Chapter 03 More About Polynomials

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chapter 03 More About Polynomials as PDF for free.

More details

  • Words: 17,617
  • Pages: 24
Certificate Mathematics in Action Full Solutions 4A

3 More about Polynomials • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Activity

4.



Activity 3.1 (p. 143) ∴ 3

1.

2.

f ( −1) = ( −1) 3 − 2( −1) 2 − 5(−1) + 6

2

f (3) = 3 − 2(3) − 5(3) + 6 = 27 − 18 − 15 + 6 =0 (a)

(b)



Yes. Since f (3) = 0 , i.e. when f(x) is divided by x − 3 , the remainder is 0, it means that f(x) is divisible by x − 3 , so x − 3 is a factor of x3 − 2 x 2 − 5 x + 6 .

∴ ∵

f (−2) = ( −2)3 − 2(−2) 2 − 5(−2) + 6 = −8 − 8 + 10 + 6 =0

∴ ∵

f (−2) = ( −1)3 − 2(−1) 2 − 5(−1) + 6 = −1 − 2 + 5 + 6 =8 ≠0 f (−2) = 0 , therefore x + 2 is a factor of x 3 − 2 x 2 − 5 x + 6 ; f (−1) = 8 , therefore x + 1 is

∴ ∵



not a factor of x 3 − 2 x 2 − 5 x + 6 . ∵

Activity 3.2 (p. 149) 1.



f ( x ) = ( x + a )( x 2 + bx + c) = x 2 + ax 2 + bx 2 + abx + cx + ac



= x 3 + ( a + b) x 2 + ( ab + c) x + ac By comparing the coefficients, ac = 6 ∴ The product of a and c is 6. 2.

∴ ∵

The possible values of a are ±1, ±2, ±3, ±6. a is a factor of the constant term of f(x).

∴ ∴

3. √

x −1



x +1



x−2



x+2



x−3



x+3



59

x−4

x+4

x−5

x+5

x−6



f (1) = 13 − 2(1) 2 − 5(1) + 6 = 1− 2 − 5 + 6 =0 x − 1 is a factor of f(x).

x+6

5.

∵ ∴

= −1 − 2 + 5 + 6 =8 ≠0 x + 1 is not a factor of f(x).

f (2) = 2 3 − 2( 2) 2 − 5( 2) + 6 = 8 − 8 − 10 + 6 = −4 ≠0 x − 2 is not a factor of f(x). f (−2) = (−2) 3 − 2(−2) 2 − 5( −2) + 6 = −8 − 8 + 10 + 6 =0 x + 2 is a factor of f(x). f (3) = 33 − 2(3) 2 − 5(3) + 6 = 27 − 18 − 15 + 6 =0 x − 3 is a factor of f(x). f (−3) = ( −3)3 − 2( −3) 2 − 5( −3) + 6 = −27 − 18 + 15 + 6 = −24 ≠0 x + 3 is not a factor of f(x). f (6) = 63 − 2(6) 2 − 5(6) + 6 = 216 − 72 − 30 + 6 = 120 ≠0 x − 6 is not a factor of f(x). f (−6) = ( −6)3 − 2(−6) 2 − 5(−6) + 6 = −216 − 72 + 30 + 6 = −252 ≠0 x + 6 is not a factor of f(x). One of the factors of f(x) is x − 3 , x − 1 or x + 2 . The factor of f(x) are x − 3 , x − 1 and x + 2 . f ( x ) = ( x − 3)( x − 1)( x + 2)

4 p. 132

Follow-up Exercise

(5 x 3 + 4 x ) ÷ x

p.130 (5 − x − 4 x 2 ) + (7 x 3 − x + 1) 1.

More about Polynomials

1.

(a)

= 5 − x − 4x + 7 x − x + 1 2

3

= 7 x3 − 4 x 2 − x − x + 5 + 1 = 7 x3 − 4 x 2 − 2 x + 6

5x3 + 4 x x 5x3 4 x = + x x = 5x2 + 4 =

(8 x 3 + 4 x 2 + 4 x) ÷ 2 x

Alternative Solution − 4x2 − x + 5

(b)

+) 7 x3 + 0 x 2 − x + 1 7 x3 − 4 x 2 − 2 x + 6

8 x3 + 4 x 2 + 4 x 2x 8 x3 4 x 2 4 x = + + 2x 2x 2x = 4x2 + 2x + 2 =

(3 x 3 + 7 x 2 − 2 x + 1) − ( x 3 − 2 x − 5) 2.

3x − 2

= 3x3 + 7 x 2 − 2 x + 1 − x3 + 2 x + 5 = 3x − x + 7 x − 2 x + 2 x + 1 + 5 3

3

2

2.

= 2x + 7 x + 6 3

2

(a)

Alternative Solution 3x 3 + 7 x 2 − 2 x + 1

x 3x 2 − 2 x 3x − 2x − 2x 3x 2 + 4 x + 3

−) x 3 + 0 x 2 − 2 x − 5

2 x 6 x3 + 8 x 2 + 6 x − 1

2 x3 + 7 x 2 + 0 x + 6 ∴ The answer is 2x3 + 7x2 + 6.

6 x3 8x 2

(b)

( 2 x 3 + 4 x − 1)(2 − 3 x)

8x 2

= (2 x 3 − 4 x − 1)(−3 x + 2) 3.

6x 6x

= (2 x 3 + 4 x − 1)(−3 x) + (2 x 2 + 4 x − 1)(2)

−1

= −6 x 4 − 12 x 2 + 3 x + 4 x 3 + 8 x − 2 = −6 x 4 + 4 x 3 − 12 x 2 + 3 x + 8 x − 2 4

3

p.135

2

= − 6 x + 4 x − 12 x + 11x − 2

x−1 x − 1 x2 − 2x + 3

Alternative Solution 2x3 + 0x 2 + 4x −1 − 3x + 2

×) 4

3

2

+ 3x

3

2

+ 8x − 2

− 6 x + 0 x − 12 x +)

4x + 0x

x2 − x

1.

−x+3 − x +1 2 ∴

− 6 x 4 + 4 x 3 − 12 x 2 + 11x − 2

The quotient is x − 1 and the remainder is 2. 3x + 2

( 4 x − x 2 ) + x( x + 1)( x − 1) − ( x 3 − 2) = ( 4 x − x ) + [ x( x) + x(1)]( x − 1) − ( x − 2) 2

= ( 4 x − x 2 ) + ( x 2 + x)( x − 1) − ( x 3 − 2) 4.

2x + 1 6x 2 + 7 x − 5

3

6 x 2 + 3x 4x − 5 4x + 2

2.

= ( 4 x − x 2 ) + ( x 2 + x)( x) + ( x 2 + x)(−1) − ( x 3 − 2) = ( 4 x − x 2 ) + x 3 + x 2 − x 2 − x − ( x 3 − 2) = 4 x − x 2 + x3 − x − x3 + 2 = x3 − x3 − x 2 + 4 x − x + 2

−7 ∴

The quotient is 3 x + 2 and the remainder is -7.

= − x 2 + 3x + 2

60

Certificate Mathematics in Action Full Solutions 4A x 2 − 7 x + 23 (c)

x + 3 x3 − 4 x 2 + 2 x + 1

1 = f  3

x3 + 3x 2 − 7 x2 + 2x

3.

3

− 7 x − 21x 23 x + 1 23 x + 69 − 68 The quotient is x 2 − 7 x + 23 and the remainder is −68.

(d) Let f ( x ) = x 4 + x 2 + 3 .  1 = f −   2

2x − 5

4

4 x3 + 2 x 2 + 2 x − 10 x 2 − 2 x + 7 − 10 x 2 − 5 x − 5 ∴

3 x + 12 The quotient is 2 x − 5 and the remainder is 3 x + 12 .

3.

p.141 1.

2.

Remainder = f (1)

(b)

Remainder = f (−2)

(c)

1 Remainder = f   5

(d)

 Remainder = f  − 

(e)

Remainder = f (0)

(f)

Remainder = f (2)

(a)

Let f ( x ) = x 3 − 4 . = f (1) Remainder = 13 − 4

When f(x) is divided by

x−2 f ( 2) = 28

,

3( 2)3 + 4(2) 2 + a (2) + b = 28 2a + b = −12 …… (2) (2) − (1), 3a = −15 a = −5

3  2

By substituting a = −5 into (1), we have −( −5) + b = 3 . b = −2

p.146

= −3

1.

(b) Let f ( x ) = 2 x − 3 x + x + 1 . = f (−2) 2

3 2 Remainder = 2(−2) − 3(−2) + (−2) + 1 = −16 − 12 − 2 + 1 = − 29

61

Let f ( x ) = 3 x 3 + 4 x 2 + ax + b . When f(x) is divided by x + 1 , f (−1) = 4 3( −1)3 + 4( −1) 2 + a ( −1) + b = 4 − a + b = 3 …… (1)

(a)

3

2

 1  1 = −  + −  + 3 Remainder  2   2  1 1 = + +3 16 4 53 = 16

2 x + x + 1 4 x3 − 8 x 2 + 0 x + 7 2

4.

2

Remainder = 27 1  − 18 1  + 3 1  − 5  3  3  3 = 1− 2 +1− 5 = −5

2



Let f ( x ) = 27 x 3 − 18 x 2 + 3 x − 5 .

Let f ( x ) = x 3 − 4 x 2 − 7 x + 10 . (a)

f (1) = 13 − 4(1) 2 − 7(1) + 10 = 1 − 4 − 7 + 10 =0 ∴ x − 1 is a factor of x 3 − 4 x 2 − 7 x + 10 .

f (2) = 23 − 4( 2) 2 − 7(2) + 10 (b) = 8 − 16 − 14 + 10 = −12 ≠0 ∴ x − 2 is not a factor of x 3 − 4 x 2 − 7 x + 10 .

4

f (−1) = ( −1) − 4(−1) − 7( −1) + 10 = −1 − 4 + 7 + 10 = 12 ≠0 ∴ x + 1 is not a factor of x 3 − 4 x 2 − 7 x + 10 . 3

(c)

(d)

2.

2

(a)



∴ (b)

f (−2) = ( −2)3 − 4(−2) 2 − 7(−2) + 10 = −8 − 16 + 14 + 10 =0 ∴ x + 2 is a factor of x 3 − 4 x 2 − 7 x + 10 .

f (3) = 33 − 5(3) 2 + 8(3) − 6 = 27 − 45 + 24 − 6 =0 x − 3 is a factor of f(x).

By long division, x2 − 2x + 2 x − 3 x3 − 5x 2 + 8 x − 6 x3 − 3x 2 − 2x2 + 8x − 2x2 + 6x 2x − 6 2x − 6

Let f ( x ) = 2 x3 − 5 x 2 − x + 1 . (a)

(b)

f (3) = 2(3) 3 − 5(3) 2 − 3 + 1 = 54 − 45 − 3 + 1 =7 ≠0 ∴ x − 3 is not a factor of 2 x 3 − 5 x 2 − x + 1 . f (−4) = 2(−4)3 − 5( −4) 2 − (−4) + 1 = −128 − 80 + 4 + 1 = −203 ≠0 ∴ x + 4 is not a factor of 2 x 3 − 5 x 2 − x + 1 . 3

(c)

(d)

2 Hence, f ( x ) = ( x − 3)( x − 2 x + 2)

p.152 1.



x − 1 x3 + 2 x 2 − x − 2 x3 − x 2 3x 2 − x 3x 2 − 3 x 2x − 2 2x − 2

2



2.

∵ ∴

f (1) = 13 + 2(1) 2 − 15(1) − 36 = −48 ≠ 0 f ( −1) = (−1) 3 + 2(−1) 2 − 15( −1) − 36 = −20 ≠ 0 ∵

f (3) = 33 + 2(3) 2 − 15(3) − 36 = −36 ≠ 0

2

3

2

f (2) = 2 3 + 2(2) 2 − 15(2) − 36 = −50 ≠ 0 f (−2) = (−2) 3 + 2(−2) 2 − 15(−2) − 36 = −6 ≠ 0

2

4 x − kx + 9 x − 2 is divisible by 4 x − 1 . By the converse of the factor theorem, 1 f =0 2 3

x 3 + 2 x 2 − x − 2 = ( x − 1)( x 2 + 3 x + 2) = ( x − 1)( x + 1)( x + 2)

Let f ( x ) = x 3 + 2 x 2 − 15 x − 36 .

Let f ( x ) = 4 x − kx + 9 x − 2 . 3

f (1) = 13 + 2(1) 2 − 1 − 2 = 0 x − 1 is a factor of f(x).

By long division, x 2 + 3x + 2

2

1 1 1 1 f   = 2  − 5  −   + 1 2  2 2 2 1 5 1 = − − +1 4 4 2 1 =− 2 ≠0 ∴ 2 x − 1 is a factor of 2 x 3 − 5 x 2 − x + 1 .

Let f ( x ) = x 3 + 2 x 2 − x − 2 . ∵

 1  1  1  1 f  −  = 2 −  − 5 −  −  −  + 1 2 2      2  2 1 5 1 = − − + +1 4 4 2 =0 ∴ 2 x + 1 is a factor of 2 x 3 − 5 x 2 − x + 1 . 3

3.

4.

More about Polynomials



f ( −3) = (−3) 3 + 2(−3) 2 − 15( −3) − 36 = 0 x + 3 is a factor of f(x).

By long division,

1 1 1 4  − k   + 9  − 2 = 0 4 4 4 . 1 k 9 − + −2 =0 16 16 4 k 5 = 16 16 k =5

62

Certificate Mathematics in Action Full Solutions 4A f (1) = 13 + 12 − 8(1) − 12 = −18 ≠ 0

x 2 − x − 12 x + 3 x 3 + 2 x 2 − 15 x − 36



f (2) = 23 + 2 2 − 8( 2) − 12 = −16 ≠ 0

x3 + 3 x 2 − x 2 − 15 x − x2



− 3x − 12 x − 36 − 12 x − 36





x 3 + 2 x 2 − 15 x − 36 = ( x + 3)( x 2 − x − 12)



= ( x − 4)( x + 3) 2 x 3 + 2 x 2 − 15 x − 36 = ( x + 3)( x 2 − x − 12) = ( x − 4)( x + 3) 2

6.



f (1) = 13 − 7(1) + 6 = 0 x − 1 is a factor of f(x).

x3 − x 2 x −7x

f (1) = 2(1) 3 + 7(1) 2 − 44(1) + 35 = 0 x − 1 is a factor of f(x).

By long division, 2 x 3 + 7 x 2 − 44 x + 35 = ( x − 1)(2 x 2 + 9 x − 35) = ( x − 1)(2 x − 5)( x + 7)

By long division, x2 + x − 6 x − 1 x3 + 0 x 2 − 7 x + 6

2 x 3 + 2 x 2 − 16 x − 24 = 2( x − 3)( x + 2) 2

Let f ( x ) = 2 x3 + 7 x 2 − 44 x + 35 . ∴

Let f ( x ) = x 3 − 7 x + 6 . ∵

f (−2) = ( −2) 3 + ( −2) 2 − 8( −2) − 12 = 0 x + 2 is a factor of f(x).

By long division, x 3 + x 2 − 8 x − 12 = ( x + 2)( x 2 − x − 6) ∴ x 3 + x 2 − 8 x − 12 = ( x − 3)( x + 2) 2

∴ 3.

f (−1) = ( −1) 3 + ( −1) 2 − 8( −1) − 12 = −4 ≠ 0

Exercise

2

Exercise 3A (p.130)

x2 − x − 6x + 6 − 6x + 6 ∴

x 3 − 7 x 2 + 6 = ( x − 1)( x 2 + x − 6) = ( x − 2)( x − 1)( x + 3)

Level 1 ( x 3 − 5 x + 4) + ( x 3 + 2 x 2 − 5) 1.

= x 3 − 5 x + 4 + x3 + 2 x 2 − 5 = x 3 + x3 + 2 x 2 − 5 x + 4 − 5 = 2 x3 + 2 x 2 − 5x − 1

4.

Let f ( x) = x3 + 3 x 2 − x − 3 . ∵ ∴

f (1) = 13 + 3(1) 2 − 1 − 3 = 0 x − 1 is a factor of f(x).

(6 x 3 − 3x + 2) + ( −2 x 3 − 4 x 2 + 2 x − 1) 2.

By long division, x2 + 4x + 3 x − 1 x3 + 3x 2 x −x 3

4x −

− x−3

(2 x − 3 x 2 + 1) − (3 x 2 − 4 x + 1)

x

3.

4x − 4x

= − 6x 2 + 6x

3x − 3 3x − 3 x 3 + 3 x 2 − x − 3 = ( x − 1)( x 2 + 4 x + 3) = ( x − 1)( x + 1)( x + 3)

= 2 x − 3x 2 + 1 − 3x 2 + 4 x − 1 = −3 x 2 − 3 x 2 + 2 x + 4 x + 1 − 1

2



= 6 x 3 − 2 x3 − 4 x 2 − 3 x + 2 x + 2 − 1 = 4 x3 − 4 x 2 − x + 1

2 2

= 6 x3 − 3x + 2 − 2 x3 − 4 x 2 + 2 x − 1

(3 x 2 − 2 x 3 − 7 x − 4) − ( 4 x 2 − 6 x − 5) 4.

= 3x 2 − 2 x 3 − 7 x − 4 − 4 x 2 + 6 x + 5 = −2 x 3 + 3 x 2 − 4 x 2 − 7 x + 6 x − 4 + 5 = − 2x3 − x 2 − x + 1

5.

2 x 3 + 2 x 2 − 16 x − 24 = 2( x 3 + x 2 − 8 x − 12) Let f ( x ) = x 3 + x 2 − 8 x − 12 .

63

4

5.

More about Polynomials

( 4 x 2 + 3 x + 1)( x + 1)

( x 2 + 2 x − 1)(3 x 2 − 5 x − 2)

= ( 4 x 2 + 3 x + 1)( x) + ( 4 x 2 + 3 x + 1)(1)

= ( x 2 + 2 x − 1)(3 x 2 ) + ( x 2 + 2 x − 1)(−5 x) +

= 4 x3 + 3x 2 + x + 4 x 2 + 3x + 1

12.

= 4 x + 3x + 4 x + x + 3x + 1 3

2

2

= 4 x3 + 7 x 2 + 4 x + 1

( x 2 + 2 x − 1)(−2) = 3 x 4 + 6 x 3 − 3 x 2 − 5 x 3 − 10 x 2 + 5 x − 2 x 2 − 4 x + 2 = 3 x 4 + 6 x 3 − 5 x 3 − 3 x 2 − 10 x 2 − 2 x 2 + 5 x − 4 x + 2 = 3 x 4 + x 3 − 15 x 2 + x + 2

( x + 3)( x − 2 x ) 2

6.

= ( x + 3)( x 2 ) + ( x + 3)(−2 x )

5 P − ( x − 1)Q

= x + 3x − 2 x − 6 x

= 5( x 2 − 3 x − 5) − ( x − 1)(3 x 2 − 5)

3

2

2

= x3 + x 2 − 6 x

7.

13.

= 5 x 2 − 15 x − 25 − 3 x3 + 3 x 2 + 5 x − 5

(3 x − 2)(2 x 2 − 4 x − 1)

= −3 x3 + 5 x 2 + 3 x 2 − 15 x + 5 x − 25 − 5

= (3 x − 2)(2 x 2 ) + (3 x − 2)(−4 x) + (3 x − 2)(−1)

= − 3 x 3 + 8 x 2 − 10 x − 30

= 6 x − 4 x − 12 x + 8 x − 3 x + 2 3

2

2

(3 − x )(Q − P )

= 6 x 3 − 16 x 2 + 5 x + 2

= (3 − x )[(3 x 2 − 5) − ( x 2 − 3x − 5)] = ( − x + 3)(3x 2 − 5 − x 2 + 3 x + 5)

( 2 x + 1)( x 2 − x + 1) + (2 x + 1) 2 = ( 2 x + 1)( x 2 ) + ( 2 x + 1)(− x) + ( 2 x + 1)(1) + 8.

= 5 x 2 − 15 x − 25 − ( x − 1)(3 x 2 ) − ( x − 1)(−5)

14.

(4 x 2 + 4 x + 1)

= ( − x + 3)(3x 2 − x 2 + 3 x − 5 + 5) = ( − x + 3)(2 x 2 + 3 x)

= 2 x3 + x 2 − 2 x 2 − x + 2 x + 1 + 4 x 2 + 4 x + 1

= ( − x + 3)(2 x 2 ) + (− x + 3)(3 x)

= 2 x3 + x 2 − 2 x 2 + 4 x 2 − x + 2 x + 4 x + 1 + 1

= −2 x 3 + 6 x 2 − 3 x 2 + 9 x

= 2 x3 + 3x 2 + 5 x + 2

= − 2 x3 + 3x 2 + 9 x Q 2 − PQ = (3 x 2 − 5) 2 − ( x 2 − 3 x − 5)(3 x 2 − 5)

Level 2

= 9 x 4 − 30 x 2 + 25 − ( x 2 − 3 x − 5)(3 x 2 ) −

( 4 x − 3 x − 7) − (2 x − 4 x − 7 x) − (6 x − 5 x − 5) 3

9.

3

2

2

= 4 x − 3x − 7 − 2 x + 4 x + 7 x − 6 x + 5 x + 5 3

3

2

2

15.

= 4 x − 2 x + 4 x − 6 x − 3x + 7 x + 5 x − 7 + 5 3

3

2

2

( x 2 − 3 x − 5)(−5) = 9 x 4 − 30 x 2 + 25 − 3x 4 + 9 x 3 + 15 x 2 + 5 x 2 − 15 x − 25

= 2 x3 − 2 x 2 + 9 x − 2

= 9 x 4 − 3 x 4 + 9 x 3 − 30 x 2 + 15 x 2 + 5 x 2 − 15 x + 25 − 25

(5 x 3 − 6 x 2 − x + 3) + (7 x 3 − 5 x 2 − x + 3) −

= 6 x 4 + 9 x 3 − 10 x 2 − 15 x

( x − 2 x + 2 x − 5) 3

10.

2

= 5x3 − 6 x 2 − x + 3 + 7 x3 − 5x 2 − x + 3 − x3 + 2 x 2 − 2 x + 5 = 5x3 + 7 x3 − x3 − 6 x 2 − 5x 2 + 2 x 2 − x − x − 2x + 3 + 3 + 5

Exercise 3B (p.136) Level 1 x+ 3

= 11x3 − 9 x 2 − 4 x + 11 1.

( 2 x 2 − 3 x − 5)( x 2 − 2) 11.

= ( 2 x 2 − 3 x − 5)( x 2 ) + (2 x 2 − 3 x − 5)(−2) = 2 x − 3 x − 5 x − 4 x + 6 x + 10 4

3

2

2

= 2 x 4 − 3 x 3 − 9 x 2 + 6 x + 10

7 x 7 x 2 + 21x 7 x2 21x 21x ∴ The quotient is x + 3 and the remainder is 0.

64

Certificate Mathematics in Action Full Solutions 4A 2d − 1

5x 2 − 3 x 2.

3 x 15 x 3 − 9 x 2

8.

15 x 3

2d − 1 4d 2 − 4d + 1 4d 2 − 2d − 2d + 1 − 2d + 1

− 9x2 − 9x2

∴ The quotient is 2d − 1 and the remainder is 0. ∴ The quotient is 5 x 2 − 3x and the remainder is 0.

3x + 8

a+ 3

2x − 3 6x2 + 7 x + 2

a a 2 + 3a + 2 3.

a

9.

2

16 x + 2 16 x − 24

3a 3a

26 2

∴ The quotient is 3 x + 8 and the remainder is 26.

∴ The quotient is a + 3 and the remainder is 2.

4a − 1

x− 2

4a + 1 16a 2 + 0a − 4

2x 2x − 4x + 3 2

4.

2x

10.

2

16a 2 + 4a − 4a − 4 − 4a − 1

− 4x − 4x

−3 3

∴ The quotient is 4a − 1 and the remainder is −3.

∴ The quotient is x − 2 and the remainder is 3.

s 2 − 4 s + 11

p+ 2

s + 2 s 3 − 2 s 2 + 3s + 2

p + 1 p + 3p + 5 2

5.

6x2 − 9x

p + p 2

s 3 + 2s 2 11.

2p + 5 2p + 2

− 4 s 2 + 3s − 4 s 2 − 8s 11s + 2 11s + 22

3

− 20

∴ The quotient is p + 2 and the remainder is 3.

∴ The quotient is s 2 − 4 s + 11 and the remainder is −20.

z−8 z + 3 z 2 − 5z + 6 6.

2h 2 + 3h + 10

z 2 + 3z − 8z + 6 − 8 z − 24 30 ∴ The quotient is z − 8 and the remainder is 30. 2r

7.

r − 2 2 r 2 − 4r + 1 2 r − 4r

h − 3 2h3 − 3h 2 + h − 5 2 h 3 − 6h 2 12.

3h 2 + h 3h 2 − 9h 10h − 5 10h − 30 25

2

1 ∴ The quotient is 2r and the remainder is 1.

65

∴ The quotient is 2h 2 + 3h + 10 and the remainder is 25.

4 2x2 − 4x + 2

x−2

2x + 1 4x − 6x + 0x − 7

x + x + 3 x3 − x 2 + 3 x − 3

3

2

2

4 x3 + 2 x 2 13.

x3 + x 2 + 3 x

17.

− 8x2 + 0 x

− 2x2 + 0x − 3

− 8x2 − 4 x

− 2x2 − 2x − 6 2x + 3

4x − 7 4x + 2

∴ The quotient is x − 2 and the remainder is 2 x + 3 .

−9 ∴ The quotient is 2 x 2 − 4 x + 2 and the remainder is −9.

p 18.

p + 2 p − 1 p3 + 2 p2 − 5 p + 1 2

p3 + 2 p2 − p

3m + 2m + 1 2

− 4 p +1

3m + 2 9m + 12m + 7 m − 5 3

2

∴ The quotient is p and the remainder is −4 p + 1 .

9 m3 + 6m 2 6m 2 + 7 m

14.

2z + 3

6m + 4m 2

3m − 5 3m + 2

z 2 − 3z − 2 2 z 3 − 3z 2 − z + 4 2z3 − 6z 2 − 4z

19.

3z 2 + 3z + 4

−7

3z 2 − 9 z − 6 12 z + 10

∴ The quotient is 3m 2 + 2m + 1 and the remainder is −7.

∴ The quotient is 2 z + 3 and the remainder is 12 z + 10 .

3w − 2 w + 1 2

2d + 5

4 w + 3 12 w3 + w2 − 2 w + 3 12 w + 9 w 3

15.

2

d − 3d − 4 2d 3 − d 2 − 24d − 18 2

− 8w − 2w 2

2d 3 − 6d 2 − 8d

20.

− 8w − 6 w 2

5d 2 − 16d − 18

4w + 3 4w + 3

5d 2 − 15d − 20 −d + 2

∴ The quotient is 3w2 − 2 w + 1 and the remainder is 0.

∴ The quotient is 2d + 5 and the remainder is −d + 2 .

3q − 4

Level 2

2q + 5q − 2 6q 3 + 7q 2 − 23q + 2 2

x+6 x 2 − x + 2 x3 + 5 x 2 − 2 x + 3 16.

More about Polynomials

x − x + 2x 3

2

6x − 4x + 3 2

6 x 2 − 6 x + 12 2x − 9

21.

6q 3 + 15q 2 − 6q − 8q 2 − 17 q + 2 − 8q 2 − 20q + 8 3q − 6 ∴ The quotient is 3q − 4 and the remainder is 3q − 6 .

∴ The quotient is x + 6 and the remainder is 2 x − 9 .

66

Certificate Mathematics in Action Full Solutions 4A 3s + 5

x+3

3s − 2s − 1 9 s + 9 s − 16 s − 4 2

3

x − 3x − 2 x 3 + 0 x 2 + 2 x − 5

2

2

9 s 3 − 6 s 2 − 3s

22.

x3 − 3x 2 − 2 x

26.

15s 2 − 13s − 4

3x 2 + 4 x − 5

15s − 10s − 5

3x 2 − 9 x − 6

− 3s + 1

13 x + 1

2

∴ The quotient is 3s + 5 and the remainder is −3s + 1 .



x −1

2x2 + 2x − 1

x + x + 1 x3 + 0 x 2 + 0 x + 1 2

2 x 2 − x + 2 4 x 4 + 2 x3 + 0 x 2 + 6 x − 3 4 x 4 − 2 x3 + 4 x 2 23.

The quotient is x + 3 and the remainder is 13 x + 1 .

x3 + x 2 + x

27.

4 x3 − 4 x 2 + 6 x

− x2 − x + 1

4 x3 − 2 x 2 + 4 x

− x2 −

x −1

− 2x + 2x − 3 2

2

− 2x + x − 2 2

∴ The quotient is x − 1 and the remainder is 2.

x −1

x 2 − 5 x + 20

∴ The quotient is 2 x 2 + 2 x − 1 and the remainder is x −1 .

x 2 + 3 x − 1 x 4 − 2 x3 + 4 x 2 − 3x − 5 x 4 + 3x3 − x 2

2w − 3 4 w2 + w − 2 8w3 − 10 w2 − 9 w + 1

− 5 x3 + 5 x 2 − 3x

28.

− 5 x 3 − 15 x 2 + 5 x

8 w3 + 2 w 2 − 4 w

24.

20 x 2 − 8 x − 5

− 12 w2 − 5w + 1

20 x 2 + 60 x − 20

− 12 w2 − 3w + 6

− 68 x + 15

− 2w − 5 ∴ The quotient is 2 w − 3 and the remainder is −2 w − 5 . 5 3e − 2 2e 2 + 1 6e3 − 5e 2 + 7e + 1 25.

6e 3

+ 3e − 5e 2 + 4e + 1 5 − 5e 2 − 2 4e +

7 2

5 ∴ The quotient is 3e − and the remainder is 2 7 4e + . 2

∴ The quotient is x 2 − 5 x + 20 and the remainder is −68 x + 15 . [(3x 3 + 2 x − 3) − ( x 3 − 4 x 2 + 4)] ÷ ( x 2 − 3 x + 5) 29.

= (3 x 3 + 2 x − 3 − x 3 + 4 x 2 − 4) ÷ ( x 2 − 3 x + 5) = (3 x 3 − x 3 + 4 x 2 + 2 x − 3 − 4) ÷ ( x 2 − 3 x + 5) = ( 2 x 3 + 4 x 2 + 2 x − 7) ÷ ( x 2 − 3 x + 5) By long division, 2 x + 10 x − 3x + 5 2 x 3 + 4 x 2 + 2 x − 7 2

2 x 3 − 6 x 2 + 10 x 10 x 2 − 8 x − 7 10 x 2 − 30 x + 50 22 x − 57 ∴ The quotient is 2 x + 10 and the remainder is 22 x − 57 .

67

4

30.

[(2t − 1)(t 2 + 1)] ÷ (t 2 + 2t + 1)

6.

= [(2t − 1)(t 2 ) + (2t − 1)(1)] ÷ (t 2 + 2t + 1)

By long division,

t + 2t + 1 2t − t + 2t − 1 2

2

2

7.

− 5t 2 + 0t − 1

3

Remainder = 27  − 1  − 6 − 1  + 2      3  3 = −1 + 2 + 2 =3

− 5t − 10t − 5 2

10t + 4

8.

3

Let f ( x ) = x 3 − 8 x − 7 . = f (3) 3 Remainder = 3 − 8(3) − 7 = 27 − 24 − 7 = −4

9.

2

3

Remainder = 8  1  − 2 1  + 1 2 2 = 1 −1 +1 =1

3 2 Remainder = 1 + 1 + 2(1) + 1 = 1+1+ 2 +1 =5

3.

Let f ( x ) = 2 x3 − x 2 + 7 x + 1 . = f (−1)

10. Let f ( x ) = 2 x3 + 2 x 2 − 4 x + 7 . 3 = f  2

Remainder = 2(−1) − (−1) + 7( −1) + 1 = −2 − 1 − 7 + 1 = −9 3

4.

2

5.

3

Let f ( x ) = 2 x3 − 3 x 2 − 4 x + 5 . = f (−3) 3 2 Remainder = 2(−3) − 3(−3) − 4(−3) + 5 = −54 − 27 + 12 − 5 = − 64

2

 3 3 3 = 2   + 2  − 4   + 7 Remainder  2 2 2 27 9 = + −6+7 4 2 49 = 4

Let f ( x ) = x 3 + 7 x 2 − 5 x + 1 . = f ( 2) 3 2 Remainder = 2 + 7( 2) − 5( 2) + 1 = 8 + 28 − 10 + 1 = 27

Let f ( x ) = 8 x 3 − 2 x + 1 . 1 = f  2

Let f ( x ) = x + x + 2 x + 1 . = f (1) 3

2

1 1 1 Remainder = 4  −   + 8  − 11 4 4     4 1 1 = − + 2 − 11 16 16 = −9

Level 1

2.

Let f ( x ) = 4 x3 − x 2 + 8 x − 11 . 1 = f  4

Exercise 3C (p.142)

1.

Let f ( x ) = 27 x 3 − 6 x + 2 .  1 = f −   3

2t 3 + 4t 2 + 2t

∴ The quotient is 2t − 5 and the remainder is 10t + 4 .

Let f ( x ) = x 3 + 4 x 2 − x − 3 . = f (5) 3 2 Remainder = 5 + 4(5) − 5 − 3 = 125 + 100 − 5 − 3 = 217

= ( 2t 3 − t 2 + 2t − 1) ÷ (t 2 + 2t + 1)

2t − 5

More about Polynomials

11.

Let f ( x ) = 3 x 3 + 7 x 2 + kx − 5 . By the remainder theorem, we have f (−3) = 4 3( −3)3 + 7( −3) 2 + k ( −3) − 5 = 4 − 81 + 63 − 3k − 5 = 4 3k = −27 k = −9

68

Certificate Mathematics in Action Full Solutions 4A 12. Let f ( x ) = 2 x 3 + kx 2 + 5 x + 4 . By the remainder theorem, we have f ( 2) = 6 2(2) 3 + k (2) 2 + 5(2) + 4 = 6 16 + 4k + 10 + 4 = 6 4k = −24 k = −6 13. Let f ( x ) = x 2 − kx − 2 . By the remainder theorem, we have f (k ) = k k 2 − k (k ) − 2 = k

x 3 + x 2 + 2ax − 10 . (or any other reasonable answers) 19. By the remainder theorem, we have f ( −1) = 3

k2 −k2 −2 = k k = −2 14. Let f ( x ) = kx 4 + 30 x 3 + 18 x + 20 . By the remainder theorem, we have  1 f  −  = 13  3 4

18. Let f ( x ) = x 3 + 2ax − b . ∵When f(x) is divided by x − 3 , the remainder is 1. ∴ When f(x) − 1 is divided by x − 3 , the remainder is 0. ∴ When f(x) − 1 + b is divided by x − 3 , the remainder is b, and when f(x) −1 + b+ x2 − 9 is divided by x − 3, the remainder is also b (since x2 − 9 = 0 when x = 3). ∴ The required polynomial is x 3 + 2ax − 1 or

( −1)3 + 2( −1) 2 + k ( −1) + c = 3 −1+ 2 − k + c = 3 k = c−2 ∴ k = 1, c = 3 or k = −1, c = 1 or k = −3, c = −1 (or any other reasonable answers)

3

 1  1  1 4 −  + 30 −  + 18 −  + 20 = 13 3 3      3 k 10 − − 6 + 20 = 13 81 9 k 1 = 81 9 k =9

Level 2 20. Let f ( x ) = x 2 + 2 x + 3 . By the remainder theorem, we have k f   = 11 2 2

15. Let f ( x ) = 2 x3 − 5 x 2 + 4kx − 7 . By the remainder theorem, we have 1 f   = −6 2 3

2

1 1 1 2  − 5  + 4k   − 7 = −6 2 2 2 1 5 − + 2k − 7 = −6 4 4 2k = 2 k =1 16. Let f ( x ) = x1997 − 1 . = f (−1) 1997 Remainder = ( −1) − 1 = −1 − 1 = −2

17. Let f ( x ) = x100 − 1 . = f (1) 100 Remainder = 1 − 1 = 1−1 =0

69

k k   + 2   + 3 = 11 2 2 2 k + k + 3 = 11 4 k 2 + 4k − 32 = 0 (k + 8)(k − 4) = 0 k +8 = 0 or k − 4 = 0 k = − 8 or k=4 21. Let f ( x ) = x 3 + (k + 4) x 2 − 2 x − 1 . By the remainder theorem, we have f (−k ) = k 2 ( −k ) 3 + (k + 4)(−k ) 2 − 2( −k ) − 1 = k 2 − k 3 + k 3 + 4k 2 + 2 k − 1 = k 2

k +1 = 0 k = −1

3k 2 + 2k − 1 = 0 (k + 1)( 3k − 1) = 0 or 3k − 1 = 0 1 or k= 3

22. Let f ( x ) = x 2 − 4 x − 3 . By the remainder theorem, we have

4 f (− k ) = −6

f (n) = 11

( −k ) 2 − 4( −k ) − 3 = −6

n − mn + 3 = 11

k 2 + 4k + 3 = 0 (k + 3)(k + 1) = 0 k +3 = 0 or k + 1 = 0 k = − 3 or k = −1

n 2 − mn − 8 = 0

2

By substituting (2) into (1), we have ( 2m) 2 − m( 2m) − 8 = 0

2

 k  k 4 −  − 2 −  + 1 = 3k  2  2 k 2 + k + 1 = 3k

2m 2 − 8 = 0 m = ±2 When m = 2, n = 4 When m = −2, n = −4

k 2 − 2k + 1 = 0 (k − 1) 2 = 0 k =1

∴ The values of m and n are m = 2 m = −2 or  .  n=4  n = −4

24. When f(x) is divided by x − 1 , f (1) = −1 ……(1)

27. (a)

When f(x) is divided by x + 2 , f ( −2) = −31 2(−2)3 − ( −2) 2 + p ( −2) + q = −31 − 2 p + q = −11 3 p = 9 (1) – (2), p=3

……(2)

By substituting p = 3 into (1), we have 3 + q = −2 q = −5

P (−2) = −28 (−2 − 1)(−2 + 2)Q(−2) + a(−2) + b = −28 − 2a + b = −28

……(1)

……(2) 3a = 24 (1) – (2), a =8 By substituting a = 8 into (1), we have 8 + b = −4 b = −12 ∴ The remainder when P(x) is divided by ( x − 1)( x + 2) is 8 x − 12 .

When f(x) is divided by x − 3 , f (3) = −4 33 − p (3) 2 + 2(3) + q = −4 − 9 p + q = −37 (1) – (2), 5 p = 20 p=4

∵The degree of ( x − 1)( x + 2) is 2, ∴ The highest possible degree of the remainder when P(x) is divided by ( x − 1)( x + 2) is 1.

(b) Let Q(x) and ax + b be the quotient and the remainder respectively when P(x) is divided by ( x − 1)( x + 2) . ∴ P ( x) = ( x − 1)( x + 2)Q ( x ) + ax + b By the remainder theorem, we have P(1) = −4 (1 − 1)(1 + 2)Q(1) + a (1) + b = −4 ……(1) a + b = −4

25. When f(x) is divided by x − 2 , f (2) = −5 2 3 − p (2) 2 + 2(2) + q = −5 − 4 p + q = −17

……(1)

When g(x) is divided by x − n , g ( n) = 0 2m − n = 0 ……(2) n = 2m

23. Let f ( x ) = 4 x 2 − 2 x + 1 . By the remainder theorem, we have  k f  −  = 3k  2

2(1) 3 − 12 + p(1) + q = −1 p + q = −2

More about Polynomials

……(2)

By substituting p = 4 into (1), we have −4(4) + q = −17 q = −1 26. Let f ( x ) = x 2 − mx + 3 and g ( x) = 2m − x . When f(x) is divided by x − n ,

28. (a)

By the remainder theorem, we have f ( −1) = 1 ( −1)99 + k = 1 −1 + k = 1 k=2

70

Certificate Mathematics in Action Full Solutions 4A (b)

Let Q(x) be the quotient when f(x) is divided by x +1 . f ( x) = ( x + 1)Q ( x ) + 1 ∴ 99 x + 2 = ( x + 1)Q ( x ) + 1 x

99

9 99 = (9 + 1)Q (9) − 1 = 10Q(9) − 1 = 10[Q (9) − 1] + 9 ∴ The remainder when 999 is divided by 10 is 9.

Exercise 3D (p. 147) Level 1

2.

f (1) = 13 − 12 − 3(1) + 3 = 1 −1 − 3 + 3 =0 ∴ x − 1 is a factor of f(x). f (−1) = (−1)3 − (−1) 2 − 3( −1) + 3 = −1 − 1 + 3 + 3 (b) =4 ≠0 ∴ x + 1 is not a factor of f(x).

f (−4) = (−4)3 + 5(−4) 2 + 3(−4) + 15 = −64 + 80 − 12 + 15 (a) = 19 ≠0 ∴ x + 4 is not a factor of f(x). (b)

f (−5) = ( −5) + 5( −5) + 3( −5) + 15 = −125 + 125 − 15 + 15 =0 ∴ x + 5 is a factor of f(x).

Let f ( x ) = 2 x 3 − 9 x 2 + 5 x − 4 . ∵

71

2

f (4) = 2( 4)3 − 9(4) 2 + 5( 4) − 4 = 128 − 144 + 20 − 4 =0

Let f ( x ) = 2 x 3 + kx 2 − x − 6 . ∵ 2 x 3 + kx 2 − x − 6 is divisible by x + 2. ∴ By the converse of the factor theorem, f (−2) = 0 2(−2)3 + k (−2) 2 − (−2) − 6 = 0 − 16 + 4k + 2 − 6 = 0 4k = 20 k =5 Let f ( x ) = x3 − 2ax + 15 . ∵x + 5 is a factor of x3 – 2ax + 15. ∴ By the converse of the factor theorem, f ( −5) = 0 ( −5) 3 − 2a( −5) + 15 = 0 − 125 + 10a + 15 = 0 10a = 110 a = 11

8.

f (2) = 2 3 + 2(2) 2 − 5(2) − 6 = 8 + 8 − 10 − 6 =0 ∴ x - 2 is a factor of f(x).

3

4.

6.

(a)

(a)

Let f ( x ) = x3 − a 3 . 3 3 ∵ f (a ) = a − a  =0 ∴ x3 – a3 is divisible by x – a.

7.

f (3) = 33 + 2(3) 2 − 5(3) − 6 (b) = 27 + 18 − 15 − 6 = 24 ≠0 ∴ x - 3 is not a factor of f(x).

3.

5.

= ( x + 1)Q ( x ) − 1 ……(1)

By substituting x = 9 into (1), we have

1.

∴ x - 4 is a factor of 2 x 3 − 9 x 2 + 5 x − 4 .

Let f ( x ) = 2 x 3 + x 2 − mx + 12 . ∵x + 3 is a factor of 2x3 + x2 – mx + 12. ∴ By the converse of the factor theorem, f (3) = 0 2(3) 3 + 32 − m(3) + 12 = 0 54 + 9 − 3m + 12 = 0 3m = 75 m = 25

9.

Let P(x) be the polynomial of degree 3 with 2x + 3 as one of its factors. ∵P(x) = (ax2 + bx + c)(2x + 3) where a, b and c are integers. By substituting a = 1, b = 0 and c = -1 into P(x), we have P ( x) = ( x 2 − 1)(2 x + 3) = 2 x3 + 3x 2 − 2 x − 3 or by substituting a = 1, b = 1 and c = −2 into P(x), we have P ( x) = ( x 2 + x − 2)(2 x + 3) = 2 x 3 + 3x 2 + 2 x 2 + 3x − 4 x − 6 = 2x3 + 5x 2 − x − 6 ∴ The required polynomial is 2x3 + 3x2 – 2x – 3 or 2x3 + 5x2 – x – 6. (or any other reasonable answers)

10. ∵x3 + mx2 + nx + 5 is divisible by x – 1. ∴ By the converse of the factor theorem,

4

More about Polynomials

f (1) = 0 3

2

1 + m(1) + n(1) + 5 = 0 1+ m + n + 5 = 0 n = −6 − m ∴ m = –3, n = –3 or m = –1, n = –5 or m = 2, n = –8. (or any other reasonable answers)

11. Let f(x) = x3 + ax2 – x – b. ∵x + 2 is a factor of x3 + ax2 – x – b. ∴ By the converse of the factor theorem, f ( −2) = 0 ( −2)3 + a (−2) 2 − ( −2) − b = 0 − 8 + 4a + 2 − b = 0 b = 4a − 6 ∴ a = –3, b = –18 or a = –1, b = –10 or a =1, b = –2 (or any other reasonable answers)

Level 2 12. Let f(x) = 2x3 – x2 – 7x + 6. 3

2

3 3 3 3 f   = 2  −   − 7  + 6 2 2 2   2 ∵ 27 9 21 = − − +6 4 4 2 =0 ∴ 2x – 3 is a factor of 2x3 – x2 – 7x + 6. 13. Let f(x) = 8x3 – 14x2 + 7x – 1. 3

2

1 1 1 1 f   = 8  − 14  + 7  − 1 4 4 4   4 ∵     1 7 7 = − + −1 8 8 4 =0 ∴ 8x3 – 14x2 + 7x –1 is divisible by 4x – 1. g (−5) = ( −5) + 12(−5) + 41(−5) + 30 = −125 + 300 − 205 + 30 =0 ∴ x + 5 is a factor of g(x). 3

3

 f −  15. (a) ∵

(b) By long division, x2 + 7 x + 6 x + 5 x3 + 12 x 2 + 41x + 30 x3 + 5 x 2 7 x 2 + 41x 7 x 2 + 35 x 6 x + 30 6 x + 30

3 +9 2

(b) By long division, 2x2 − 7x + 3 2 x + 3 4 x 3 − 8 x 2 − 15 x + 9 4x3 +

6x 2

− 14 x 2 − 15 x − 14 x 2 − 21x 6x + 9 6x + 9 Hence, f(x) = (2x + 3)(2x2 – 7x + 3) By the cross method, 2x2 – 7x + 3 = (2x – 1)(x – 3) ∴ f ( x ) = (2 x + 3)(2 x − 1)( x − 3) 3

2

 4  4  4  4 h −  = 3 −  + 4 −  − 75 −  − 100 3 3 3       3 16. (a) ∵  64 64 =− + + 100 − 100 9 9 =0 ∴ 3x + 4 is a factor of h(x).

(b) By long division, x2 − 25 3 x + 4 3x 3 + 4 x 2 − 75 x − 100 3x 3 + 4 x 2 − 75 x − 100 − 75 x − 100

2

14. (a) ∵

2

3  3  3   = 4 −  − 8 −  − 15 − 2 2 2      27 45 =− − 18 + +9 2 2 =0 ∴ 2x + 3 is a factor of f(x).

2 Hence, h( x) = (3 x + 4)( x − 25) = (3 x + 4)( x + 5)( x − 5)

17. (a) Let f(x) = x3 – 4x2 + kx + 6. ∵x3 – 4x2 + kx + 6 is divisible by x – 3. ∴ By the converse of the factor theorem, f (3) = 0 33 − 4(3) 2 + k (3) + 6 = 0 27 − 36 + 3k + 6 = 0 3k = 3 k =1 (b) By long division,

2

Hence, g(x) = (x + 5)(x + 7x + 6) By the cross method, x2 + 7x + 6 = (x + 1)(x + 6) ∴ g ( x) = ( x + 5)( x + 1)( x + 6)

72

Certificate Mathematics in Action Full Solutions 4A 2(−2q − 1) + q = −5 3q = 3 q =1

x2 − x − 2 x − 3 x3 − 4 x 2 + x + 6 x3 − 3x 2

By substituting q = 1 into (2), we have p = −2(1) − 1 = −3

− x2 + x − x 2 + 3x − 2x + 6 − 2x + 6 Hence, f(x) = (x – 3)(x2 – x – 2) By the cross method, x2 – x – 2 = (x – 2)(x + 1) 3 2 ∴ x − 4 x + x + 6 = ( x − 3)( x − 2)( x + 1)

20. (a) ∵When f(x) is divided by x + 1, the remainder is 10. ∴ By the remainder theorem, we have f (−1) = 10 2(−1) 3 − (−1) 2 + a ( −1) + b = 10 − 2 − 1 − a + b = 10 …… (1) a − b = −13 ∵x – 1 is a factor of f(x). ∴ By the converse of the factor theorem, f (1) = 0

18. (a) Let f(x) = 8x3 + mx2 – 25x + 6. ∵8x3 + mx2 – 25x + 6 is divisible by 4x – 1. ∴ By the converse of the factor theorem, 1 f =0 4 3

2(1) 3 − 12 + a (1) + b = 0 a + b = −1 2 a = − 14 (1) + (2), a = −7

2

1 1 1 8  + m  − 25  + 6 = 0 4 4 4 1 m 25 + − +6=0 8 16 4 m 1 = 16 8 m=2

By substituting a = –7 into (2), we have −7 + b = −1 b=6 (b) By long division, 2x 2 + x − 6

(b) By long division, 2x 2 + x − 6

x − 1 2x3 − x 2 − 7 x + 6 2x3 − 2x 2

4 x − 1 8 x 3 + 2 x 2 − 25 x + 6

x2 − 7x

8x3 − 2 x 2

x2 − x − 6x + 6 − 6x + 6

4 x 2 − 25 x 4x 2 −

x

− 24 x + 6 − 24 x + 6 Hence, f(x) = (4x – 1)(2x2 + x – 6) By the cross method, 2x2 + x – 6 = (2x – 3)(x + 2) 3 2 ∴ 8 x + 2 x − 25 x + 6 = ( 4 x − 1)(2 x − 3)( x + 2) 3

2

3

2

19. Let f(x) = x + px + qx + 2 and g(x) = x + qx + px – 6. ∵x – 2 is a common factor of x3 + px2 + qx + 2 and x3 + qx2 + px – 6. f ( 2) = 0 ∴ 3 2 2 + p (2) + q (2) + 2 = 0 2 p + q = −5 …… (1) g ( 2) = 0

3

2

2 + q (2) + p( 2) − 6 = 0 p = −2q − 1 By substituting (2) into (1), we have

73

…… (2)

…… (2)

Hence, f(x) = (x – 1)(2x2 + x – 6) By the cross method, 2x2 + x – 6 = (2x – 3)(x + 2) ∴ f ( x ) = ( x − 1)(2 x − 3)( x + 2) 21. (a)

∵When g(x) is divided by x + 1, the remainder is 8. ∴ By the remainder theorem, we have g (−1) = 8

s (−1) 3 + 9(−1) 2 − t (−1) − 5 = 8

t = s + 4 …… (1)

∵x + 5 is a factor of g(x). ∴ By the converse of the factor theorem, g (−5) = 0 s (−5) 3 + 9(−5) 2 − t ( −5) − 5 = 0 − 25s + t = −44 …… (2) By substituting (1) into (2), we have

4 −25s + s + 4 = −44 24 s = 48 s=2

More about Polynomials

f (1) = 13 + 8(1) 2 + 21(1) + 18 = 48 f ( −1) = (−1) 3 + 8( −1) 2 + 21( −1) + 18 = 4



 f (2) = 2 3 + 8( 2) 2 + 21( 2) + 18 = 100

By substituting s = 2 into (1), we have t = 2+4 =6

f (−2) = (−2) 3 + 8(−2) 2 + 21( −2) + 18 = 0 ∴ x + 2 is a factor of f(x). By long division, x3 + 8x2 + 21x + 18 = (x + 2)(x2 + 6x + 9) 3 2 2 ∴ x + 8 x + 21x + 18 = ( x + 2)( x + 3)

(b) By long division, 2x 2 − x − 1

5.

x + 5 2x + 9x − 6x − 5 3

∵

2 x 3 + 10 x 2 − x 2 − 6x − x−5 − x−5 Hence, g(x) = (x + 5)(2x2 – x – 1) By the cross method, 2x2 – x – 1 = (2x + 1)(x – 1) ∴ g ( x) = ( x − 1) ( x + 5)(2 x + 1)

6.

7.

Let f(x) = x3 – 3x2 – 6x + 8. ∵f(1) = 13 – 3(1)2 – 6(1) + 8 = 0 ∴ x – 1 is a factor of f(x). By long division, x3 – 3x2 – 6x + 8 = (x – 1)(x2 – 2x – 8)

f (2) = 23 + 2 2 − 8( 2) − 12 = −16 f (−2) = ( −2) 3 + ( −2) 2 − 8( −2) − 12 = 0 ∴ x + 2 is a factor of f(x). By long division, x3 + x2 – 8x – 12 = (x + 2)(x2 – x – 6) 3 2 2 ∴ x + x − 8 x − 12 = ( x − 3) ( x + 2)

8.

3.

f (3) = 33 + 3(3) 2 − 25(3) − 75 = −96

4.

f (−3) = ( −3) 3 + 3( −3) 2 − 25(−3) − 75 = 0 ∴ x + 3 is a factor of f(x). By long division, x3 + 3x2 – 25x – 75 = (x + 3)(x2 – 25)

2

Let f(x) = x + x – 10x + 8. ∵f(1) = 13 + 12 – 10(1) + 8 = 0 ∴ x – 1 is a factor of f(x). By long division, x3 + x2 – 10x + 8 = (x – 1)(x2 + 2x – 8) 3 2 ∴ x + x − 10 x + 8 = ( x − 2)( x − 1)( x + 4)

Let f(x) = x3 + 3x2 – 25x – 75. f (1) = 13 + 3(1) 2 − 25(1) − 75 = −96 3 2 ∵ f (−1) = ( −1) + 3( −1) − 25(−1) − 75 = −48

3 ∴ x − 7 x − 6 = ( x − 3)( x + 1)( x + 2) 3

Let f(x) = x3 + x2 – 8x – 12. f (1) = 13 + 12 − 8(1) − 12 = −18 3 2 ∵ f (−1) = ( −1) + ( −1) − 8( −1) − 12 = −4

Let f(x) = x3 – 7x – 6. 3 ∵ f (1) = 1 − 7(1) − 6 = −12 f (−1) = (−1) 3 − 7(−1) − 6 = 0 ∴ x + 1 is a factor of f(x). By long division, x3 – 7x – 6 = (x + 1)(x2 – x – 6)

Let f(x) = x3 – 4x2 + 5x – 2. ∵f(1) = 13 – 4(1)2 + 5(1) – 2 = 0 ∴ x – 1 is a factor of f(x). By long division, x3 – 4x2 + 5x – 2 = (x –1)(x2 – 3x + 2) 3 3 2 ∴ x − 4 x + 5 x − 2 = ( x − 2 ) ( x − 1)

3 2 ∴ x − 3 x − 6 x + 8 = ( x − 4)( x − 1)( x + 2)

2.

f (−1) = ( −1) 3 + 3(−1) 2 − 4( −1) − 12 = −6

3 2 ∴ x + 3 x − 4 x − 12 = ( x − 2)( x + 2)( x + 3)

Exercise 3E (p. 152) Level 1

f (1) = 13 + 3(1) 2 − 4(1) − 12 = −12

f ( 2) = 23 + 3( 2) 2 − 4(2) − 12 = 0 ∴ x – 2 is a factor of f(x). By long division, x3 + 3x2 – 4x – 12 = (x – 2)(x2 + 5x + 6)

− x 2 − 5x

1.

Let f(x) = x3 + 3x2 – 4x – 12.

2

3 2 ∴ x + 3 x − 25 x − 75 = ( x − 5)( x + 3)( x + 5)

9.

Let f(x) = x3 + 4x2 – 11x – 30.

Let f(x) = x3 + 8x2 + 21x + 18.

74

Certificate Mathematics in Action Full Solutions 4A f (1) = 13 + 4(1) 2 − 11(1) − 30 = −36

f (1) = 13 + 10(1) 2 + 33(1) + 36 = 80

f (−1) = ( −1) 3 + 4( −1) 2 − 11(1) − 30 = −16

∵ 

f (2) = 23 + 4(2) 2 − 11(2) − 30 = −28

f (−2) = ( −2) 3 + 4(−2) 2 − 11(−2) − 30 = 0 ∴ x + 2 is a factor of f(x). By long division, x3 + 4x2 – 11x – 30 = (x + 2)(x2 + 2x – 15) 3 2 ∴ x + 4 x − 11x − 30 = ( x − 3)( x + 2)( x + 5) 10. 3x3 – 6x2 – 12x + 24 = 3(x3 – 2x2 – 4x + 8) Let f(x) = x3 – 2x2 – 4x + 8. ∵ f (1) = 13 − 2(1) 2 − 4(1) + 8 = 3

f (−1) = ( −1) 3 + 10( −1) 2 + 33(−1) + 36 = 12 f (2) = 2 3 + 10( 2) 2 + 33( 2) + 36 = 150



 f (−2) = ( −2) 3 + 10( −2) 2 + 33( −2) + 36 = 2 f (3) = 33 + 10(3) 2 + 33(3) + 36 = 252 f (−3) = ( −3) 3 + 10(−3) 2 + 33(−3) + 36 = 0 ∴ x + 3 is a factor of f(x). By long division, x3 + 10x2 + 33x + 36 = (x + 3)(x2 + 7x + 12) 3 2 2 ∴ x + 10 x + 33 x + 36 = ( x + 3) ( x + 4)

f (−1) = ( −1) 3 − 2( −1) 2 − 4(−1) + 8 = 9 f ( 2) = 2 3 − 2( 2) 2 − 4(2) + 8 = 0 ∴ x – 2 is a factor of f(x). By long division, x3 – 2x2 – 4x + 8 = (x – 2)(x2 – 4) ∴ x3 – 2x2 – 4x + 8 = (x – 2)2(x + 2)

15. Let f(x) = x3 – 12x2 + 47x – 60. f (1) = 13 − 12(1) 2 + 47(1) − 60 = −24

3 2 2 ∴ 3 x − 6 x − 12 x + 24 = 3( x − 2) ( x + 2)

11. 5x3 + 20x2 + 5x – 30 = 5(x3 + 4x2 + x – 6) Let f(x) = x3 + 4x2 + x – 6. ∵f(1) = 13 + 4(1)2 + (1) – 6 = 0 ∴ x – 1 is a factor of f(x). By long division, x3 + 4x2 + x – 6 = (x – 1)(x2 + 5x + 6) ∴ x3 + 4x2 + x – 6 = (x – 1)(x + 2)(x + 3) 3 2 ∴ 5 x + 20 x + 5 x − 30 = 5( x − 1)( x + 2)( x + 3)

12. 5x3 – 65x – 60 = 5(x3 – 13x – 12) Let f(x) = x3 – 13x – 12. 3 ∵ f (1) = 1 − 13(1) − 12 = −24 3

f (−1) = ( −1) − 13(−1) − 12 = 0 ∴ x + 1 is a factor of f(x). By long division, x3 – 13x – 12 = (x + 1)(x2 – x – 12) ∴ x3 – 13x – 12 = (x + 1)(x – 4)(x + 3) 3 ∴ 5 x − 65 x − 60 = 5( x − 4)( x + 1)( x + 3)

∵ 

f (2) = 2 3 − 12( 2) 2 + 47(2) − 60 = −6 f (−2) = ( −2) 3 − 12( −2) 2 + 47(−2) − 60 = −210

f (3) = 33 − 12(3) 2 + 47(3) − 60 = 0 ∴ x – 3 is a factor of f(x). By long division, x3 – 12x2 + 47x – 60 = (x – 3)(x2 – 9x + 20) 3 2 ∴ x − 12 x + 47 x − 60 = ( x − 5)( x − 4)( x − 3)

16. Let f(x) = x3 + 16x2 + 52x + 48. f (1) = 13 + 16(1) 2 + 52(1) + 48 = 117 3 2 ∵ f (−1) = ( −1) + 16(−1) + 52( −1) + 48 = 11

f (2) = 23 + 16(2) 2 + 52( 2) + 48 = 224 f (−2) = ( −2) 3 + 16(−2) 2 + 52( −2) + 48 = 0 ∴ x + 2 is a factor of f(x). By long division, x3 + 16x2 + 52x + 48 = (x + 2)(x2 + 14x + 24) 3 2 2 ∴ x + 16 x + 52 x + 48 = ( x + 2) ( x + 12) 17. Let f(x) = x3 + x2 – 24x + 36.

Level 2 13. Let f(x) = x3 – 8x2 + 4x + 48. f (1) = 13 − 8(1) 2 + 4(1) + 48 = 45 3 2 ∵ f (−1) = ( −1) − 8(−1) + 4(−1) + 48 = 35

f (2) = 2 3 − 8(2) 2 + 4( 2) + 48 = 32 f (−2) = ( −2) 3 − 8(−2) 2 + 4( −2) + 48 = 0 ∴ x + 2 is a factor of f(x). By long division, x3 – 8x2 + 4x + 48 = (x + 2)(x2 – 10x + 24) 3 2 ∴ x − 8 x + 4 x + 48 = ( x − 6)( x − 4)( x + 2 )



14. Let f(x) = x3 + 10x2 + 33x + 36.

f (1) = 13 + 12 − 24(1) + 36 = 14 f (−1) = ( −1) 3 + (−1) 2 − 24( −1) + 36 = 60

f ( 2) = 23 + 2 2 − 24( 2) + 36 = 0 ∴ x – 2 is a factor of f(x). By long division, x3 + x2 – 24x + 36 = (x – 2)(x2 + 3x – 18) 3 2 ∴ x + x − 24 x + 36 = ( x − 3)( x − 2)( x + 6)

18. Let f(x) = x3 – 4x2 – 20x + 48. ∵

75

f (−1) = ( −1) 3 − 12( −1) 2 + 47(−1) − 60 = −120

f (1) = 13 − 4(1) 2 − 20(1) + 48 = 25 f (−1) = ( −1) 3 − 4( −1) 2 − 20(−1) + 48 = 63 f ( 2) = 2 3 − 4( 2) 2 − 20(2) + 48 = 0

4 ∴ x – 2 is a factor of f(x). By long division, x3 – 4x2 – 20x + 48 = (x – 2)(x2 – 2x – 24)

3

19. Let f(x) = x3 + 11x2 + 4x – 60. f (1) = 13 + 11(1) 2 + 4(1) − 60 = −44 f (−1) = ( −1) 3 + 11(−1) 2 + 4( −1) − 60 = −54

f (2) = 23 + 11(2) 2 + 4(2) − 60 = 0 ∴ x – 2 is a factor of f(x). By long division, x3 + 11x2 +4x – 60 = (x – 2)(x2 + 13x + 30) 3 2 ∴ x + 11x + 4 x − 60 = ( x − 2)( x + 3)( x + 10)

2

 2  2  2  2 f  −  = 3 −  + 8 −  − 68 −  − 48 3  3 3    3 ∵ 8 32 136 =− + + − 48 9 9 3 =0 ∴ 3x + 2 is a factor of f(x). By long division, 3x3 + 8x2 – 68x – 48 = (3x +2)(x2 + 2x – 24)

3 2 ∴ x − 4 x − 20 x + 48 = ( x − 6)( x − 2)( x + 4)



More about Polynomials

3 2 ∴ 3 x + 8 x − 68 x − 48 = ( x − 4)( x + 6)( 3 x + 2 )

24. Let f(x) = 5x3 – 6x2 – 29x + 6. 3

2

1 1 1 1 f   = 5  − 6  − 29  + 6 5 5 5       5 ∵ 1 6 29 = − − +6 25 25 5 =0 ∴ 5x – 1 is a factor of f(x).

20. Let f(x) = x3 – 27x – 54. f (1) = 13 − 27(1) − 54 = −80

By long division, 5x3 – 6x2 – 29x + 6 = (5x – 1)(x2 – x – 6) 3 2 ∴ 5 x − 6 x − 29 x + 6 = (5 x − 1)( x − 3)( x + 2)

f (−1) = ( −1) 3 − 27(−1) − 54 = −28 f (2) = 2 3 − 27(2) − 54 = −100



 f (−2) = ( −2) 3 − 27(−2) − 54 = −8 f (3) = 33 − 27(3) − 54 = −108 f (−3) = ( −3) 3 − 27(−3) − 54 = 0 ∴ x + 3 is a factor of f(x). By long division, x3 – 27x – 54 = (x + 3)(x2 – 3x – 18) ∴ x − 27 x − 54 = ( x − 6) ( x + 3) 3

2

Revision Exercise 3 (p. 154) Level 1 ( x 2 − x 4 + 2 x 3 − 4 x + 5) + (−4 x 3 + x + 2 x 2 + 3 x 4 − 8) 1.

= x 2 − x 4 + 2 x 3 − 4 x + 5 − 4 x 3 + x + 2 x 2 + 3x 4 − 8 = − x 4 + 3x 4 + 2 x 3 − 4 x 3 + x 2 + 2 x 2 − 4 x + x + 5 − 8 = 2 x 4 − 2 x 3 + 3x 2 − 3 x − 3

3

2

21. Let f(x) = x – 15x + 72x – 108. f (1) = 13 − 15(1) 2 + 72(1) − 108 = −50 3



f (−1) = ( −1) − 15( −1) + 72( −1) − 108 = −196 3

(3 x + 5 x 2 − 8 − 4 x 3 ) − (3 x 2 − 2 x + 2 x 3 − 2)

2

2

f (2) = 2 − 15( 2) + 72( 2) − 108 = −16 3

2.

= −4 x 3 − 2 x 3 + 5 x 2 − 3 x 2 + 3x + 2 x − 8 + 2

2

f (−2) = ( −2) − 15(2) + 72( −2) − 108 = −320 3

= 3x + 5 x 2 − 8 − 4 x 3 − 3x 2 + 2 x − 2 x 3 + 2 = − 6 x3 + 2x 2 + 5x − 6

2

f (3) = 3 − 15(3) + 72(3) − 108 = 0 ∴ x – 3 is a factor of f(x). By long division, x3 – 15x2 + 72x – 108 = (x – 3)(x2 – 12x + 36)

( 2 x 2 − x + 2)( x + 3) 3.

= 2 x 3 − x 2 + 2 x + 6 x 2 − 3x + 6

3 2 2 ∴ x − 15 x + 72 x − 108 = ( x − 6) ( x − 3)

= 2 x 3 + 5x 2 − x + 6

22. Let f(x) = 2x3 – 25x2 + 67x + 40. 3

( x 3 + 3 x 2 − 2 x + 1)(2 x − 1)

2

 1  1  1  1 f  −  = 2 −  − 25 −  + 67 −  + 40 2 2 2        2 ∵ 1 25 67 =− − − + 40 4 4 2 =0 ∴ 2x + 1 is a factor of f(x). By long division, 2x3 – 25x2 + 67x + 40 = (2x + 1)(x2 – 13x + 40)

= (2 x 2 − x + 2)( x) + (2 x 2 − x + 2)(3)

4.

= ( x 3 + 3 x 2 − 2 x + 1)(2 x) + ( x 3 + 3 x 2 − 2 x + 1)(−1) = 2 x 4 + 6 x 3 − 4 x 2 + 2 x − x 3 − 3x 2 + 2 x − 1 = 2x 4 + 5x3 − 7 x 2 + 4 x − 1

3 2 ∴ 2 x − 25 x + 67 x + 40 = ( x − 8)( x − 5)( 2 x + 1)

23. Let f(x) = 3x3 + 8x2 – 68x – 48.

76

Certificate Mathematics in Action Full Solutions 4A x(3 − 2 x)(4 − 3 x) + (5 − 2 x 2 + 4 x 3 ) − (8 − 5 x + 3 x 2 ) = x( −2 x + 3)(−3x + 4) + (4 x 3 − 2 x 2 + 5) − (3 x 2 − 5 x + 8) 5.

= ( −2 x 2 + 3 x)(−3 x + 4) + (4 x 3 − 2 x 2 + 5) − (3 x 2 − 5 x + 8) = 6 x 3 − 17 x 2 + 12 x + 4 x 3 − 2 x 2 + 5 − 3 x 2 + 5 x − 8 = 10 x 3 − 22 x 2 + 17 x − 3

= f (−1) 3 2 Remainder = ( −1) − 2(−1) + 7(−1) + 1 = −1 − 2 − 7 + 1 = −9

12. Let f(x) = 16x3 – 2x + 1.  1 = f −   2

3y 6.

11. Let f(x) = x3 – 2x2 + 7x + 1.

2

4 y 12 y 3 + 0 y 2 + 8 y

Remainder

12 y 3 8y

3

 1  1 = 16 −  − 2 −  + 1  2  2 = −2 + 1 + 1 =0

∴ The quotient is 3y and the remainder is 8y. 13. Let f(x) = (x – 699)699 – (x – 701)701.  1400  = f   2  = f (700) Remainder = (700 − 699) 699 − (700 − 701) 701

z 2 − 2z + 6 z + 2 z 3 + 0z 2 + 2z − 3 z 3 + 2z 2 7.

− 2z 2 + 2z − 2z 2 − 4z 6z − 3 6 z − 12

= 1699 − ( −1) 701 = 1+1 =2

− 15 ∴ The quotient z2 – 2z + 6 and the remainder is –15. p3 − p2 p − 2 p4 − 3 p3 + 2 p2 + 0 p − 3 8.

p 4 − 2 p3 − p3 + 2 p2

f (1) = 14 + 29(1) + 6 14. (a) = 1 + 29 + 6 = 36 ≠0 ∴ x – 1 is not a factor of f(x). (b)

− p 3 + 2p 2 −3 ∴ The quotient is p3 – p2 and the remainder is –3. 2r 2 + 2r − 2 2r + 1 4 r 3 + 6 r 2 − 2r + 1 4r 3 + 2r 2 9.

∴ The quotient 2r2 + 2r – 2 and the remainder is 3. 10. Let f(x) = 4x3 – 4x2 + x – 1. = f (1) Remainder = 4(1) 3 − 4(1) 2 + 1 − 1 =0

77

f (−2) = (−2) 3 − 11( −2) 2 + 32( −2) − 28 15. (a) = −8 − 44 − 64 − 28 = −144 ≠0 ∴ x + 2 is not a factor of f(x).

4r 2 − 2 r 4r 2 + 2r − 4r + 1 − 4r − 2 3

f (−3) = ( −3) 4 + 29( −3) + 6 = 81 − 87 + 6 =0 ∴ x + 3 is a factor of f(x).

(b)

f (2) = 2 3 − 11( 2) 2 + 32( 2) − 28 = 8 − 44 + 64 − 28 =0 ∴ x – 2 is a factor of f(x).

16. Let f(x) = x3 + kx2 – 5x + 6. ∵ x3 + kx2 – 5x + 6 is divisible by x – 2. ∴ By the converse of the factor theorem.

4 x−4

f (2) = 0 3

2

2 + k (2) − 5( 2) + 6 = 0 8 + 4k − 10 + 6 = 0 k = −1

2

x − 2 x − 1 x 2 − 6 x 2 + 3x − 4 x3 − 2x 2 − x

22.

− 4x 2 + 4x − 4 − 4x 2 + 8x + 4 − 4x − 8

17. Let f(x) = kx3 – 3x2 – 8kx + 9. By the remainder theorem, we have f (−3) = 3

∴ The quotient is x – 4 and the remainder –4x – 8.

k (−3) 3 − 3( −3) 2 − 8k ( −3) + 9 = 3 − 27 k − 27 + 24k + 9 = 3 3k = −21 k = −7 18. Let f(x) = x3 – 2x2 – 7x – 4. 3 2 ∵ f (1) = 1 − 2(1) − 7(1) − 4 = −12

2x2 − x + 4 x 2 − 2 2x4 − x3 + 0x 2 + x − 4 2x4

− 4x2

− x3 + 4x 2 + x

23.

− x3

f (−1) = ( −1) 3 − 2( −1) 2 − 7(−1) − 4 = 0 ∴ x + 1 is a factor of f(x). By long division, x3 – 2x2 – 7x – 4 = (x + 1)(x2 – 3x – 4)

+ 2x 2

4x − x − 4 4x 2

2

3

f ( −1) = (−1) 3 + 7( −1) 2 + 16(−1) + 12 = 2

− x 2 − 4 x + 5 3 x 3 + 0 x 2 − 15 x + 8 3 x 3 + 12 x 2 − 15 x

24.

f (2) = 2 3 + 7( 2) 2 + 16( 2) + 12 = 80

− 12 x 2 + 0 x + 8 − 12 x 2 − 48 x + 60 48 x − 52

f (−2) = (−2) 3 + 7( −2) 2 + 16( −2) + 12 = 0 ∴ x + 2 is a factor of f(x). By long division, x3 + 7x2 + 16x + 12 = (x + 2)(x2 + 5x + 6) ∴ x3 + 7x2 + 16x + 12 = (x + 2)2(x + 3)

∴ The quotient is –3x + 12 and the remainder is 48x – 52.

3 2 2 ∴ 2 x + 14 x + 32 x + 24 = 2( x + 2) ( x + 3)

20. Let f(x) = x3 – kx2 + x + c. ∵ x + k is factor of x3 – kx2 + x + c. ∵ By the converse of the factor theorem, f (−k ) = 0

2x − 4 2x 2 + x −1 4x3 − 6x 2 + 2x − 5 4x3 + 2x 2 − 2x

25.

− 8x 2 + 4 x − 5 − 8x 2 − 4 x + 4 8x − 9

(−k ) 3 − k (−k ) 2 + (−k ) + c = 0 c = 2k 3 + k ∴ k = 2, c = 18 or k = 1, c = 3 or k = −1, c = −3. (or any other reasonable answers) 21. (5x3 + ax + 1) + (bx2 + 7x + 3) = 5 x 3 + ax + 1 + bx 2 + 7 x + 3 = 5 x 3 + bx 2 + (a + 7) x + 4 ∵ The coefficient of x3 is 5. ∴ His answer is unreasonable.

Level 2

x+ 4

∴ The quotient is 2x2 – x + 4 and the remainder is –x + 4. − 3 x + 12

2

19. 2x + 14x + 32x + 24 = 2(x + 7x + 16x + 12) Let f(x) = x3 + 7x2 + 16x + 12. f (1) = 13 + 7(1) 2 + 16(1) + 12 = 36 ∵

−8 −

3 2 2 ∴ x − 2 x − 7 x − 4 = ( x − 4 ) ( x + 1) 3

More about Polynomials

∴ The quotient is 2x – 4 and the remainder is 8x – 9. 26. Let f(x) = 3x3 + 16x2 + x + c. By the remainder theorem, we have  1 f  −  = −5  3 3

2

 1  1  1 3 −  + 16 −  +  −  + c = −5  3  3  3 1 16 1 − + − + c = −5 9 9 3 19 c=− 3

78

Certificate Mathematics in Action Full Solutions 4A 27. By the remainder theorem, we have f (1) = g (1) 13 − 2(1) 2 + p(1) − 4 = 3(1) 3 − 12 + 1 + 1 1− 2 + p − 4 = 3 −1 + 1+ 1 p =9 28. (a) Let f(x) = x(x – 1)(x – 2) – (x – 3)(x + 20). f (4) = 4(4 − 1)(4 − 2) − (4 − 3)(4 + 20) ∵ = 4(3)(2) − 1(24) =0 ∴ x – 4 is a factor of x(x – 1)(x – 2) – (x – 3)(x + 20). (b) x(x –1)(x – 2) – (x – 3)(x + 20) = ( x 2 − x )( x − 2) − ( x 2 + 17 x − 60) = x 3 − 3 x 2 + 2 x − x 2 − 17 x + 60 = x 3 − 4 x 2 − 15 x + 60 By long division, x3 – 4x2 – 15x + 60 = (x – 4)(x2 – 15) x( x − 1)( x − 2) − ( x − 3)( x + 20) ∴ = ( x − 4)( x 2 − 15) 29. Let f(x) = x3 + 5x2 – 2x – 24. ∵

f (1) = 13 + 5(1) 2 − 2(1) − 24 = −20 f (−1) = ( −1) 3 + 5(−1) 2 − 2( −1) − 24 = −18

f (2) = 23 + 5(2) 2 − 2( 2) − 24 = 0 ∴ x – 2 is a factor of f(x). By long division, x3 + 5x2 – 2x – 24 = (x – 2)(x2 + 7x + 12) 3 2 ∴ x + 5 x − 2 x − 24 = ( x − 2)( x + 3)( x + 4) 30. Let f(x) = x3 – 7x2 – 6x + 72. f (1) = 13 − 7(1) 2 − 6(1) + 72 = 60 f (−1) = (−1) 3 − 7(−1) 2 − 6( −1) + 72 = 70

k=

or

1 2

32. Let f(x) = x3 – 2x2 + ax + b When f(x) is divided by x + 1, f (−1) = −8 ( −1) 3 − 2(−1) 2 + a ( −1) + b = −8 a − b = 5 …… (1) When f(x) is divided by x – 2, f (2) = 4 2 3 − 2( 2) 2 + a (2) + b = 4 2a + b = 4 (1) + (2), 3a = 9 a=3

…… (2)

By substituting a = 3 into (1), we have 3−b = 5 b= −2 33. (a) Let f(x) = 2x3 – 9x2 + px – 6. ∵ 2x – 3 is factor of 2x3 – 9x2 + px – 6. ∴ By the converse of the factor theorem, 3 f  =0 2 3

2

3 3 3 2  − 9  + p  − 6 = 0 2 2 2 27 81 3 p − + −6 = 0 4 4 2 3 p 39 = 2 2 p = 13 (b) By long division, 2x3 – 9x2 + 13x – 6 = (2x – 3)(x2 – 3x + 2) ∴ 2 x 3 − 9 x 2 + 13 x − 6 = ( x − 2)( x − 1)( 2 x − 3)

f (2) = 2 3 − 7(2) 2 − 6( 2) + 72 = 40



f (−2) = (−2) 3 − 7( −2) 2 − 6( −2) + 72 = 48 f (3) = 3 3 − 7(3) 2 − 6(3) + 72 = 18 f (−3) = (−3) 3 − 7(−3) 2 − 6( −3) + 72 = 0 ∴ x + 3 is a factor of f(x). By long division, x3 – 7x2 – 6x + 72 = (x + 3)(x2 – 10x + 24) ∴ x − 7 x − 6 x + 72 = ( x − 6)( x − 4)( x + 3) 3

2

31. Let f(x) = 8x2 + 2x – 1. ∵ 8x2 + 2x – 1 is divisible by 2x – k. ∴ By the converse of the factor theorem, k f =0 2 2

k k 8  + 2  − 1 = 0 2 2 2k 2 + k − 1 = 0 ( k + 1)(2k − 1) = 0 k+1=0 or 2k – 1 = 0

79

k = −1

34. Let f(x) = 2x3 – x2 – ax + b and g(x) = bx3 – 2x2 – x + a. ∵ x – 1 is a common factor of 2x3 – x2 – ax + b and bx3 – 2x2 – x + a. ∴ By the converse of the factor theorem, f (1) = 0 2(1) 3 − 12 − a(1) + b = 0 a − b = 1 …… (1) g (1) = 0 b(1) 3 − 2(1) 2 − 1 + a = 0 a + b = 3 …… (2) (1) + (2), 2a = 4 a=2 By substituting a = 2 into (1), we have 2 −b =1 b =1 35. (a) By the remainder theorem, we have

4

h ( − 2) = 0

f (3) = g (3) 4(3) 3 + 3(3) 2 + 5k (3) + 15 = −(3) 3 + k (3) 2 + 46(3) − 21 15k + 150 = 9k + 90 6k = −60 k = − 10

(b)

f ( x ) − g ( x) = 4 x 3 + 3x 2 + 5( −10) x + 15 − (− x 3 − 10 x 2 + 46 x − 21) = 5 x 3 + 13 x 2 − 96 x + 36 Let h(x) = 5x3 + 13x2 – 96x + 36. 3

2

2 2 2 2 h  = 5  + 13  − 96  + 36 = 0 5 5 5 5 ∴ 5x – 2 is a factor of h(x). By long division, 5 x 3 + 13 x 2 − 96 x + 36 ∵

= (5 x − 2)( x 2 + 3 x − 18) ∴

36. (a)

f ( x) − g ( x) = ( x − 3) (5 x − 2)( x + 6)

f ( x + 1) = ( x + 1) 3 + k = ( x + 1)( x + 1) 2 + k

f (2 x) = (2 x) 3 + 1 = 8x 3 + 1 Let g(x) = 8x3 + 1. By the remainder theorem, = g (2) remainder = 8( 2) 3 + 1 = 65

37. (a)

1− a + b = 0 b = a −1 (c) (1) + (2),

…… (2)

2b = 2 b =1

By substituting b = 1 into (1), we have 1= 3−a a=2 38. Let f(x) = x99 + 1. (a) By the remainder theorem, = f (−1) 99 remainder = ( −1) + 1 = −1 + 1 =0

x99 + 1 = ( x + 1)Q( x) x 99 = ( x + 1)Q( x) − 1  (1) By substituting x = 6 into (1), we have 6 99 = (6 + 1)Q (6) − 1 = 7Q(6) − 1 ∴ If today is Monday, the day after 699 days is Sunday. 39. (a) By the remainder theorem, remainder = f ( −1)

= ( −1) n + 2( −1) + 3 = −1 − 2 + 3 ( n is a positive odd integer ) =0

f ( x − 1) = ( x − 1) 2 + a ( x − 1) + b = x 2 − 2 x + 1 + ax − a + b = x 2 + (a − 2) x + 1 − a + b Let g(x) = x2 + (a – 2)x + 1 – a + b. By the remainder theorem, we have g (2) = 4 2 2 + (a − 2)(2) + 1 − a + b = 4 1+ a + b = 4 …… (1) b = 3−a

(b)

(−2) + ( a + 2)(−2) + 1 + a + b = 0 2

(b) Let Q(x) be the quotient when f(x) is divided by x + 1. f ( x) = ( x + 1)Q( x) (By (a))

∴ When f(x + 1) is divided by x + 1, the remainder is k. k ∴ =1 (b)

More about Polynomials

f ( x + 1) = ( x + 1) 2 + a ( x + 1) + b = x 2 + 2 x + 1 + ax + a + b = x 2 + (a + 2) x + 1 + a + b Let h(x) = x2 + (a + 2)x + 1 + a + b. ∵ x2 + (a + 2)x + 1 + a + b is divisible by x + 2. ∴ By the converse of the factor theorem,

(b) By the remainder theorem, when f(x) is divided by x – 1, = f (1) remainder n = 1 + 2(1) + 3 =6 Let Q(x) and ax + b the quotient and the remainder respectively when f(x) is divided by x2 – 1. f ( x ) = ( x 2 − 1)Q ( x) + ( ax + b) = ( x + 1)( x − 1)Q( x) + (ax + b) …… (1) By substituting x = 1 into (1), we have f (1) = (1 + 1)(1 − 1)Q(1) + [a (1) + b] 6 = a +b …… (2) By substituting x = –1 into (1), we have f (−1) = (−1 + 1)(−1 − 1)Q(−1) + [ a(−1) + b] ……(3) 0 = −a + b

80

Certificate Mathematics in Action Full Solutions 4A ∴ By the factor theorem, x – 1 and 3x + 4 are factors of f(x). (x – 1)(3x + 4) = 3x2 + x – 4 By long division,

(2) + (3), 2b = 6 b=3 By substituting b = 3 into (3), we have 0 = −a + 3

3 x 3 + 7 x 2 − 2 x − 8 = (3 x 2 + x − 4)( x + 2) = (3 x + 4)( x − 1)( x + 2)

a=3 ∴ The remainder when f(x) is divided by x2 – 1 is 3x + 3. 40. (a) Let f(x) = 2x2 + px + q and g(x) = 2x2 + qx + p. ∵ x – r is a common factor of f(x) and g(x). ∴ By the converse of the factor theorem, f ( r ) = g (r )

∴ 5.

2r 2 + pr + q = 2r 2 + qr + p ( p − q) r = p − q r = 1 ( p and p are distinct real

f ( x) = ( x − 1)( x + 2)(3 x + 4)

Answer: C By the remainder theorem, we have f (−k ) = k ( −k + 2)(−k − 3) + 2 = k k2 + k −6+ 2 = k k 2 = 4 or –2 (rejected) k =2

numbers) 6. (b) By (a), put p = 3, q = –5 and r = 1. The required polynomial is 2x2 – 5x + 3 or (x – 1)(x + 5), i.e. x2 + 4x – 5. (or any other reasonable answers)

Multiple Choice Questions (p. 156) 1.

Answer: A Let f(x) = x3 – x2 + 2x + 1. By the remainder theorem, = f (2)

7.

8.

3 2 remainder = 2 − 2 + 2(2) + 1 = 8 − 4 + 4 −1 =9

2.

Answer: C ∵ f(x) is divisible by x + 1. ∴ By the converse of the factor theorem, f ( −1) = 0 ( −1) 2005 − (−1) + k = 0 −1 +1 + k = 0 k =0

3.

Answer: D f (−1) = 0 ∵ 3( −1) 2 − p (−1) + 1 = 0 ∴ 3 + p +1 = 0 p = −4 f ( x) = 3x 2 + 4 x + 1 2 ∴ f (1) = 3(1) + 4(1) + 1 = 3 + 4 +1 =8

4.

Answer: A  4 ∵ f(1) = 0 and f  −  = 0  3

81

Answer: A Let Q(x) be the quotient when P(x) is divided by 4x – 1. ∴ P ( x) = (4 x − 1)Q( x) + R = (1 − 4 x)[−Q ( x)] + R ∴ When P(x) is divided by 1 – 4x, the remainder is R. Answer: B ∵ Q(x) is divisible by x + 1. ∴ Q(x – 1) is divisible by (x – 1) + 1 = x. Answer: A Let f(x) = 2x3 – ax2 + bx + 3. ∵ x + 3 is factor of 2x3 – ax2 + bx + 3. ∴ By the converse of the factor theorem, f (−3) = 0 2(−3) 3 − a ( −3) 2 + b( −3) + 3 = 0 − 54 − 9a − 3b + 3 = 0 − 3a − b = 17

9.

Answer: B Let Q(x) and ax + b be the quotient and the remainder respectively when P(x) is divided by x2 – 1. 2 ∴ P ( x) = ( x − 1)Q( x) + ( ax + b) = ( x + 1)( x − 1)Q ( x) + (ax + b)

…… (1) By substituting x = 1 into (1), we have P (1) = (1 + 1)(1 − 1)Q (1) + [a (1) + b] 1= a+b …… (2) By substituting x = –1 into (1), we have P (−1) = ( −1 + 1)(−1 − 1)Q (−1) + [ a( −1) + b] 3 = −a + b ……(3) 4 = 2 b (2) + (3), b=2 By substituting b = 2 into (2), we have 1= a + 2 a = −1 ∴ The remainder when P(x) is divided by x2 – 1 is –x + 2. 10. Answer: D ∵ f(x) is divisible by x + 2 and 2x – 1.

4

More about Polynomials

∴ By the converse of the factor theorem, f (−2) = 0 2(−2) 3 + a( −2) 2 + b( −2) + 4 = 0 2a − b = 6 1 f =0 2 3

…… (1)

2

1 1 1 2  + a  + b  + 4 = 0 …… (2) 2 2     2 a = −2b − 17 By substituting (2) into (1), we have 2(−2b − 17) − b = 6 5b = −40 b = −8 By substituting b = –8 into (1), we have 2a − ( −8) = 6 a = −1

HKMO (p. 157) Let f(x) = x3 + kx2 + 3. By the remainder theorem, we have f (−3) = f (−1) − 2 ( −3) 3 + k ( −3) 2 + 3 = ( −1) 3 + k ( −1) 2 + 3 − 2 9k − 24 = k 8k = 24 k =3

82

Related Documents