ( - 0.4 )3 =
Squares, Square Roots,Cubes & Cube Roots 16
Module PMR
D. Find the value of the following.
1).
3
8 =
2).
3
27 =
3).
3
216 =
4).
3
− 125 =
5).
3
− 512 =
6).
3
343 =
7).
3
− 1000 =
8).
3
1 = 8
9).
3
11).
13).
15).
27 = 64
3
3
3
10).
1000 = 125
12).
0.343 =
14).
− 0.064 =
16).
Squares, Square Roots,Cubes & Cube Roots 17
3
3
3
3
3
3 = 8
−1
61 = 64
0.000216 =
− 0.125 =
Module PMR
Common Errors. Questions
Errors
Correct Steps
1. a). Find the value 0f 3 − 125 .
a). (-5) x (-5) x (-5) or 5 P0
a). – 5
b).Calculate the value of 1 3 × − 64 2 . 8
1 b). × 4 8 1 = 2
2
1 b). × ( − 4 ) 8
2. a). Find the value of 3 0.216 .
K0
1 4
5 4 − 4 4
=
1 4
2
1m
1 1 = − × − 2 2 =
P0
b).Calculate the value of b). 5 − 13 3 4 25 16 − 1 . 5 1 − = 4 1 =
1 = − 2
N0
a). 0.006
Squares, Square Roots,Cubes & Cube Roots 18
2
2
1 1 = × 2 2 =
1m
1 4
1m
a). 0.6
1m
5 b). − 1 4
3
5 4 = − 4 4 K0
1 = 4
N0 =
1 64
3
3
1m
1m
Module PMR
3. a). Find the value of 3 1 − . 3
a). 1 1 1 − ×− ×− 3 3 3
1 a). − 27
1m
or
b). Calculate the value of ( − 2) 3 × 9 16
1 27
P0
b). 8 x
9 16
9 2 1 = 4 2
K0
=
N0
Questions based on PMR format 2
1 1. a). Find the value of . 3 b). Calculate the value of
2. a). Find the value of
(
)
3
36 − 8 .
0.008 . b). Calculate the value of 16 – 3
3
− 27 .
Squares, Square Roots,Cubes & Cube Roots 19
b). ( − 8) ×
3 4
= ( − 2) × 3
1m
= –6
1m
Module PMR
3. a). Find the value of
3
− 0.216 . 1 3 27 . − − 2 8
b). Calculate the value of
4. a). Find the value of
0.81 .
(
)
2
b). Calculate the value of 4.5 ÷ 3 27 .
5. a). Find the value of
343 . b). Calculate the value of 15 – 3
3
− 64 .
Squares, Square Roots,Cubes & Cube Roots 20
Module PMR 3
1 6. a). Find the value of − . 4 9 1 b). Calculate the value of . ÷ 64 16
24 . 25 b). Calculate the value of 92 + 122 .
7. a). Find the value of
1
8. a). Find the value of
7
1 . 9
(
)
2
b). Calculate the value of 33 − 144 .
Squares, Square Roots,Cubes & Cube Roots 21
Module PMR
9. a). Find the value of (- 0.4)2 . 2 b). Calculate the value of 5.5 ÷ 25 .
(
)
3
1 10. a). Find the value of − . 5 b). Calculate the value of 52 x
3
1 . 4 b). Calculate the value of 102 –
11. a). Find the value of
−
216 . 125
3
− 1000 .
20
Squares, Square Roots,Cubes & Cube Roots 22
Module PMR
12. a). Find the value of
3
0.216 .
b). Calculate the value of
(
0.81 + 0.3 .
)
−
27 . 8
( 3 marks )
)
( 3 marks )
2
PMR Past Years Questions 2004 a). Find the value of
3
0.512 .
b). Calculate the value of 42 x
3
2005 3
1 a). Find the value of − . 4
(
2
b). Calculate the value of 4.2 ÷ 3 27 .
Squares, Square Roots,Cubes & Cube Roots 23
Module PMR
2006 a). Find the value of
0.49 .
25 − 1 b). Calculate the value of 16
3
( 3 marks )
2007 a). Find the value of
3
− 64 . 3
1 b). Calculate the value of × 36 . 2
( 3 marks )
2008 a). Find the value of
3
−
1 . 27
(
)
2
b). Calculate the value of 16 − 81 .
Squares, Square Roots,Cubes & Cube Roots 24
( 3 marks )
Module PMR
CHAPTER 2 : SQUARES ROOTS,CUBES,&CUBE ROOTS ANSWERS A. 1). 9
2). 36
3). 64
4). 81
5). 121
6). 144
7). 4
8). 16
9). 25
10). 49
11). 81
12). 100
13).
1 4
14).
4 25
15).
9 49
16).
36 11 =1 25 25
17).
16 81
18).
16 7 =1 9 9
19).
121 4 = 13 9 9
20).
49 144
21). 0.16
22). 1.44
23). 0.09
24). 0.0025
Squares, Square Roots,Cubes & Cube Roots 25
Module PMR
B. 1). 2
2). 5
3). 8
4). 9
5). 10
6). 12
7). 15
8). 14
9).
1 8
2 5
10).
11).
3 10
12).
4 1 =1 3 3
13).
5 1 =1 4 4
14).
10 1 =3 3 3
15).
7 1 =3 2 2
16).
5 9
17).
12 5 =1 7 7
18).
11 1 =2 5 5
19). 0.8
20). 0.05
21). 1.1
22). 1.5
Squares, Square Roots,Cubes & Cube Roots 26
Module PMR
C. 1). 8
2). 64
3). 343
4). – 125
5). – 27
6). 1000
7).
8 125
8).
9).
1 216
10).
11). −
125 17 = −4 27 27
27 64 125 61 =1 64 64
12). −
343 1000
13). 0.001
14). 0.216
15). – 0.008
16). – 0.00027
17). 1.728
18). – 0.064
Squares, Square Roots,Cubes & Cube Roots 27
Module PMR
D. 1). 2
2). 3
3). 6
4). – 5
5). – 8
6). 7
7). – 10
9).
11).
3 4 10 =2 5
8).
1 2
10).
3 1 =1 2 2
12). −
3 1 = −1 2 2
13). 0.7
14). 0.5
15). – 0.4
16). – 0.5
Squares, Square Roots,Cubes & Cube Roots 28
Module PMR
No.
Marking Scheme
Squares, Square Roots,Cubes & Cube Roots 29
Marks
Module PMR
1.
1 9
1
b). ( - 2 )3
1
-8
1
a).
=3
2. a). 0.2
1
b). 16 + 3
1
19
1 =3
3. a). – 0.6
1
1 3 + 2 2
1
4 =2 2
1
b).
=3
4. a). 0.9
1
b). ( 1.5 )2
1
2.25
1 =3
5. a). 7
1
b). 15 + 4
1
19
1 =3
6.
1 64
1
3 4 × 8 1
1
3 1 =1 2 2
1
a). −
b).
7. Squares, Square Roots,Cubes & Cube Roots 30
=3
Module PMR
a). b).
8.
7 2 =1 5 5 225
1 1 1 =3
15 8 2 =2 a). 3 3
1
b). 152
1
225
1 =3
9. a). 0.16
1
b). ( 1.1)2
1
1.21
1 =3
10.
a). −
1 125
1
b).
6 25 × − 5
1
- 30
1 =3
11.
a).
9 1 =4 2 2
1
b). 100 + 10
1
110
1
a). 0.6
1
b). ( 1.2 )2
1
=3
12.
1.44
1 =3
2004 Squares, Square Roots,Cubes & Cube Roots 31
Module PMR
a). 0.8
1
b). 16 × −
2005
3 2
1
- 24
1
1 64
1
a). −
b). ( 1.4)2 1.96
=3
1 1 =3
2006 a). 0.7 1 b). 4
1 3
1
1 64
1
a). – 4
1
b). ( 3 )3
1
=3
2007
27
1 =3
2008
1 a). − 3
1
b). 72
1
49
1
Squares, Square Roots,Cubes & Cube Roots 32
=3