Chaper 13
Zhao Mingyao BMC.ZZU 2006-05-10
• Respiration = ventilation + gas exchange Ventilation: alveoli enlarging to set up P gradient airway fluency to let gas flow gas exchange: area distant efficiency (V/Q)
------ physiology view
1.Concep t Respiratory system fails to adequately oxygenate the blood with/without retention of carbon dioxide, it is generally defined as a PaO2 < 60mmHg, with /without PaCO2 >50mmHg
Respiratory failure External respiratory dysfunction Blood gas abnormal Effects on body
2.Classification (1)duration
According to
Acute : hours to days Chronic: over months to years
(2)primary site Central : head injury, encephalitis Peripheral: asthma, pneumonia, emphysema
(3)blood-gas Type I : PaO2 Type II: PaO2 + PaCO2 (4)pathogenesis ventilation blood gas exchange: diffusion V/Q
Section 1 Etiology and pathogenesis
Major Causes of ~ CNS and nerves
Respiratory muscles, chest wall and pleura Disorders pulmonary airway and gas-exchange
Mechanism of RF
Ventilatory disorders Diffusion disorders mismatching ventilation-perfusion Right-to-left shunting of blood
mechanism 1. Ventilatory disorders
• Respiration(does work) = dynamic force overcomes resistant force (elastic ~ + nonelastic ~) ----physics view
hypoventilation restrictive ~
Extralung intralung
Central airway ~
obstructive ~ Peripheral airway ~
(1)Restrictive ventilatory disorders Alveoli distensibility
1)Extrapulmonary causes CNS: drugs, infections, Cerebrovascular accident Respiratory muscles: fatigue, atrophy, hypokalemia Chest wall and pleura Fracture of ribs, pleura fibrosis
restrictive
2)Intrinsic disease
Pulmonary elastic structure Alveolar surfactant substance
restrictive
Function of surfactant substances 1.Reduces surface tension, 2. Increases compliance, stabilize alveoli keep alveoli dry; prevent pulmonary edema
3)Blood gas change PACO2 PAO2=PiO2 − —————— R – PAO2 – PiO2
P O2 in alveoli :
PO2 in inhaling air
– PACO2 : PCO2 in alveoli – R : respiratory quotient
PCO2 in alveoli 0.863× Vco2 PaCO2= PACO2 = —————— VA – PACO2 : PCO2 in alveoli – Vco2 : CO2 production/min – VA : alveolar ventilation volume
Blood-Gas changes Ventilatory disorder
Restrictive obstructive
Alveolar ventilatory volume
PaO2 and PaCO2 proportionately
PaO2 + PaCO2
(2)Obstructive ventilatory disorders Tracheobronchial tree narrowing
1)Central airway obstruction
Airway above or below carina
Variable narrowing Fixed narrowing
Variable
outside thorax---inspiratory dyspnea inspiration
expiration
Variable
inside thorax---expiratory dyspnea
inspiration
expiration
*Fixed narrowing Intense scar infiltration tumors external compression
2)Peripheral airway obstruction
peripheral airway: diameter <2mm Characteristics: thinner wall, without cartilage support caliber changes with respiration close junction with adjacent tissues
Peripheral airway obstruction
mucosa edema fibrosis inflammatory infiltration secretions in lumen
thickness diameter
Isobaric point
Normal person expire
Emphysema patient expire
Mechanism of RF due to COPD
CNS, NS Respiratory muscle Chest wall, pleura
Extrapulmonary
Restrictive intrapulmonary
Elastic structure
Surfactant substances
variable
d noi t ali t ne V
Central
Obstructive
outside inspiratory insideexpiratory
fixed both Peripheral isobaric point upshift caliber decrease expiratory
3)Blood gas change • PO2 ? • PCO2 ?
2. Diffusion disorder a disruption in the exchange of O2 or CO2 or both across the alveolar-capillary membrane
Causes: Diffusion distance Diffusion area Diffusion time
1) Diffusion area Alveolar area : 80m2 at rest: 40 m2 Causes of decreased area: Emphysema Pulmonary tumor Pulmonary lobectomy
•
260m2
85 m2.
2) Diffusion distance
Pulmonary edema, congestion Pulmonary fibrosis Alveolar epithelium hyperplasia
Alveolar-capillary membrane thickness
Surfactant lining Alveolar epithelium Epithelial basement Interstitial space Capillary basement Capillary endothelium
Total diffusion AREA is large 50~100 m2
Diffusion PATH is very small, <1 µm
3) Diffusion time alveolar normal Thick alveolar membrane
Pul vein Pul Artery
3) Blood gas change distance area time solubility diffusion ability
PaO2 PaCO2 N or or
Diffusion disorder
3. Mismatching Ventilation/perfusion
1)V/Q Causes: Bronchial asthma, chronic bronchitis, obstructive pulmonary emphysema, pulmonary fibrosis
Mechanism: alveolar ventilation Perfusion normal
venous V/Q<0.8 admixture (functional shunt)
airway
pulmonary artery
Less ventilated
venous admixture
2)V/Q Causes: Pulmonary arteriosclerosis, pulmonary thrombosis bronchiectasis, pulmonary tuberculosis
Mechanism: alveolar ventilation normal perfusion
V/Q>0.8
deadspace-like ventilation
airway pulmonary artery
perfusion
deadspace-like ventilation
gas exchange disorder diffusion area ↓ diffusion distant ↑
V/Q ↓ - functional shunt
efficiency (V/Q) V/Q ↑ - dead space-like ventilation
3)Blood gas change PaO2 , PaCO2 N or
4.Anatomic shunt (Right-toleft shunt) Causes: atelectasis, pulmonary consolidation, bronchiectasis, A-V shunt open Mechanism: Admixture with unoxygenated blood
Venous admixture
Hypoxia
Anatomic shunt
3)Blood gas change • PO2 ? • PCO2 ?
ventilatory (PaO2↓ respiratory PaCO2↑) failure Gas exchange ( PaO2↓ PaCO2↑ ↓N )
inadequate alveolar ventilation
restrictive obstructive
diffusion disorder Ventilation-perfusion dismatching Anatomic shunt ( V/Q=0 )
100 nm.
100 nm.
SARS-Associated Coronavirus
Section 2 alterations of function and metabolism
Respiratory failure
abnormal blood-gas
Acid-base, electrolytes disorder
reaction of systems compensatio n
decompensatio n
1.Acid-base and electrolytes disturbance Respiratory acidosis retention of CO2
K+
Metabolic acidosis---hypoxia lactic acid K+
Respiratory alkalosis type I RF with hyperventilation
Mixed acidosis hypoxia and hypercapnia
K+
Respiratory acidosis and metabolic alkalosis ? Remove CO2 too fast for chronic type II hypokalemia
2. Alternation of respiratory system Respiratory frequency Respiratory rhythm
Causes: Primary diseases PaO2 , PaCO2
• the shallow and rapid RR does not increase O2 supply Effective alveolar ventilation = (tidal volume – dead space)×RR (500 – 150) × 12 = 4.2 L normal (250 – 150) × 24 = 2.4 L shallow & rapid (250 – 150) × 6 = 0.6 L shallow & slow (1000 – 150) ×24= 20.4 L deep & rapid
Cheyne-Stokes breathing
RC inhibited
PaO2 (30 ~ 60mmHg) peripheral chemoreceptor +
PaCO2(<70mmHg ) central chemoreceptor +
respiratory center PaO2 <30mmHg
PaCO2 >70mmHg
3.Alternation of circulatory system Mild and medium PaO2
Circulatory center
PaCO2 Severe
Pulmonary heart disease
~ caused by pulmonary disease with the characteristics of pulmonary hypertension
Mechanism: (1)Pulmonary hypertension---arteriolar constriction (2)Pulmonary blood flow resistance---RBC (3)Myocardial function---hypoxia, acidosis (4)forced expiration and inspiration
4.Alternation of CNS Cerebral dysfunction caused by severe respiratory failure called pulmonary encephalopathy Manifestation Excitation, headache, dysphoria Confusion, drowsiness, coma Death
Mechanism: Membrane potential Hypoxemia---ATP Na+ bump Hypercapnia---
PaCO2>80mmHg
Cerebral vessels dilation Cell acidosis
CO2 narcosis
brain edema
O2 、 PaCO2 changes
and CNS chang
PaO2: 60 mmHg:intelligence , eyesight decrease mildly 40-50 mmHg: mental manifestation 20 mmHg: irreversible damage of neural cells PaCO2 >80 mmHg, CO2 narcosis, CNS symptoms
Section 3 principles of
prevention and treatment
Principle for treatment
I. Treat primary causes II. Relieve hypoxia and hypercapnia III. Treat other complications control infection
Oxygen administration 1. Type I : <50% O2 2. Type II : continuously Low concentration:
<30% O2
Low current amount: 1-2 L/min PaO2 = 60mmHg
Decreasing PaCO2 Relieve obstruction Increase drive of respiration Mechanical ventilator Nutrition supply
for type II RF, CO2 can’t be reduced too fast
end