Chap6

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chap6 as PDF for free.

More details

  • Words: 1,973
  • Pages: 14
‫اﻟﺒﺎب اﻟﺴﺎدس‬ ‫ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻟﺼﻨﺎﻋﻴﺔ‬ ‫‪Process Capability‬‬

‫د‪ .‬ﻣﺤﻤﺪ ﻋﻴﺸـــﻮﻥﻲ‬ ‫دآﺘﻮراﻩ ‪ ،‬أﺳﺘﺎذ ﻣﺴﺎﻋﺪ‬ ‫ﻗﺴﻢ اﻟﺘﻘﻨﻴﺔ اﻟﻤﻴﻜﺎﻧﻴﻜﻴﺔ ‪ ،‬اﻟﻜﻠﻴﺔ اﻟﺘﻘﻨﻴﺔ ﺑﺤﺎﺋﻞ ‪٢٠٠٥ ،‬‬ ‫‪[email protected]‬‬ ‫‪http://aichouni.tripod.com‬‬

‫ﻣﻔﺎهﻴﻢ ﻋﺎﻣﺔ ﻋﻦ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت‬ ‫“ إن دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت اﻻﻥﺘﺎﺟﻴﺔ هﻲ إﺡﺪى أهﻢ‬ ‫ﺕﻘﻨﻴﺎت اﻟﻀﺒﻂ اﻹﺡﺼﺎﺋﻲ ﻟﻠﻌﻤﻠﻴﺎت )‪.(SPC‬‬ ‫“ إذ ﺕﺴﻤﺢ هﺬﻩ اﻟﺪراﺱﺔ ﺏﺎﻹﺟﺎﺏﺔ ﻋﻦ ﺱﺆال ﻣﻬﻢ و هﻮ ‪:‬‬ ‫هﻞ ﻧﻈﺎم اﻟﺘﺼﻨﻴﻊ اﻟﺬي ﻟﺪیﻨﺎ ﻗﺎدر ﻋﻠﻰ إﻧﺘﺎج ﻣﻨﺘﺞ‬ ‫ﺑﻨﺴﺒﺔ أﻗﻞ ﻣﻦ اﻟﻌﻴﻮب و ﺡﺴﺐ رﻏﺒﺎت و ﻣﺘﻄﻠﺒﺎت‬ ‫اﻟﻤﺴﺘﻬﻠﻚ و اﻟﺰﺑﻮن ؟‬

‫‪١‬‬

‫ﻣﻔﺎهﻴﻢ ﻋﺎﻣﺔ ﻋﻦ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت ‪١‬‬ ‫“اﻟﻮاﻗﻊ یﺆآﺪ أن وﺟﻮد اﻻﺧﺘﻼﻓﺎت اﻟﺘﺼﻨﻴﻌﻴﺔ‬ ‫ﻓﻲ وﺡﺪات اﻟﻤﻨﺘﺞ یﺆدي إﻟﻰ ﺕﻐﻴﺮات ﻓﻲ‬ ‫ﺧﺼﺎﺋﺺ اﻟﻤﻨﺘﺞ و اﻟﺘﻲ یﻤﻜﻦ ﻗﻴﺎﺱﻬﺎ ﻋﻦ‬ ‫ﻃﺮیﻖ اﻟﻤﻌﺎﻣﻼت اﻹﺡﺼﺎﺋﻴﺔ ﻣﺜﻞ اﻟﻤﺪى ‪،R‬‬ ‫اﻟﻘﻴﻤﺔ اﻟﻤﺘﻮﺱﻄﺔ ‪ µ‬و اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري ‪σ‬‬ ‫“ ﻣﻦ ﺧﻼل دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ‬ ‫یﻤﻜﻦ ﺕﺤﺪیﺪ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ ﻋﻠﻰ ﺕﺼﻨﻴﻊ ﻣﻨﺘﺞ‬ ‫ﺡﺴﺐ اﻟﻤﻮاﺹﻔﺎت اﻟﻤﺮﻏﻮب ﻓﻴﻬﺎ ﻣﻦ ﻃﺮف‬ ‫اﻟﻤﺴﺘﻬﻠﻚ و اﻟﻤﻌﺮﻓﺔ ﺏﺤﺪود اﻟﻤﻮاﺹﻔﺎت‬ ‫) ‪.(USL, LSL‬‬

‫اﻟﺤﺪ اﻷﻋﻠﻰ‬ ‫ﻟﻠﻤﻮاﺹﻔﺔ‬

‫اﻟﻬﺪف‬

‫ﻣﻔﺎهﻴﻢ ﻋﺎﻣﺔ ﻋﻦ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت ‪٢‬‬ ‫أﺱﺎﺱﻴﺎت اﻟﻀﺒﻂ اﻻﺡﺼﺎﺋﻲ ﻟﻠﻌﻤﻠﻴﺎت‬ ‫“‬

‫ﻣﻌﻈﻢ اﻟﻌﻤﻠﻴﺎت اﻻﻥﺘﺎﺟﻴﺔ‬ ‫ﺕﺘﺒﻊ اﻟﺘﻮزیﻊ اﻟﻄﺒﻴﻌﻲ‬ ‫)‪. (Normal Distribution‬‬ ‫ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ‬ ‫ﺕﺤﺪد آﺎﻟﺘﺎﻟﻲ ‪:‬‬

‫‪.١‬‬

‫‪ % 68.3‬ﻣﻦ اﻟﻤﻨﺘﺞ ﺕﻜﻮن ﻓﻲ‬ ‫‪.‬‬ ‫ﺡﺪود‬ ‫‪ % 95.4‬ﻣﻦ اﻟﻤﻨﺘﺞ ﺕﻜﻮن ﻓﻲ‬ ‫‪.‬‬ ‫ﺡﺪود‬ ‫‪ % 99.79‬ﻣﻦ اﻟﻤﻨﺘﺞ ﺕﻜﻮن ﻓﻲ‬ ‫ﺡﺪود‬ ‫‪.‬‬

‫“‬

‫‪.٢‬‬ ‫‪.٣‬‬

‫‪٤‬‬

‫‪٢‬‬

‫اﻻﻧﺤﺮاف اﻟﻤﻌﻴﺎري ‪:‬‬

‫‪σ‬‬

‫اﻟﺤﺪ اﻷدﻧﻰ‬ ‫ﻟﻠﻤﻮاﺹﻔﺔ‬

‫ﻣﻔﺎهﻴﻢ ﻋﺎﻣﺔ ﻋﻦ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت ‪٣‬‬ ‫أﺱﺎﺱﻴﺎت اﻟﻀﺒﻂ اﻻﺡﺼﺎﺋﻲ ﻟﻠﻌﻤﻠﻴﺎت‬ ‫یﺴﻤﺢ اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري ‪ σ‬ﺏﺎﻟﺘﻌﺮف ﻋﻠﻰ ﺕﻮزیﻊ اﺡﺘﻤﺎﻻت ﺡﺪوث‬ ‫ﻗﻄﻊ ﻣﻌﻴﺒﺔ ﻣﻦ اﻟﻤﻨﺘﺞ ‪:‬‬ ‫یﻤﻜﻦ ﺕﺤﺪیﺪ ﻧﺴﺒﺔ اﻟﻤﻌﻴﺐ اﻟﺨﺎرﺟﺔ ﻋﻦ ﺡﺪود‬ ‫اﻟﻤﻮاﺹﻔﺎت ﻓﻲ ﺡﺎﻟﺔ ﺕﺜﺒﺘﻬﺎ ﻋﻠﻰ‪:‬‬

‫‪1σ‬‬

‫‪1σ‬‬

‫‪1σ‬‬

‫‪1σ‬‬

‫‪1σ‬‬

‫‪31.74% = 317,400 dpm‬‬ ‫‪4.56% = 45,560 dpm‬‬

‫‪µ‬‬

‫‪0.27% = 2,700 dpm‬‬ ‫‪dpm : Defects per Million‬‬ ‫)ﻗﻄﻌﺔ ﻣﻌﻴﺒﺔ ﻓﻲ اﻟﻤﻠﻴﻮن(‬

‫‪68.26%‬‬ ‫‪95.44%‬‬ ‫‪99.73%‬‬

‫‪٥‬‬

‫دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت‬ ‫“ ﺕﺘﻢ دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ﺏﺘﺤﺪیﺪ وﺽﻊ اﻟﺘﻮزیﻊ‬ ‫اﻟﻄﺒﻴﻌﻲ ﺏﺎﻟﻨﺴﺒﺔ ﻟﺤﺪود اﻟﻀﺒﻂ )‪ (Control Limits‬و ﺡﺪود‬ ‫اﻟﻤﻮاﺹﻔﺎت )‪ (Specification Limits‬و ﺕﺴﻤﺢ هﺬﻩ اﻟﺪراﺱﺔ ﺏﻤﺎ‬ ‫یﻠﻲ ‪:‬‬ ‫“‬ ‫“‬ ‫“‬

‫ﺕﺤﺪیﺪ ﻥﺴﺒﺔ اﻻﻥﺘﺎج اﻟﻤﻌﻴﺐ‪.‬‬ ‫ﺕﺤﺪیﺪ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ‬ ‫ﺕﻤﻜﻴﻦ ﺽﺒﻂ و اﻟﺘﺤﻜﻢ ﻓﻲ اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ‬ ‫اﻟﺘﻮزیﻊ اﻟﻄﺒﻴﻌﻲ‬

‫اﻟﺤﺪ اﻷﻋﻠﻰ ﻟﻠﻀﺒﻂ‬

‫اﻟﺤﺪ اﻷﻋﻠﻰ ﻟﻠﻤﻮاﺹﻔﺔ‬ ‫‪٦‬‬

‫‪٣‬‬

‫اﻟﺤﺪ اﻷدﻧﻰ ﻟﻠﻀﺒﻂ‬

‫اﻟﺤﺪ اﻷدﻧﻰ ﻟﻠﻤﻮاﺹﻔﺔ‬

‫‪1σ‬‬

‫دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت‬ ‫“ ﻻ ﻥﻘﻮم ﺏﺪراﺱﺔ ﻣﻘﺪرة إﻻ ﻟﻠﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ اﻟﺘﻲ ﺕﺨﻀﻊ ﻟﻠﺘﺤﻜﻢ‬ ‫اﻻﺡﺼﺎﺋﻲ )‪. (Process In Control‬‬ ‫“ إذا آﺎﻥﺖ اﻟﻌﻤﻠﻴﺔ آﺬﻟﻚ ﻓﻬﺬا ﻻ یﻌﻨﻲ ﺏﺎﻟﻀﺮورة ﻣﻘﺪرﺕﻬﺎ ﻋﻠﻰ إﻥﺘﺎج‬ ‫ﺡﺴﺐ اﻟﻤﻮاﺹﻔﺎت )‪. (Specification Limits‬‬ ‫اﻟﻌﻤﻠﻴﺔ ﺕﺤﺖ اﻟﺘﺤﻜﻢ اﻻﺡﺼﺎﺋﻲ‪.‬‬ ‫اﻟﺤﺪ اﻷﻋﻠﻰ ﻟﻠﻀﺒﻂ‬

‫اﻟﻤﻨﺘﺞ داﺥﻞ ﺡﺪود اﻟﻤﻮاﺹﻔﺎت‬ ‫اﻟﻌﻤﻠﻴﺔ ﻣﻘﺪرﺕﻬﺎ ﻋﺎﻟﻴﺔ‬

‫اﻟﺤﺪ اﻷدﻧﻰ ﻟﻠﻀﺒﻂ‬

‫اﻟﺤﺪ اﻷدﻧﻰ ﻟﻠﻤﻮاﺹﻔﺔ‬

‫اﻟﺤﺪ اﻷﻋﻠﻰ ﻟﻠﻤﻮاﺹﻔﺔ‬

‫اﻟﻌﻤﻠﻴﺔ ﺕﺤﺖ اﻟﺘﺤﻜﻢ اﻻﺡﺼﺎﺋﻲ‪.‬‬ ‫ﺟﺰء ﻣﻦ اﻟﻤﻨﺘﺞ ﺥﺎرج ﺡﺪود‬ ‫اﻟﻤﻮاﺹﻔﺎت‬

‫اﻟﺤﺪ اﻷﻋﻠﻰ ﻟﻠﻀﺒﻂ‬

‫اﻟﻌﻤﻠﻴﺔ ﻣﻘﺪرﺕﻬﺎ ﻣﻨﺨﻔﻀﺔ‬

‫اﻟﺤﺪ اﻷدﻧﻰ ﻟﻠﻀﺒﻂ‬

‫اﻟﺤﺪ اﻷدﻧﻰ ﻟﻠﻤﻮاﺹﻔﺔ‬

‫اﻟﺤﺪ اﻷﻋﻠﻰ ﻟﻠﻤﻮاﺹﻔﺔ‬

‫‪٧‬‬

‫دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت‬ ‫“ ﺕﺘﻢ دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ﺏﺎﻟﻨﺴﺒﺔ ﻟﻠﻌﻮاﻣﻞ اﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫“ ﺡﺪود ﻣﻮاﺹﻔﺎت ﻣﺤﺪدة‪،‬‬ ‫“ ﺕﺤﺪیﺪ ﻣﺘﻮﺱﻂ ﻟﻠﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ‬ ‫“ ﺕﺸﺘﺖ اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ‬ ‫‪Moderate spread‬‬ ‫‪Moderate placement‬‬

‫‪Narrow spread‬‬ ‫‪Poor placement‬‬

‫‪Broad spread‬‬ ‫‪Good placement‬‬

‫‪٨‬‬

‫‪٤‬‬

‫‪USL‬‬

‫اﻟﻬﺪف‬

‫‪LSL‬‬

‫ﻣﻌﺎیﻨﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت‬ ‫اﻟﻬﺪف‬ ‫‪USL‬‬

‫اﻟﻬﺪف‬ ‫‪LSL‬‬

‫‪USL‬‬

‫‪LSL‬‬

‫اﻟﻬﺪف‬ ‫‪USL‬‬

‫‪LSL‬‬

‫‪٩‬‬

‫اﻟﻬﺪف ﻣﻦ دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت‬ ‫“ اﻟﻬﺪف ﻣﻦ دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ‪:‬‬ ‫“ ﺕﺤﺪیﺪ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ‬ ‫“ ﺕﺤﺪیﺪ اﻷﺱﺒﺎب اﻟﺘﻲ ﺕﺆدي إﻟﻰ اﻟﺘﻘﻠﻴﻞ ﻣﻦ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ‬ ‫“ ﻹﻋﻄﺎء اﻟﺜﻘﺔ ﻟﻠﺰﺏﻮن ﺏﻤﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ )ﺕﻮآﻴﺪ اﻟﺠﻮدة(‬ ‫“ ﻻﻗﺘﺮاح اﻟﺘﺤﺴﻴﻨﺎت ﻋﻠﻰ اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ و هﺬا ب‪:‬‬ ‫“ ﺕﻘﻠﻴﻞ اﻟﻌﻴﻮب ﻓﻲ اﻟﻤﻨﺘﺞ ‪ ،‬و ﻓﻲ ﺕﻜﻠﻔﺔ اﻟﻤﻨﺘﺞ‬ ‫“ ﺕﻘﺪیﻢ اﻥﺘﺎج ﺏﻤﻮاﺹﻔﺎت ﻗﻴﺎﺱﻴﺔ ﺟﻴﺪة‬

‫“ ﺕﻄﺒﻴﻖ ﺕﻘﻨﻴﺎت اﻟﻀﺒﻂ اﻻﺡﺼﺎﺋﻲ ﻟﻠﻌﻤﻠﻴﺎت‪.‬‬

‫‪١٠‬‬

‫‪٥‬‬

‫دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت‬ ‫“ یﻤﻜﻦ ﺡﺴﺎب اﻟﻤﻘﺪرة ﺏﻄﺮیﻘﺔ ﺱﺮیﻌﺔ دون اﻟﻌﻮدة إﻟﻰ‬ ‫ﺧﺮاﺋﻂ اﻟﺘﺤﻜﻢ‪.‬‬ ‫“ اﻟﻄﺮیﻘﺔ اﻟﻌﻤﻠﻴﺔ ﻗﺎﺋﻤﺔ ﻋﻠﻰ اﻓﺘﺮاض أن اﻟﻌﻤﻠﻴﺔ ﺕﺤﺖ‬ ‫اﻟﺘﺤﻜﻢ اﻻﺡﺼﺎﺋﻲ و هﻲ آﻤﺎ یﻠﻲ‪:‬‬ ‫“ ﻥﺄﺧﺬ ‪ 25‬ﻋﻴﻨﺔ ﻣﻦ اﻟﻤﻨﺘﺞ ﺕﺤﺘﻮي آﻞ ﻣﻨﻬﺎ ﻋﻠﻰ ‪ 4‬وﺡﺪات )‪(n=4‬‬ ‫“ ﻥﺤﺴﺐ ﻣﺪى آﻞ ﻋﻴﻨﺔ ‪R = Xmax - Xmin :‬‬ ‫“ ﻥﺤﺴﺐ ﻣﺘﻮﺱﻂ ﻣﺪى ﺟﻤﻴﻊ اﻟﻌﻴﻨﺎت ‪R = Σ R / g = Σ R / 25 :‬‬ ‫“ ﻥﺤﺴﺐ ﻗﻴﻤﺔ اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري ‪σ = R / d2 :‬‬ ‫“ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻧﺘﺎﺟﻴﺔ = ‪6 σ‬‬

‫) ‪(d2 = 2.059 n=4‬‬

‫‪١١‬‬

‫دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت ‪٢‬‬ ‫“ ﺏﻨﻔﺲ اﻟﻄﺮیﻘﺔ یﻤﻜﻦ ﺡﺴﺎب اﻟﻤﻘﺪرة ﻋﻦ ﻃﺮیﻖ ﺡﺴﺎب‬ ‫اﻻﻥﺤﺮاﻓﺎت اﻟﻤﻌﻴﺎریﺔ ‪ s‬ﻟﻜﻞ اﻟﻌﻴﻨﺎت و ﻗﻴﻤﺘﻬﺎ اﻟﻤﺘﻮﺱﻄﺔ ‪.s‬‬ ‫“ اﻟﻄﺮیﻘﺔ اﻟﻌﻤﻠﻴﺔ آﻤﺎ یﻠﻲ‪:‬‬ ‫“ ﻥﺄﺧﺬ ‪ 25‬ﻋﻴﻨﺔ ﻣﻦ اﻟﻤﻨﺘﺞ ﺕﺤﺘﻮي آﻞ ﻣﻨﻬﺎ ﻋﻠﻰ ‪ 4‬وﺡﺪات )‪(n=4‬‬ ‫“ ﻥﺤﺴﺐ اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري ﻟﻜﻞ ﻋﻴﻨﺔ ‪s :‬‬ ‫“ ﻥﺤﺴﺐ ﻣﺘﻮﺱﻂ اﻻﻥﺤﺮاﻓﺎت اﻟﻤﻌﻴﺎریﺔ ‪s = Σ s / g = Σ s / 25 :‬‬ ‫“ ﻥﺤﺴﺐ ﻗﻴﻤﺔ اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري ‪σ = s / C4 :‬‬

‫) ‪(C4 = 0.9213 n=4‬‬

‫“ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻧﺘﺎﺟﻴﺔ = ‪6 σ‬‬

‫‪١٢‬‬

‫‪٦‬‬

‫ﻣﻼﺡﻈﺔ هﺎﻣﺔ ‪ :‬ﻻ ﺕﺴﻤﺢ هﺬﻩ اﻟﻄﺮیﻘﺔ ﺏﺎﻟﺤﺴﺎب اﻟﺪﻗﻴﻖ ﻟﻤﻘﺪرة اﻟﻌﻤﻠﻴﺔ و إﻥﻤﺎ هﻲ‬ ‫ﻗﻴﻤﺔ ﺕﻘﺮیﺒﻴﺔ ﻓﻘﻂ و ﻻ ﺕﺴﺘﻌﻤﻞ إﻻ ﻓﻲ ﻇﺮوف ﺧﺎﺹﺔ‬

‫ﻣﺜﺎل ﻋﻤﻠﻲ ﻋﻦ دراﺱﺔ اﻟﻤﻘﺪرة‬ ‫“ أﺡﺴﺐ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ﻣﻦ ﺧﻼل ﻗﻴﻢ اﻟﻤﺪى ل ‪ 25‬ﻋﻴﻨﺔ ﻣﻦ‬ ‫اﻟﻤﻨﺘﺞ ‪7,5,5,3,2,4,5,9,4,5,4,7,5,7,3,4,4,5,6,4,7,7,5,5,7 :‬‬

‫اﻟﺤﻞ‬ ‫“‬

‫ﻥﺤﺴﺐ ﻣﺘﻮﺱﻂ ﻣﺪى ﺟﻤﻴﻊ اﻟﻌﻴﻨﺎت ‪:‬‬ ‫‪R = Σ R / g = Σ R / 25 = (7+5+…+7) / 25 = 129 / 25 = 5.16‬‬

‫“ ﻥﺤﺴﺐ ﻗﻴﻤﺔ اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري ‪:‬‬ ‫‪σ = R / d2 = 5.16 / 2.059 = 2.51‬‬ ‫“‬

‫) ‪(d2 = 2.059 n=4‬‬

‫ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻧﺘﺎﺟﻴﺔ = ‪6 σ‬‬ ‫‪6 σ = 6 x 2.51 = 15.1‬‬

‫‪١٣‬‬

‫ﻣﺜﺎل ﻋﻤﻠﻲ ‪ ٢‬ﻋﻦ دراﺱﺔ اﻟﻤﻘﺪرة‬ ‫“ ﺏﺪأﻥﺎ ﻋﻤﻠﻴﺔ اﻥﺘﺎﺟﻴﺔ ﺟﺪیﺪة و أﻋﻄﺖ دراﺱﺘﻬﺎ ﻣﺠﻤﻮع اﻻﻥﺤﺮاﻓﺎت‬ ‫اﻟﻤﻌﻴﺎریﺔ ) ل ‪ 25‬ﻋﻴﻨﺔ ﻣﻦ اﻟﻤﻨﺘﺞ ‪ ،‬ﺡﺠﻢ اﻟﻌﻴﻨﺔ ‪ (4‬ﻗﻴﻤﺔ ‪ .105‬اﻟﻤﻄﻠﻮب‬ ‫ﺡﺴﺎب ﻣﻘﺪرة هﺬﻩ اﻟﻌﻤﻠﻴﺔ‪.‬‬

‫اﻟﺤﻞ‬ ‫“‬

‫ﻥﺤﺴﺐ ﻣﺘﻮﺱﻂ اﻻﻥﺤﺮاﻓﺎت اﻟﻤﻌﻴﺎریﺔ ‪s = Σ s / g = 105 / 25 = 4.2 :‬‬

‫“ ﻥﺤﺴﺐ ﻗﻴﻤﺔ اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري ‪:‬‬ ‫‪σ = s / C4 = 4.2 / 0.9213 = 4.56‬‬ ‫“‬

‫‪١٤‬‬

‫‪٧‬‬

‫ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻧﺘﺎﺟﻴﺔ = ‪6 σ‬‬ ‫‪6 σ = 6 x 4.56 = 27.4‬‬

‫) ‪(C4 = 0.9213 n=4‬‬

‫ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة‬

‫‪Cp‬‬

‫‪Capability Index Cp‬‬

‫ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة )‪ (Cp‬یﺴﻤﺢ ﺏﻤﻘﺎرﻥﺔ ﻣﻘﺪار‬ ‫اﻟﺘﺸﺘﺖ ﻓﻲ اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ﻣﻊ ﺡﺪود‬ ‫اﻟﻤﻮاﺹﻔﺎت‪.‬‬ ‫یﻤﻜﻦ ﺡﺴﺎب هﺬا اﻟﻤﻌﺎﻣﻞ ﺡﺴﺐ اﻟﻘﺎﻥﻮن ‪:‬‬ ‫‪UpperSpecLimit − LowerSpecLimit‬‬ ‫‪6 ⋅ sσ‬‬

‫‪USL‬‬

‫‪LSL‬‬

‫= ‪Cp‬‬

‫‪Cp = (USL - LSL) / 6 σ‬‬

‫‪Cp Numerator‬‬

‫‪4‬‬

‫‪3.75‬‬

‫‪3‬‬

‫‪3.5‬‬

‫‪3.25‬‬

‫‪2‬‬

‫‪2.5‬‬

‫‪2.75‬‬

‫‪2.25‬‬

‫‪1‬‬

‫‪1.5‬‬

‫‪1.75‬‬

‫‪1.25‬‬

‫‪0.5‬‬

‫‪0.75‬‬

‫‪0.25‬‬

‫‪-1.421E-14‬‬

‫‪-1‬‬

‫‪-0.5‬‬

‫‪-0.25‬‬

‫‪-0.75‬‬

‫‪-1.25‬‬

‫‪-2‬‬

‫‪-1.5‬‬

‫‪-1.75‬‬

‫‪-3‬‬

‫‪-2.5‬‬

‫‪-2.25‬‬

‫‪-2.75‬‬

‫“‬

‫یﺴﻤﺢ هﺬا اﻟﻤﻌﺎﻣﻞ ﺏﻤﻌﺮﻓﺔ ﻣﺪى ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ﻋﻠﻰ ﺕﺼﻨﻴﻊ‬ ‫ﻣﻨﺘﺞ ﺡﺴﺐ اﻟﻤﻮاﺹﻔﺎت‪.‬‬ ‫آﻠﻤﺎ آﺎن هﺬا اﻟﻤﻌﺎﻣﻞ أآﺒﺮ آﻠﻤﺎ زادت ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ‪.‬‬

‫“‬

‫إذا آﺎن ‪ Cp<1‬ﺕﻌﺘﺒﺮ اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ﻏﻴﺮ ﻗﺎدرة و یﺠﺐ‬ ‫ﻣﺮاﺟﻌﺘﻬﺎ‪.‬‬ ‫إذا آﺎن ‪ 1
‫“‬

‫اﻟﻬﺪف ﻣﻦ دراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ‪:‬‬

‫“‬

‫“‬

‫‪١٦‬‬

‫‪٨‬‬

‫‪-4‬‬

‫‪Capability Index Cp‬‬

‫‪-3.5‬‬

‫‪-3.25‬‬

‫ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة‬

‫‪Cp‬‬

‫‪-3.75‬‬

‫‪١٥‬‬

‫ﺕﺤﺴﻴﻦ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺎت اﻻﻥﺘﺎﺟﻴﺔ‬ ‫‪Improvement in Capability‬‬

‫‪Cp < 1.0‬‬ ‫اﻟﻌﻤﻠﻴﺔ اﻻﻧﺘﺎﺟﻴﺔ ﻏﻴﺮ ﻗﺎدرة‬

‫‪USL − LSL‬‬ ‫ˆ‪6σ‬‬

‫‪Cp ~ 1.0‬‬

‫= ‪Cp‬‬

‫‪Cp > 1.0‬‬ ‫اﻟﻌﻤﻠﻴﺔ اﻻﻧﺘﺎﺟﻴﺔ ﻣﻘﺪرﺕﻬﺎ ﺟﻴﺪة‬

‫ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة‬

‫‪Cpk‬‬

‫‪Capability Index Cpk‬‬ ‫“‬

‫یﺘﻢ اﻟﺤﻜﻢ ﻋﻠﻰ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ آﻤﺎ یﻠﻲ ‪:‬‬ ‫“ ﻣﻘﻴﺎس ﻟﻤﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ﻋﻠﻰ إﻥﺘﺎج اﻟﻤﻨﺘﺞ ﺡﺴﺐ اﻟﻤﻮاﺹﻔﺎت‪.‬‬ ‫“ یﺘﻢ ذﻟﻚ ﺏﻤﻘﺎرﻥﺔ اﻟﻤﻮاﺹﻔﺎت ﻣﻊ ﻣﺘﻮﺱﻂ اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ‪x = µ‬‬ ‫‪Cpk = Min [ (USL - x) , (x - LSL) ] / 3 σ‬‬ ‫‪USL‬‬

‫‪LSL‬‬ ‫‪Mean‬‬

‫‪Cpk Numerator‬‬

‫‪4‬‬

‫‪3.75‬‬

‫‪3‬‬

‫‪3.5‬‬

‫‪3.25‬‬

‫‪2.75‬‬

‫‪2‬‬

‫‪2.5‬‬

‫‪.75‬‬

‫‪2.25‬‬

‫‪1‬‬

‫‪1.5‬‬

‫‪.25‬‬

‫‪0.5‬‬

‫‪0.75‬‬

‫‪0.25‬‬

‫‪0.25‬‬

‫‪E-14‬‬

‫‪-1‬‬

‫‪-0.5‬‬

‫‪.25‬‬

‫‪0.75‬‬

‫‪-2‬‬

‫‪.75‬‬

‫‪-1.5‬‬

‫‪2.25‬‬

‫‪-3‬‬

‫‪-2.5‬‬

‫‪2.75‬‬

‫‪3.25‬‬

‫‪-4‬‬

‫‪-3.5‬‬

‫‪٩‬‬

‫‪3.75‬‬

‫‪١٨‬‬

‫ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة‬

‫‪Cpk‬‬

‫‪Capability Index Cpk‬‬ ‫“‬

‫یﻤﻜﻦ اﻟﺤﻜﻢ ﻋﻠﻰ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ ﺡﺴﺐ ﻗﻴﻤﺔ ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة ‪Cpk‬‬ ‫“‬ ‫“‬

‫“‬

‫“‬

‫إذا آﺎن ‪ Cpk<1‬ﺕﻌﺘﺒﺮ اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ﻏﻴﺮ ﻗﺎدرة‪.‬‬ ‫إذا آﺎن ‪ Cpk>=1‬ﺕﻌﺘﺒﺮ اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ﻣﻘﺪرﺕﻬﺎ ﺟﻴﺪة‬

‫ﻣﻌﻈﻢ اﻟﺸﺮآﺎت اﻟﻌﺎﻟﻤﻴﺔ ﺕﺒﻨﺖ أدﻥﻰ ﻗﻴﻤﺔ ﺕﺴﺎوي ‪ 1.33‬ﻟﻠﻤﻌﺎﻣﻞ ‪ Cpk‬وهﺬا‬ ‫ﺏﻨﺎءا ﻋﻠﻰ ﺡﺪود ﻣﻮاﺹﻔﺎت ﻣﺤﺪدة ب ) ‪ (4σ‬و ﺏﻘﺒﻮل ﻥﺴﺒﺔ ﻣﻨﺘﺞ ﻣﻌﻴﺐ‬ ‫ﺕﺴﺎوي ) ‪ (63 DPM‬ﻗﻄﻌﺔ ﻣﻌﻴﺒﺔ ﻓﻲ اﻟﻤﻠﻴﻮن‪.‬‬ ‫اﻟﺸﺮآﺎت اﻟﺮاﺋﺪة ﻓﻲ ﻣﺠﺎل اﻟﺠﻮدة ﻣﺜﻞ )‪ (Motorola‬ﺕﺒﻨﺖ ﻗﻴﻤﺔ )‬ ‫‪ (Cpk=2‬ﺏﻨﺎءا ﻋﻠﻰ ﺡﺪود اﻟﻤﻮاﺹﻔﺎت ﻋﻠﻰ )‪ (6σ‬و ﺏﺎﻟﺴﻤﺎح ﻟﻠﺘﻐﻴﺮات ﻓﻲ‬ ‫ﻣﺠﺎل )‪ (4σ‬هﺬا ﻣﺎ یﺆدي إﻟﻰ ﻥﺴﺒﺔ ﻣﻌﻴﺐ ﻣﺜﺎﻟﻴﺔ ﺕﻌﺎدل )‪ (0 DPM‬وﺡﺪة‬ ‫ﻓﻠﺴﻔﺔ اﻟﺠﻮدة ‪6σ‬‬ ‫ﻣﻌﻴﺒﺔ ﻓﻲ اﻟﻤﻠﻴﻮن‪.‬‬

‫‪١٩‬‬

‫أﻣﺜﻠﺔ ﻋﻦ ﺡﺴﺎب ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة‬ ‫اﻟﻤﺜﺎل ‪١‬‬ ‫“ ﻣﻮاﺹﻔﺎت اﻟﻤﻨﺘﺞ هﻲ ‪:‬‬ ‫“ اﻟﻤﻌﻄﻴﺎت ﻣﻦ اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ أﻋﻄﺖ اﻟﺒﻴﺎﻥﺎت اﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪x = 1.490 mm‬‬ ‫“ اﻟﻘﻴﻤﺔ اﻟﻤﺘﻮﺱﻄﺔ ‪:‬‬ ‫‪σ = 0.002 mm‬‬ ‫“ اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري ‪:‬‬ ‫‪1.5 +/- 0.005 mm‬‬

‫“ اﻟﻤﻄﻠﻮب دراﺳﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻧﺘﺎﺟﻴﺔ‪.‬‬ ‫‪٢٠‬‬

‫‪١٠‬‬

‫‪Cp‬‬

‫ﺡﻞ اﻟﻤﺜﺎل ‪١‬‬ ‫“ ﻥﻘﻮم ﺏﺪراﺱﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻥﺘﺎﺟﻴﺔ ﻋﻦ ﻃﺮیﻖ ﺡﺴﺎب ﻣﻌﺎﻣﻞ‬ ‫اﻟﻤﻘﺪرة ‪ Cp‬ﺡﺴﺐ اﻟﻘﺎﻥﻮن ‪:‬‬ ‫‪Cp = (USL - LSL) / 6 σ‬‬

‫“ ﻥﺤﺴﺐ ﺡﺪود اﻟﻤﻮاﺹﻔﺎت ‪:‬‬ ‫‪USL = 1.5 + 0.005 = 1.505 mm‬‬ ‫اﻟﺤﺪ اﻷﻋﻠﻰ ﻟﻠﻤﻮاﺹﻔﺔ ‪:‬‬ ‫‪LSL = 1.5 - 0.005 = 1.495 mm‬‬ ‫اﻟﺤﺪ اﻷدﻥﻰ ﻟﻠﻤﻮاﺹﻔﺔ ‪:‬‬ ‫“ ﻥﻌﻮض ﻓﻲ ﻗﺎﻥﻮن ‪: Cp‬‬ ‫)‪Cp = (USL - LSL) / 6 σ = (1.505−1.495)/(6 0.002‬‬ ‫‪Cp = 0.01 / 0.012 = 0.833‬‬ ‫‪٢١‬‬

‫“ ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة اﻟﻌﻤﻠﻴﺔ‬

‫‪Cp = 0.833<1‬‬

‫اﻟﻌﻤﻠﻴﺔ ﻏﻴﺮ ﻗﺎدرة‬

‫ﺡﻞ اﻟﻤﺜﺎل ‪١‬‬ ‫“ یﻤﻜﻦ آﺬﻟﻚ ﺡﺴﺎب ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة‬

‫‪Cpk‬‬

‫ﺡﺴﺐ اﻟﻘﺎﻥﻮن ‪:‬‬

‫‪Cpk = Min [ (USL-x) , (x-LSL) ] / 3 σ‬‬ ‫‪(USL-x) / 3 σ = (1.505 – 1.490) / ( 3 x 0.002) = 2.5‬‬ ‫‪(x-LSL) / 3 σ = (1.490 – 1.495) / ( 3 x 0.002) = -0.833‬‬ ‫‪Cpk = Min [ 2.5 , -0.833 ] = - 0.833 < 1‬‬

‫“ ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة‬ ‫‪٢٢‬‬

‫‪١١‬‬

‫‪Cpk = <1‬‬

‫اﻟﻌﻤﻠﻴﺔ ﺑﻬﺎ ﻣﺸﻜﻞ ﺡﻘﻴﻘﻲ‪.‬‬

‫أﻣﺜﻠﺔ ﻋﻦ ﺡﺴﺎب ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة‬

‫‪Cp‬‬

‫اﻟﻤﺜﺎل ‪٢‬‬ ‫“ ﺡﺪود ﻣﻮاﺹﻔﺎت اﻟﻤﻨﺘﺞ هﻲ ‪:‬‬ ‫“ اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري ﻓﻲ ﻥﻈﺎم ﺕﺼﻨﻴﻊ آﺎن ‪σ = 0.038‬‬ ‫“ أﺟﺮیﻨﺎ ﺕﺤﺴﻴﻨﺎت ﻋﻠﻰ اﻟﻨﻈﺎم و أﺹﺒﺢ اﻻﻥﺤﺮاف‬ ‫“ اﻟﻤﻌﻴﺎري ‪σ = 0.030‬‬ ‫‪LSL = 6.30‬‬

‫‪USL = 6.50‬‬

‫“ اﻟﻤﻄﻠﻮب ﺡﺴﺎب ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة ﻗﺒﻞ و ﺑﻌﺪ ﻋﻤﻠﻴﺔ‬ ‫اﻟﺘﺤﺴﻴﻦ‪ .‬ﻣﺎ هﻮ اﺳﺘﻨﺘﺎﺟﻚ ؟ ‪.‬‬ ‫‪٢٣‬‬

‫ﺡﻞ اﻟﻤﺜﺎل ‪٢‬‬ ‫“ ﻥﻘﻮم ﺏﺤﺴﺎب ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة ‪ Cp‬ﻗﺒﻞ و ﺏﻌﺪ اﻟﺘﺤﺴﻴﻦ‪:‬‬ ‫‪Cp = (USL - LSL) / 6 σ‬‬

‫“ ﻗﺒﻞ اﻟﺘﺤﺴﻴﻦ ‪( σ = 0.038 ) :‬‬ ‫‪Cp = (USL - LSL) / 6 σ = (6.50−6.30)/(6 0.038) = 0.877‬‬

‫“ ﺏﻌﺪ اﻟﺘﺤﺴﻴﻦ ‪( σ = 0.030 ) :‬‬ ‫‪Cp = (USL - LSL) / 6 σ = (6.50−6.30)/(6 0.030) = 1.111‬‬

‫اﻻﺳﺘﻨﺘﺎج‬ ‫“ اﻟﺘﺤﺴﻴﻨﺎت اﻟﺘﻲ أﺟﺮیﺖ ﻋﻠﻰ اﻟﻌﻤﻠﻴﺔ اﻟﺘﺼﻨﻴﻌﻴﺔ أدت إﻟﻰ رﻓﻊ‬ ‫ﻣﻘﺪرﺕﻬﺎ‬ ‫‪Cp=1.111 >1‬‬ ‫‪Cp =0.877 <1‬‬ ‫“ یﻤﻜﻦ اﻟﺒﺤﺚ ﻋﻠﻰ ﺕﺤﺴﻴﻨﺎت أﺧﺮى ﻟﻠﻌﻤﻠﻴﺔ ﺡﺘﻰ یﺼﺒﺢ ‪Cp >1.6‬‬ ‫‪٢٤‬‬

‫‪١٢‬‬

‫ﺕﻘﺎریﺮ اﻟﻤﻘﺪرة‬ ‫‪+ 3 Sigma: 25.16‬‬ ‫‪- 3 Sigma: 23.33‬‬

‫‪USL: 26.00‬‬ ‫‪LSL: 22.00‬‬

‫‪Mean: 24.24‬‬ ‫‪Std Dev: 0.31‬‬

‫‪Excellence plc‬‬ ‫‪344 834 890‬‬ ‫‪Preliminary‬‬ ‫‪24.00‬‬ ‫‪1‬‬ ‫‪John Ashcroft‬‬ ‫‪36678‬‬

‫‪Histogram‬‬ ‫‪12‬‬

‫‪Customer:‬‬ ‫‪Part Number:‬‬ ‫‪Type:‬‬ ‫‪Dimension:‬‬ ‫‪Cavity Number:‬‬ ‫‪Conducted by:‬‬ ‫‪Date:‬‬

‫‪10‬‬

‫‪Histogram Here‬‬

‫‪DATA:‬‬

‫‪8‬‬ ‫‪6‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪0‬‬

‫‪26.6‬‬

‫‪26.3‬‬

‫‪26.0‬‬

‫‪25.7‬‬

‫‪25.4‬‬

‫‪25.1‬‬

‫‪24.8‬‬

‫‪24.5‬‬

‫‪24.2‬‬

‫‪23.9‬‬

‫‪23.6‬‬

‫‪23.3‬‬

‫‪23.0‬‬

‫‪22.7‬‬

‫‪22.4‬‬

‫‪22.1‬‬

‫‪21.8‬‬

‫ﺕﻘﺎریﺮ‬ ‫دراﺳﺔ ﻣﻘﺪرة‬ ‫اﻟﻌﻤﻠﻴﺎت‬ ‫اﻻﻧﺘﺎﺟﻴﺔ‬ ‫آﺜﻴﺮا ﻣﺎ‬ ‫یﻄﻠﺒﻬﺎ‬ ‫اﻟﻌﻤﻼء‬ ‫اﻟﻤﻬﻤﻴﻦ‬ ‫ﻟﻠﻤﻨﺸﺄة‬ ‫اﻟﺼﻨﺎﻋﻴﺔ‬

‫‪RESULTS:‬‬ ‫‪U-Ppk: 1.92‬‬ ‫‪L-Ppk: 2.45‬‬

‫‪STUDY:‬‬

‫‪Trend‬‬

‫‪24.2‬‬ ‫‪24.4‬‬ ‫‪24.8‬‬ ‫‪24.9‬‬ ‫‪24.2‬‬ ‫‪23.8‬‬ ‫‪24.0‬‬ ‫‪23.9‬‬ ‫‪24.2‬‬ ‫‪24.7‬‬

‫‪24.0‬‬ ‫‪24.1‬‬ ‫‪24.1‬‬ ‫‪24.7‬‬ ‫‪24.5‬‬ ‫‪24.2‬‬ ‫‪24.0‬‬ ‫‪24.0‬‬ ‫‪24.2‬‬ ‫‪24.1‬‬

‫‪24.2‬‬ ‫‪24.1‬‬ ‫‪24.8‬‬ ‫‪24.7‬‬ ‫‪24.7‬‬ ‫‪23.9‬‬ ‫‪24.0‬‬ ‫‪24.0‬‬ ‫‪24.1‬‬ ‫‪24.0‬‬

‫‪25‬‬

‫‪Trend Chart Here‬‬

‫‪24.0‬‬ ‫‪24.6‬‬ ‫‪24.5‬‬ ‫‪24.8‬‬ ‫‪24.6‬‬ ‫‪24.1‬‬ ‫‪23.8‬‬ ‫‪23.9‬‬ ‫‪24.2‬‬ ‫‪24.2‬‬

‫‪24.0‬‬ ‫‪24.1‬‬ ‫‪24.4‬‬ ‫‪24.6‬‬ ‫‪24.7‬‬ ‫‪24.2‬‬ ‫‪24.0‬‬ ‫‪24.0‬‬ ‫‪23.9‬‬ ‫‪24.1‬‬

‫‪COMMENTS:‬‬

‫‪25‬‬ ‫‪24‬‬ ‫‪24‬‬ ‫‪23‬‬

‫‪1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49‬‬

‫‪٢٥‬‬

‫ﺕﺪریﺒﺎت ﻏﻴﺮ ﻣﺤﻠﻮﻟﺔ‬ ‫اﻟﺘﺪریﺐ ‪١‬‬ ‫“‬ ‫“‬

‫ﺡﺪود ﻣﻮاﺹﻔﺎت ﺏﺴﺘﻮن ﻣﺤﺮآﺎت هﻲ ‪74.000 ± 0.05mm :‬‬ ‫‪σ = 0.0099 mm‬‬ ‫اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري ‪:‬‬

‫“ اﻟﻤﻄﻠﻮب دراﺳﺔ ﻣﻘﺪرة اﻟﻌﻤﻠﻴﺔ اﻻﻧﺘﺎﺟﻴﺔ‬ ‫‪ Cp‬ﻟﻬﺬﻩ اﻟﻌﻤﻠﻴﺔ‪.‬‬

‫‪٢٦‬‬

‫‪١٣‬‬

‫ﻋﻦ ﻃﺮیﻖ ﺡﺴﺎب ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة‬

‫ﺕﺪریﺒﺎت ﻏﻴﺮ ﻣﺤﻠﻮﻟﺔ‬ ‫اﻟﺘﺪریﺐ ‪٢‬‬

‫أﺡﺴﺐ ﻣﻌﺎﻣﻞ اﻟﻤﻘﺪرة ‪ Cpk‬ﻟﻠﻌﻤﻠﻴﺔ اﻟﺘﺼﻨﻴﻌﻴﺔ ﻣﻊ اﻟﻤﻌﻄﻴﺎت اﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫‪USL = 6.50‬‬ ‫“ ﺡﺪود ﻣﻮاﺹﻔﺎت اﻟﻤﻨﺘﺞ هﻲ ‪LSL = 6.30 :‬‬ ‫‪.σ = 0.030‬‬ ‫“ اﻻﻥﺤﺮاف اﻟﻤﻌﻴﺎري‬

‫‪٢٧‬‬

‫ﺟﺰا آﻢ اﷲ ﺥﻴﺮا ﻋﻠﻰ ﺡﺴﻦ اﻟﻤﺘﺎﺑﻌﺔ‬

‫هﻞ ﻣﻦ أﺳﺌﻠﺔ ؟‬ ‫ﻣﻦ آﺎﻥﺖ ﻟﺪیﻪ أﺱﺌﻠﺔ أو ﻣﻼﺡﻈﺎت‪ ،‬ﻓﻠﻴﺘﻔﻀﻞ ﺏﻄﺮﺡﻬﺎ ﻋﺒﺮ ﻗﺴﻢ‬ ‫ﺽﺒﻂ اﻟﺠﻮدة ﻓﻲ ﻣﻨﺘﺪیﺎت اﻻﺡﺼﺎﺋﻴﻮن اﻟﻌﺮب ﻋﻠﻰ اﻟﻤﻮﻗﻊ ‪:‬‬ ‫‪www.arabicstat.com/forums/forum12/‬‬

‫أو ﻣﺮاﺱﻠﺘﻨﺎ ﻋﻠﻰ اﻟﺒﺮیﺪ اﻻﻟﻜﺘﺮوﻥﻲ ‪:‬‬ ‫‪٢٨‬‬

‫‪١٤‬‬

‫‪[email protected]‬‬

Related Documents

Chap6
November 2019 20
Chap6
June 2020 11
Chap6 Geiger
November 2019 38
Transp Chap6
October 2019 28
Text-chap6
November 2019 19
Chap6-1
November 2019 30