Chapt er 11
Ischemia-reperfusion injury
Brief history
Simple phenomenon
• 1 955年, Sewell ligated coronary artery of dog, restore blood flow after deligation. • What happened for this heart?
suggest the •1960年, Jennings concept of myocardial reperfusion injury firstly.
Clinic : •
• • • •
Shock , DIC Bypass surgery Fibrinolytic therapy Cardiopulmonary operation Organ transplantation
PTCA (percutanerous transluminal coronary angioplasty/stent),
Cardiopulmonary resuscitation
Features of IRI : 1. reversible → irreversible 2. Massive in organs 3.participating factors oxygen paradox calcium paradox pH paradox
perfusion
oxygen paradox
Without O2
calcium
without Ca2+
paradox pH parado x
acidosis
perfusion
Normal O2 supply
with Ca2+ Correcting acidosis
Deteriorate injury
Concept of IschemiaReperfusion Injury
The restoration of blood flow after transient ischemia may induce further reversible or irreversible cellular injury
Section 1 etiology of IRI 1. Duration of ischemia 2. Dependency on O2 supply 3. The condition of reperfusion: reperfusion pressure, speed, T, Na+, Ca2+ , K+, Mg2+
Effect of Ischemic time on perfusion arrhythmia of rat 100 90 80 70 60 发生率(%) 50 incidence rate40 30 20 10 0
RVA RVT RVF
5mi n
10mi n
30mi n
缺血时间(mi n)
Ischemic time
Section 2 mechanism of IRI
Part 1. Injury of free radicals
concept and types of FR Free radicals are atoms or molecules with unpaired electrons in their outer orbital. 1. Non-lipid free radicals 2. Lipid free radicals
The Nobel Prize in Chemistry • 1971: Gerhard Herzberg • for his contributions to electronic structure and the geometry of molecules, particularly free radicals
CELLS
Classification (1) Oxygen free radical ( OFR) • Induced by O2 O·-2 types
OH· O2 OFR H2O2 ONOO1
Active oxygen
In a nutshell, this is how you could summarize his theory:
(2) Lipid radicals types : L· LO· LOO· (3) Cl· 、 CH3 · 、 NO ·
1. generation of free radical 1) Initiation 2) Propagation 3) Degradation
(1)Production and scavenging of OFR 1) Origin of O·-2 : ①Mt ②natural oxidation of some substances ③enzyme catalysis ④toxin acting on cell 毒物作用于细胞
2 ) production process of OFR O2 + e Cytaa3
O2 •
O2+ 2e + 2H+
H2O2
O2 + 3 e + 3H+
HO• + H2O
O2 + 4 e + 4H+
2 H2O
SOD H2O2 nse
Single electron reductio Single electron reduction of
Dismutation reaction Single electron reduction of O2
2O2 • + 2H+
SOD
H2O2 + O2 H2O2 nse
Haber-Weiss reaction (without - • O2 + H 2O 2
SLOW
Fe
+2
)
O 2 + OH +OH•
Fenton type of HaberWeissreaction( with ) Fe
Fe
O 2 • + H 2O 2 -
+3
+2
Fast
O 2 + OH +OH•
What significance ???
.
OH 化学效应
3 ) Scavenging of OFR *low molecule ~
hydrofacies of intra- or extracell: Cysteine 、 Vit C 、 Glutathione
Cellular lipid : Vit E 、 Vit A
Cytosol : NADPH
*enzymatic ~ Glutathione peroxidase (GSH-Px)
Catalase (CAT)
Superoxide dismutase SOD
GSH-Px : containing selenium scavenging large biological molecule peroxide
LOOH + 2GSH
GSSG + LOH + H2O GSH-Px
GSH reductase
2GSH + NADP+
GSSG + NADPH + H+
(2) Mechanism of OFR ↑during IRI
1) mitochondria pathway Ca2+ enter Mt↑
Single electron reduction of O2
↑ hypoxia →MnSOD ↓
■O-2· ↑
2) Xanthine oxidase(XO) pathway↑ xanthine oxidase (XO )10% Ca 2+ sensitive enzyme
xanthine dehydrogenase (XD)
90%
ischemia: ATP degradation Hypoxathine↑↑
(1)Ca2+→protease reperfusi
O2
on: XD
XO
( 2 ) restore O2
XO role in formation of OFR
xanthine + O·-2+ H2O2
O2 O·-2+ H2O2 +uric acid
OH ·
3)Neutrophil pathway C3,LTB4
Activates NP hexose
bypass activation
Respiratory burst NADH oxidase
NADH(I) + H + O 2·+H2O2 NADPH(II)+ O2 NADPH oxidase
4) Catecholamine autooxidation pathway
Vanillylmandelic Methyl transferase Adr monoamine oxidaseacid (VMA) 80% during stress
O2 - · ↑
adrenochrome
Renal excretion
(3) the detrimental effects of OFR to tissue 1 ) lipid membrane 2 ) protein: channel, pump, 3 ) enzyme 4 ) nuclear acid : DNA
Membrane lipid peroxidation
Biomacromolecle linkage
Protein ~ Protein break
Lipid – pro ~
Two sulfur ~ -S-S-
OH HO
OH HO
CH3-SO Amino acid oxidation
fatty acid oxidation
Lipid-lipid ~ MDA released by oxidated fatty acid Malondialdehyde(MDA)
DNA disruption and chromosome aberration
induced by OH• about 80% damage
Part 2 Calcium overload
1. Calcium transportation and distribution Ca 2+ Ca 2+
Ca2+ binding Pr
Ca2+ pump SR
Ca 2+ Channel
Mt
Na + -Ca 2+ cotransporto r
2. Mechanism of ~ ① Na+ - Ca2+ exchange↑ ②ATP ↓: mitochondria, precursor ↓ ③Membrane permeability ↑ ④catecholamine ↑
NE
α1
H+
Gq
PLC
Ca2+
P1
Na+ IP3
Ca2+ SR
DG PKC
Ca2+ filament
PKC activating Na+/Ca2+ exchanger indirectly
3. the detrimental effects of Ca2+ overload to tissue (1) Activating Ca2+ -activated protease (2) Defects in membrane permeability activating phospholipase A2 OFR (3) Hypercontracture and reperfusion arrhythmia cellular electrical action (4)mitochondria damage
Part 3. The endothelial injury and neutrophil activation
1.The role of neutrophil activated ①Swelling ②Adhesion ③Infiltration ④Release: arachidonic acid, PAF, lysosomal enzyme ⑤Respiratory burst ⑥Cell adhesion molecules(CAM): selectins, integrins, immunoglobulin superfamily
2.mechanism of no-reflow phenomenon • Vaso-endothelial damage • Vaso-endothelial edema • Occlusion of microvascular luman
Rulo:
3.NO and ONOO production -
( 1 ) NO • NO in VEC, little, physiological • NO in inflammatory cell, rich, cytotoxic (Mt respiration, aconitase activity, DNA synthesis) and OONO-
2. 抑制蛋白质功能: 脂质 - 蛋白质 - 胶原交 联 蛋白质 蛋白质交 联
蛋白 质断 裂
二硫交联 -S-S-
CH3-SO
氨基 酸 氧 化
脂质 - 蛋 白 质交 联
Brief summary Ca2+
Change of metabolism & energy
OFR
VEC -NP
Ca2+ overload results in cellular death
Section 3 Body change during IRI
1. Heart ( 1 ) reperfusion arrhythmia ATP–sensitive K+ channel open , hyperpolarization long chain acylcarnitines and lysophospholipids released reduced conduction velocity
Heart’s Electrical System
Bundle of His Sinus (SA) node AV node RA Tricuspid Valve RV
LA Mitral Valve Purkinje fibers LV
AP shortening + conduction slowing = re-entrant arrhythmia OFR, AP duration NE, Ca2+, phosphoinositide, channel Na+, K+
KATP
( 2 ) myocardial stunning
Myocardial contractile function is temporarily but reversibly impaired for a period of hours to days 5 min ischemia , reperfusion , 40min later restoring 1 hr ischemia , reperfusion , a month later restoring
Mechanism of myocardial stunning • OFR • Ca2+ overload • No-reflow • ATP + sensitivity for Ca2+
( 3 ) myocardial metabolism ATP depletion ATP substrate catabolized, rushed out
Processes Involving Energy Production and Utilization by the Myocardium Ca++ Ca++ Ca++
O2 Fatty Acids Lactate Pyruvate
TCA cycle (Aerobic)
ATPase
ATP ATP
Glycolysis (Anaerobic)
Glucose
ATP
PC
Ca
++
ADP
CA++ T
T
C CPK
Myokinase
ATPm + A MA + ADP
Glucose-1-PO4 Glycogen
Energy Sources tricarboxylic acid cycle
Energy Pool phosphocreatin
Energy Use
C O N T R A C T I O N
( 4 ) myocardial ultrastructure
2. Cerebral ischemia-reperfusion
injury
3.Hepatic Ischemia-Reperfusion Injury
(4) Renal ischemia-reperfusion injury
Section 4 principle of prevent and treatment 1. Controlling reperfusion condition 2. Antioxidant and OFR scavenging agents 3. Inhibition of neutrophil activation 4. Ca2+ antagonists or Ca2+ channel blocker
How prevent and treat IRI (1) Restore normal perfusion of tissue in time (2) Pharmacologic agents Ca2+ antagonist, Ca2+ channel blocker OFR scavenging agents glutathione peroxidase(GP) GSH + H2O2
GSSG + H2O
GP
Acute preconditioning: (classical preconditioning) • •
within ~2 h protein synthesis-independent
Delayed preconditioning: (ischemic tolerance) • •
24 h - 72 h after the initial insult altered gene expression→synthesis of proteins (antioxidant enzymes, NO synthase, etc.).