Chap 3

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chap 3 as PDF for free.

More details

  • Words: 13,780
  • Pages: 97
SOLUTIONS MANUAL COURTESY

Amir Tahir Khan (2005–CE-152) Saba Khalid*

(2005–CE-145)

Shahzaib Zahoor (2005–CE-133) Sarwat Hasnat

(2005–CE-129)

Haider Ali

(2005–CE-164) SECTION ‘C’

COMPUTER ENGINEERING

This manual contains solutions to all of the problems of Chapter 3 ‘Solution of Linear Systems AX=B’ in Numerical Methods Using MATLAB, Fourth Edition. If you spot an error in a solution or in the wording of a problem, we would greatly appreciate it if you would forward the information via email to us at [email protected]

Submitted To Sir Muhammad Jamil Usmani Lecturer,Mathematics Department, SSUET

INDEX S.NO. 1

EXERCISE

Page

OBJECTIVE

#

Introduction to

3-24

vectors And Matrices 2

Properties of Vectors Upper Triangular

25-33

Gaussian Elimination

34-44

Iterative Methods for Linear Systems

Sarwat Hasnat 2005-CE-129

45-60

And Pivoting 5

Haider Ali 2005-CE-164

linear Systems 4

Amir Tahir Khan 2005-CE-152

And Matrices 3

SOLVED BY

Shahzaib Zahoor Khan 2005-CE-133

61-96

Saba Khalid* 2005-CE-145

2

CHAPTER 3 EXERCISES FOR INTRODUCTION To VECTOR & MATRICES

Q1.

Given the vectors x and Y, find (a) x+y, (b) x- Y, (c) 3x , ( d) II X II (e) 7Y – 4 X, (f) x. y, (g) 117Y – 4 X II.

(i) X = ( 3, - 4 ) and Y = ( - 2, 8)

SOLUTION :(a) X + Y The sum of the vectors X and Y is computed component by component. X + Y = ( X, + Y, X2 + Y2 , Xn + Yn) We have, X = 3, X2 = - 4,Y1 = -2 , Y2 = 8 Putting the values We get, (3,- 4) + (-2,8) = (3+ (-2) , - 4+8) = ( 3-2,4) = (1,4) Ans.

3

(b) X- Y The difference X – Y is formed by taking the difference in each coordinate: X _ Y = (X1 = Y1 , Y2 ------ Xn – Yn )

Putting the values We got,

= (3,-4) – (-2,8) = (3, -(-2) , - 4-8) = (3+2) , - 12) = (5, - 12)

(c) 3 X If C is a real number we define scalar multiplication as follows: CX = ( CX1, CX2 _ _ _ _ (Xn)

Putting the values we get, We get, 3 (3 , - 4) = ( 3 X 3, 3 X- 4) = ( 9 - 12)

(d) || X ||

4

The norm (or length) of the vector X is defined by , ||X ||= (X21 + X22 + ------- X2n )1/2 Putting the values , we get ||3 -4|| = (3)2 + (-4)2 )1/2 = ( 9+16)1/2 =(25)1/2 = (e)

5 Ans.

7Y – 4X

If c & d are scalars then the weighted difference dY – CX becomes, dY – cX =(dY-1 – CX1, dy2 – CX2-----dy2 - Cxn ) Let C = 4 & = 7 Putting the values, we get, 7(-2,8) – 4(3, -4) = (7 ( -2) -4(3) = (8)-4(-4)) = (14-12, 56 + 16)

(f) X. Y The dot product of two vectors , X and Y can be written as, X. Y = x1 y1 + x2 y2 + ------------ xn yn Putting the values , we get,

5

(3,-4) . (-2 ,8) = 3x-2+4 x 8 = - 6- 32 = - 38 Ans.

(g) ||7Y- 4X|| The distance between two points X to Y, ||Y – X|| = ((Y1-X1 )2 +( y2 – X2)2 + ------ (Yn-Xn)2 )1/2 According to condition, || dy – CX|| = (( dy1 – CX1) + ( Y2 – CX2 )2 + ------ (dYn-CXn)2 )1/2 Let C = 4 , d =7 Putting the values We get, || 7 ( -2,8) – ( 3\3-4) || = (( 7 x-2) 4x3)2 + ( 7 X 8 – 4 X -4)2 )1/2 = (( -14-12)2 + (56 +16)2 )1/2 = ((-26)2 + (72)2 )1/2 = (676 + 5184)1/2 = (5860)1/2 =2 or

Q1.

1465

76.55063684 Ans.

ii) X = ( -6, 3,2) & Y = (- 8,5,1) (a) X + Y

6

The sum of the vectors X & Y is computed component by component, X+ Y = (X1+Y1 X2 +Y2, --------- (Xn-Yn) We have X1 = -6, X2 = 3,X3 = 2, Y1 =- 8,y2 = 5 Y3 = 1 Putting the values We get, X + Y = ( - 6-8, 3+5 2+1) X + Y = ( - 14,8,3) Ans. (b)

X-Y

The difference of X – Y is formed by taking the difference in each coordinate, X + Y = (X1 – Y, X2 – y2, ------------- Xn – Yn) Putting the values we get, X – Y ( -6+ 8, 3-5, 2-1) X-Y = (2, - 2 ,1) (c)

3X

If C is a real number we define scalar multiplication as follows: C X = (3X-6, 3 X 3 , 3 X 2) 3 X = ( -18, 9,6) (d) || X || The norm (or length) of the vector X is defined by,

7

|| X || = (X12 + X12 + --------- Xn2)1/2 Putting the values We get, || X || = ((-6)2 + (3)2 + (2)2 )1/2 = ( 36 + 9 + 4)1/2 = (49)1/2 || x|| =7 Ans. (e) 7Y – 4X Let C = 4 & d =7 It C & D are scalars then weighted difference dY – cX becomes, dY – cX = ( dY1 – cX1, dY2 – cX2 ------- dYn – (Xn ) Putting the values We get, 7Y - 4X =(( 7X – 8) –(4X – 6),(7 X 5) – ( 4 X 3 )( 7 X 1) – (4 X 2)) = (- 56 + 24 , 35 – 12, 7 – 8 ) 7Y – 4X = (-32 , 23,-1) Ans. (f) X.Y The dot product of two vectors, X and Y Can be written as, X.Y = X1 Y1 + X2 Y2 + ---------- Xn Yn Putting the values we get, X .Y = ( C-6 X – 8) + ( 3X 5 ) + (2 X 1) = 48+ 15+ 2 X.Y 65 Ans.

8

(g) || 7Y – 4X|| The distance between two points X to Y, ||Y – X|| = ((y1 – X1)2 + ( Y2 –X2)2+ ----- (yn –Xn)2 )1/2 we find, || 7Y - 4X|| = ((7y1 - 4X1 )2 + (7y2 – 4x2)2 + (7Y3 – 4x3)2)1/2 Putting the values We get,

|| 7Y-4X|| = (( 7X -8)2 - (4X-6)2 + (7X5)2 – (4x3)2 + (7X1)2 – (4 X 2)2 )1/2

= ( ( -56) – (-24)-2 +(35)2 – (12)2 + (7)2 - (8)2 )1/2 = (3136 – 576 + 1225 – 144+49-64)1/2 = (3626)1/2 || 7Y -4X|| Q.1

(iii)

= 60.21627687 Ans.

X = ( 4-8,1) & Y = ( 1,-12,-11)

(a) X +Y The sum of the vectors X & Y is computed component by component. X+Y = (X1+ Y

1,

X2 , --------- (Xn + Yn)2 )

We have, X = 4, X X2 – 8, X3 = 1, Y, = 1, Y2 =- 12,Y3 = - 11 We get,

9

X+Y = (4+1, - 8- 12 ,1-11) = (5,-20, -10) Ans. (b) X – Y The difference X – Y is formed by taking the difference in each coordinate: X-Y = (X1+ Y

1,

X2 , --------- (Xn + Yn)2 )

X - Y = (4 - 1, - 8 + 12 ,1+11) = (3,4,12) Ans. (C) 3X It c is a real number , we define scalar multiplication as follows:CX = (CX,CX2------- CXn) Putting the values we get, 3X = ( 3X4, 3X-8, 3X1) 3X = ( 12- 24, 3) Ans. (d) || X || The norm ( or length) of the vector X is defined by, || X || = (X12 + X12 + ------ Xn2 )1/2 Putting the values we get, || X || = ((4)2 + (-8)2 + ------ (1)2 )1/2 = (16+ 64 + 1)1/2 = (81)1/2 || X || = 9 Ans.

10

(e) 7Y – 4X If C & D are scalars then the weighted difference dY – cX becomes, dy- Cx = ( dy1 – CX1 dy2 - (x2, ---------- dyn – CXn ) Putting the values we get, 7Y – 4X = ( 7( 1) – 4(4), 7 (-12) -4 ( -8) , 7 ( -11) – 4 (1)) = (7-16 , - 84 + 32, - 77 – 4) = ( -9 , -52, - 81) Ans. (f) X. Y The dot product of two vectors, X and Y can be written as, X.Y = X1 + X1 + X2 + X2 + ------ Xn Yn Putting the values we get, X. Y = ((x1) + ( -8X -12) + ( 1X -11) ) = ( 4+ 96 – 11) X . Y = 89 Ans.

(g) || 7Y – 4X|| The distance between two points X to Y, ||Y – X || = ( ( Y1 + Y1 )2 + ( Y2 + X2 )2 + ------ ( Xn Yn )2 )1/2 ||7Y – 4 X|| = ( ( 7Y1 + 4X1 )2 + ( 7Y2 + 4X2 )2 )1/2 Putting the values we get, || 7Y -4 X || = (( 7 X 1 – 4 X 4)2 + ( 7x – 12 – 4 x -8) + ( 7X-11 -4 X1)2 )1/2 = ((7-16)2 + (-84 + 32)2 +(-77 – 4))1/2

11

= (( - 9 )2 + ( -52)2 + (-81)2 )1/2 = (9346)1/2 || 7Y -4 X || = 96.67471231 Ans. Q1.

(iv) X = ( 1,-2,4,2) & Y= ( 3-5,- 4,0) X1 = 1, X2 = -2, X3 = 4, X4 = -2, & Y1 = 3, Y2 = -5, Y3 = -4, Y4 = 0,

(a) X + Y The sum of the vectors X & Y is computed component by component, X + Y = (X1 + Y1, X2 + Y2 + ------- Xn + Yn ) Putting the values we get, X + Y = (1+3, - 2- 5, 4-4, 2+0) X + Y = (4,-7,0,2) Ans.

(b) X – Y The difference X – Y is formed by taking the difference in each coordinate: X - Y = (X1 - Y1, X2 - Y2 - ------- Xn - Yn ) Putting the values we get, X + Y = (1- 3, - 2 + 5, 4+4, 2-0) X + Y = (-2,3,8,2) Ans. (c) 3X If C is a real number we define the scalar multiplication as follows:

12

CX = ( CX1, CX2, -------------CXn) Putting the values we get 3X = ( 3 X 1 , 3X -2 , 3 X 4, 3 X 2) 3 X = ( 3, - 6, 12, 6 ) Ans. (d) || X || The norm ( or length) of the vector X is defined by, || X || = (( X1 2 + X2 2 + ----------- Xn 2 ))1/2 Putting the values we get, || X || = ( (1)2 + (-2)2 + (4)2 +(2)2 )1/2 = ( 1+ 4 + 16 + 4 )1/2 = (25)1/2 || X|| = 5 Ans. (e) 7Y – 4X If C & d are scalars then weighted difference dY – Cx becomes, dY –cX = ( dY1 – Cx1 dy2 – CX2 ------ dYn – Cxn ) Putting the values we get, 7Y – 4X = ( (7 X 3 ) – (4 X 1) , ( 7 X -5 ) – ( 4X – 2), 7Y – 4X– (4 X 4) + ( 7 X 0 ) – ( 4 X 2), = ( 21-4,-35+8,-28,-16, 0-8) 7Y – 4X = ( 17, - 27, - 44, - 8 ) Ans.

(f) X.Y The dot product of two vectors X & Y can be written as,

13

X. Y = X1 Y1 + X2 Y2 + ------- Xn Yn Putting the values We get, X . Y = (( 1x 3) + (-2 X – 5) + ( 4 X 4) + ( 2 x 10) ) X . Y = (3+10-16+0) X . Y = - 3 Ans.

(g) || 7Y – 4 X || The distance between two points X to Y, || Y – X || = (( Y1 - X1 )2 + ( Y2 - X2 )2 + ----- ( Yn - Xn )2 Let C = 4 & d = 7 If C & d are scalar then, || 7Y – 4 X || = ((7Y1 - 4X1 )2 + (7Y2 - 4X2 )2 +----- (7Y3 - 4X3 )2 Putting the values We get, ||7Y- 4X|| = ( 7X3- 4X1)2 + ( 7X-5 – 4X-2)2 + ( 7X – 4 – 4 X 4)1/2 = ((17)2 + (- 27) 2 + (- 44) 2 + (- 8) 2 )1/2 = (289 + 7729+1936+64)

1/2

= (3018)1/2 || 7y -4X|| = 54.93632678 Ans. Q.2

Using the law of cosines, it can be shown that the angle θ

between two vectors X and Y is given bythe relation.

14

Cos ( θ) =

X.Y, || X || || Y ||

Find the angle, in radians, between the following vectors: (a) X = (-6,3,2) and Y = ( 2,-2,1) X1 =-6, X2 =3, X3 =2, & Y1 = 2, Y2 = -2, Y3 = 1,

SOLUTION: We know that, X.Y = X1 Y1 + X2 Y2 + X3 Y3 ------------- (1) Putting the values in equation

(1)

We get, = (-6) (2) + (3) ( -2) + ( 2) (1) = - 12 – 6 + 2 X.Y

= - 16

Also, || X || = (X12 X22 + X12 )

1/2

------------ (2)

Putting the values in equation ------------------ (2) We get, = (( - 6)2 + (3)2 + (2)2 )1/2 = (36 + 9 + 4 )1/2 = (49)1/2 || X || = 7 Now,

15

|| Y || = (Y12 Y22 + Y12 )

1/2

------------ (3)

Putting the values in eq. ………… (3) We get, = (2)2 + (-2)2 + (1)2 )1/2 = (4+4 +1)1/2 = (9)1/2 || Y || = 3 Since, Cos θ =

X.Y, || X || || Y || ------------(4)

Putting the values in equation …………. (4) (4)

=>

Cos θ =

− 16 7 x3

− 16 21

θ = Cos-1 ( -0.76190) θ = 2.437045 radians Ans. Q.2 (B) X = (4-8,1) and Y = ( 3,4,12) X1 = 4, X2 = -8, X3 = 1, & Y1 = 3, Y2 = 4, Y3 = 12,

SOLUTION We know that X.Y = X1 , Y1 + X2 , Y2 + X3 , Y3 ------------ (A) Putting the values in equation …………… (A) WE get,

16

= (( 4 X3) (-8) (4) + (1) (12)) = 12- 32 + 12 X. Y =-8 Also , || X || = ( X1 2 + X2 2 + X3 2 )1/2 ------------ (B) Putting the values in equation………………. (B) We get, B => = (42 + ( -8)2 + (1)2 )1/2 = (16+64+1)1/2 = (81)1/2 || X || = 9 Now, || Y || = ( Y1 2 + Y2 2 + Y3 2 )1/3 ------------ (C) Putting the values in equation…………. (C) (C) =>

= (32 + 42 + 122 )1/2

= (9+16+144)1/2 = (169)1/2 || Y || = 13 since Cos θ =

X.Y || X || || Y || ------------(D)

Putting the values in equation (D)

17

We get,

- 8, Cos θ = 9 x 13 ------------(4) - 8, Cos θ = 117 ------------(4) Cos θ = -0.06837 θ = Cos-1 (-0.06837) θ = 1.639225 radians Ans. Q3.

Two vectors X and Y are said to be orthogonal (perpendicular) if the angle between them is



12.

(a)prove that X and Y are both orthogonal if and only if X.Y Proof:Assume that : X , Y ≠ 0 X.Y = 0 if and only if Cos θ =0 If and only if θ = (2n + 1)

∧ 2

If and only if X and y are or trogon Proved Use Part (a) to determine it the following vectors are orthogonal.

(b) X = (-6,4,2) and Y = (6,5,8) X1 =- 6, X2 = 4, X3 =- 2, & Y1 = 6, Y2 = 5, Y3 = 8,

SOLUTION :

18

WE KNOW THAT X.Y = X1 Y1 + X2 Y2 + X3 Y3 Putting the values we get, X.Y = ( -6) (6) + (4) (5) + (2) (8) = - 36+20+16 = - 36+36 X.Y = 0 Hence it is proved that given vectors are orthogonal Q.3 (c) X = (-4,8,3) and Y = (2,5,16) X1 =- 4, X2 = 8, X3 =- 3, & Y1 = 2, Y2 = 5, Y3 = 16,

SOLUTION:We know that X.Y = X1 Y1 + X2 Y2 + X3 Y3 Putting the values we get, X.Y = ( -4) (2) + (8) (5) + (3) (16) = - 8 + 40 + 48 = 90 ( ≠ 0 ) Hence the given vectors are not orthogonal.

Q3.

(d) X = (-5,7,2) and Y = ( 4,1,6)

SOLUTION: We know that

19

X.Y = X1 Y1 + X2 Y2 + X3 Y3 Putting the values we get, X.Y = ( -5) (4) + (7) (1 + (2 (6) = - 20+7+12 X.Y = -1 (≠ 0 ) Hence the given vectors are not orthogonal because X.Y ≠ 0.

Q4.

Find (a) A + B, (b) A-B and (c) 3A-2B for the matrices

A=

−1 9 4 2 −3 −6 0 5 7

,B=

2 −4 9 3 −5 7 8 1 −6

SOLUTION: (a) A + B

A+B=

−1 9 4 2 −3 −6 0 5 7

A+B=

4+2 −1− 4 9 + 9 2+3 −3+3 −6+ 7 0+8 5 +1 7−6

A+B=

− 5 18 6 5 0 1 8 6 1

2 −4 9 3 −5 7 8 1 −6

,+

Ans.

(b) A – B 20

A+B=

−1 9 4 2 −3 −6 0 5 7

A+B=

4−2 −1+ 4 9 − 9 2−3 −3−3 −6−7 0 −8 5 −1 7+6

A+B=

−3 0 2 − 1 2 − 13 − 8 4 13

,-

2 −4 9 3 −5 7 8 1 −6

Ans.

(c) 3A – 2B

3A

=

− 3 27 12 6 − 9 − 18 0 15 21

2B =

4 − 8 18 6 − 10 14 16 2 − 12

3B =

− 3 27 12 6 − 9 − 18 0 15 − 21

3B =

− 3 + 8 27 − 18 12 − 4 6 − 6 − 9 + 10 − 18 − 14 0 − 16 15 − 2 12 + 12

-

14 − 8 18 6 − 10 14 16 2 − 12

21

3A – 2B

Q.5

=

5 9 8 0 1 − 32 − 16 13 133

The Transpose of an MXN matrix A, denoted A" , is the N x matrix obtained from A by converting the rows of A to columns of A' that is , if A = [ bij]NXM , then the elements satisfy the relation. bji = aij for 1 ≤ ι ≤ M,1 ≤ j ≤ N Find the transpose of the following matrices.

(a)

− 2 5 12 1 4 −1 7 0 6 11 − 3 8

SOLUTION: Let the given matrix is A then, Transpose of a matrix

Or A1 =

Q.5

(b)

− 2 1 7 11 5 4 0 −3 12 − 1 6 8

Ans.

4 9 2 3 5 7 8 1 6

SOLUTION :

22

Let the given matrix is A then, Transpose of A

Or

Q.6

4 3 8 9 5 1 2 7 6

A1 =

Ans.

The square matrix A of dimension NX N is said to be symmetric if A= A´ (see Exercise 5 for the definition of A´) Determine whether the following square matrices are symmetric.

Or

1 −7 4 −7 2 0 4 0 3

A´ =

Ans.

SOLUTION

1 −7 4 −7 2 0 4 0 3

Let A =

A´ =

1 −7 4 −7 2 0 4 0 3

According to given condition, (A= A´) the given matrix is symmetric.

(b)

4 −7 1 0 2 −7 3 0 4

23

SOLUTION:

Let A =

A´ =

4 −7 1 0 2 −7 3 0 4

4 0 3 −7 2 0 1 −7 4

A ≠ A´ Hence it is not symmetric Q.6

(C) A = [ a ι j ]NXN where  ji aιj =   j − ji + i

j = i  j ≠ i

aij=aji According to given condition, the given matrix is symmetric. Q.6

(d) A = [ a i j ]NXM, where

Cos( ji) aιj =  i − ij − j

i= i≠

j  j

Solution: Cos( ji) aιj =  i − ij − j

i= i≠

j  j

aij=aij According to given condition the given matrix is symmetric.

24

Properties of Vectors And Matrices

25

Q1.

Find AB & BA

−3 2 1 4

A=

5 0 2 −6

B=

SOLUTION

−3 2 1 4

AB =

− 15 + 4 0 − 12 5+8 0−6

=

Ans.

−3 2 1 4

5 0 2 −6

BA =

− 15 10 Ans. − 12 − 20

= Q2

5 0 2 −6

Find AB & BA SOLUTION

1 −2 3 2 0 5

B

3 0 −1 5 3 −2

3 + 2 + 9 − 10 − 6 = 6 + 15 − 10

14 − 16 21 − 10

A=

AB =

3 −6

BA =

−1+ 1

2 − 3 + 25

−1 − 6

3 −6

39 −1

=

9

2

Ans. 9 22

Ans.

−1 − 6 −1

26

Q3 A =

3 1 0 4

1 2 −2 −6

B =

(a) Find (AB) C

&

c=

2 −5 3 4

A (BC)

(b) Find A (B+C) & AB + AC (c) Find (A+B) C & AC + BC (d) Find (AB) ´ and B´ A´ Required matrices for the above

1 0 − 8 24

A=

B+C =

(a)

3 −3 1 −2

(AB) C =

=

=

BC =

A+ B =

1 0 − 8 − 24

8 3 − 22 − 14

AC =

9 − 11 12 16

4 3 −2 −2

2 −5 3 4

1(2) + (0)( 4) 1(−5) + 0(4) − 8(2) + (−24)3 − 8(−5) + (−24)4

2 −5 − 88 − 56

SOLUTION A (BC)

27

8 −3 − 22 − 14

3 1 0 4

3(8) + (1)(−22) 3(3) + 1(−14) 0(8) + 4(−22) 0(3) + 4(−4)

= (b)

=

2 −5 − 88 − 56

A (B + C) and AB + AC SOLUTION A (B + C)

3(3) + 1(1) 3(−3) + (1)(−2) 0(3) + 4(1) 0(−3) + (4)(−2)

=

=

10 − 11 4 −8

* AB + AC =

=

3 −3 1 −2

3 1 0 4

=

1 0 − 8 24

+

9 − 11 12 16

10 − 11 4 −8

(c) Find (A+B) C and AC + BC SOLUTION (A + B) C =

4 3 −2 −2

2 −5 3 4

28

(d)

=

4(2) + 3(3) 4(−5) + 3(4) − 2(2) − 2(3) − 2(−5) − 2(4)

=

15 − 8 − 10 2

(AB)´ & B´ A´

(AB) =

1 0 − 8 − 24

(AB)´ =

1 −8 0 − 24

and B´ A´ =

= Q4.

Ans.

3 0 1 −2 1 4 2 −6

3+0 −6+ 0 1 + 8 − 2 − 24

=

3 −6 9 − 26

Find A2 and B2

A=

−1 − 7 5 −2

2 0 6 5 −4 B = −1 3 −5 2

29

* A2 = AA =

−1 − 7 5 −2

=

− 1(−1) + (−7)5 − 1(−7) + (−7)( 2) 5(−1) + 2(5) 5(−7) + (2)( 2)

=

− 1 − 35 7 − 14 − 5 + 10 − 35 + 4

=

− 36 − 7 5 31

2 0 6 −1 5 −4 3 −5 2

2

* B = BB =

Q.5

−1 − 7 5 −2

2 0 6 −1 5 −4 3 −5 2

=

4 + 0 + 18 0 + 0 − 30 12 + 0 + 12 − 2 − 5 − 12 0 + 25 + 20 − 6 − 20 − 8 6 + 5 + 6 0 + 10 − 10 18 + 20 + 2

=

22 − 30 24 − 19 45 34 17 − 20 40

Find the determinant of following matrices of exist. (a) A =

det A =

−1 − 7 5 2 −1 − 7 5 2

= - 2 + 30 = 28

=

2 0 6 −1 5 −4 3 −5 2

det A =

2 0 6 −1 5 −4 3 −5 2

(b) A

= 2 (10 – 20 ) - 0 + 6 (5 – 15)

30

= 2 (-10) + 6 (-10) = - 20 – 60 = - 80

1 2 3 4 0 6

(c)

it is not square matrix , 50 det. Does not exist.

(d)

A=

1 0 0 0

2 2 0 0

Det A = 1

3 4 5 0

4 6 4 7

2 4 6 0 5 4 0 0 7

-2

0 4 6 0 5 4 0 0 7

= 1 (2 (35) -4(0) + 6(0) - 2 (0-4 (0) +6 (0) + 3 (0 – 0 + 0) - 4 (0) = (( 70 ) -4 (0) -2 (0) – 4 (0) = 70 Ans. Q6

Show that Rx (∝) Rx (- ∝ = I) We know that

31

1 0 0 0 Cos (∝) − Sin(∝) 0 Sin(∝) Cos(∝)

Rx (∝) Rx (- ∝ = i)

1 0 0 0 Cos (∝) − Sin(∝) 0 Sin(∝) Cos(∝)

1+ 0 + 0 0+0+0 0+0+0 2 2 0 + Cos Sin ∝ 0 + Sin ∝ Cos ∝ − Sin ∝ Cos ∝ = 0+0+0 0 + 0 + 0 0 + Sin ∝ Cos ∝ −Sin ∝ Cos ∝ 0 + Cos 2 Sin 2 ∝ Q7 (a)

Show that

Ry (B) Rx (∝)

Q7 (a)

0 Cos( β ) Sin(β ) sin( B) Sin(∝) Cos(∝) − CosBSin ∝ − Cos(d )Sin( β ) Sin(∝) Cosβ Cos (∝)

Rx (∝) Ry (β)

Cos (β ) 0 Sin( β ) 0 1 0 − Sin(β ) 0 Cos ( β )

=

1 0 0 0 Cos (∝) − Sin(∝) 0 Sin(∝) Cos(∝)

=

0 Cosβ Sinβ Sinβ Sin ∝ Cos ∝ − Cosβ Sin ∝ Cos ∝ Sinβ Sin ∝ Cosβ Cos ∝

7(b) Ry (β) Rx (∝)

=

Cosβ 0 Sinβ 0 1 0 − Sinβ 0 Cosβ

1 0 0 0 Cos ∝ − Sin ∝ 0 Sin ∝ Cos ∝

32

=

Cosβ + 0 + 0 0 + 0 + Sin ∝ Sinβ 0 + 0 + Cos ∝ Sinβ 0+0+0 0 + Cos ∝ +0 0 − Sin ∝ +0 − Sinβ + 0 + 0 0 + 0 + Cosβ Sin ∝ 0 + 0 + Cos ∝ Cosβ

=

Cosβ Sinβ Sin ∝ Cos ∝ Sinβ 0 − Sin ∝ Cos ∝ − Sinβ Cosβ Sin ∝ Cos ∝ Cosβ

33

EXERCISES FOR UPPER – TRIANGULAR LINEAR SYSTEMS. Solve upper triangular & find value of determinant of coefficient matrices

Q1.

3X1 - 2X2 + X3 - X4 ---------- (1) 4X2 – X3 + 2X4= - 3 ----------- (2) 2X3 + 3X4 = 11

--------------- (3)

5X9 = 15 ------------------- (4)

SOLUTION From Equation (1) 3X4 = 15 X4 =

15 5

3

Substituting value of 3X1 = 3 is equation ………………. (3) Equation ………….. (3) 2X3 + 3X4 = 11 2X2 + 2(3) =11 2X3 + 9 = 11 2X3 = 11-9 2X3 = 2 2X3 =

2 1 2

X3 = 1 Ans.

34

Substituting value of X3 = 1 , X4 = 3 is equation ………………. (2) Equation …………. (2) 4X2 - X3 + 2X4 = -3 4X2 – 1+2(3) =-3 4X2 – 1+6 = -3 4X2 = -3-6+1 4X2 = -8 4X2 =

8 2 4

X2 = 2 Ans. Substituting value of X2 = -2, X3 = 1, X4 = 3, is equation ……. (1) Equation …………. (1) 3X1 – 2X2 + X3 – X4

=

8

3X1 – 2(-2) +1-3 =8 3X1 + 4+1-3 = 8 3X1 = 8+3-1-4 3X1 = 8+3-1-4 3X1 = 6 X1 =

6 3

2

X1 = 2 Ans For efficient fo determinant matrix . DET = 3 X 4 X 2 X 5

35

= 12 X 10 DET = 120 X= 2, X2 =-2, X3 =1, X4 = 3 det = 120

Q2.

Ans.

5X1 -3X2 - 7X3 + X4 = -14

……………………. (1)

11X2 + 9X3 + 5X4 =22

……………………. (2)

3X3 - 13X4 = - 11

…………………….(3)

7X4 = 14

………………….. (4)

SOLUTION From equation ………….. (4) 7X4 = 14 X4 =

14 7

X4 = 2

2 Ans.

Substituting value of X4 = 2 in equation ………… (3) Equation …………………. (3) 3X3 - 13X4 = -11 3X3 – 13(2) =- 11 3X3 – 26 =- 11 3X3 = -11+26 3X3 = 15 X3 =

5 3 3

36

X3 = 5 Ans.

Substituting value of X3 = 5, X4 = 2 in equation ………… (2) Equation …………………. (2) 11X2 +9X3 + 5X4 = 22 11X2 + 9(5) + 5(2) = 22 11X2 + 45+10 = 22 11X2 = 22-10-45 11X2 = - 33 X2 =

3 3 11

X2 =-3

Substituting value of X2 = 3, X3 = 5, X4 = 2, in equation ………… (1) Equation …………………. (1) 5X1 - 3X2 - 7X3 + X4 = -14 5X1 -3 (-3) -7 (5) + 2 =- 14 5X1 + 9+35+2=-14 5X1 = - 14 -2 – 35 –9 5X1 = -60 X1 =

6 5

-12

X1 = -12 Ans.

37

For determinant of efficient matrix det = 5 x 11 x 3 x 7 = 55 x 21 det =1155 X1 = -12 , X2 = -3, X3 = 5, X4 = 2 Det = 115

4X1 – X2 + 2X3 + 4X4 – X5 = 4 …..…..….. (1)

Q3.

X2 + 6X3 + 2X4 + 7X5 = 0 …..…..….. (2)

−2X 4 − −2X 5 = 10..........(4) 3X 5 = 6.........................(5) SOLUTION 3X 5 = 6 6 2 3 X5 =2 X5 =

Substituting value of X 5 = 2 is equation ………………… (4) Equation…………. => 2X 4 − X 5 = 10 2X 4 − 2 = 10 2X 4 = 10 + 2 2X 4 = 12 −12 6 6 X 4 = −6 X4=

Substituting value of X 4 = −6, X 5 = X 5 = 2 is equation ……………(3)

38

Equation ……………… (3)

X 3 − X 4 − 2X 5 = 3 X 3 − (−6) − 2(2) = 3 X 3 +6−4 = 3 X 3 = 3+4−6 X 3 =1

Substituting value of X 3 = 1, X 4 = −6, X 5 = 0 is equation ……………(2) Equation ……………….. (2)

−2X 2 + 6X 3 + 2X 4 + 7X 5 = 0 −2X 2 + 6(1) + 2(−6) + 7(2) = 0 −2X 2 + 6 − 12 + 14 = 0 −2X 2 = −14 + 12 − 6 2X 2 = −8 2X 2 =

8 4 2

X2 =4 Substituting value of X 2 = 4, X 3 = 1, X 4 = −, X 5 = 2 is equation ……………(1) Equation ……………….. (1)

4X 1 − X 2 + 2X 3 + 2X 4 − X 5 = 4 4X 1 − 4 + 2(1) + 2(−6) − 2 = 4 4X 1 − 4 + 2 − 12 − 2 = 4 4X 1 = 4 + 4π m 2 + 2 + 12 4X 1 = 20 20 5 4 X1 =5 X1 =

for coefficient of Determinant matrix det=

39

4X (−2)X 1X (−2)X 3 = −8X (−2)x 3 = 16X 3 det = 48 X 1 = 52 = 4, X 3 = 1, X 4 = −6, X 5 = 2 det = 48

Q4.

Given

A

a1 a12 0 a 12   0 0

a13  a23  a33 

b1 b12 b13  and B =  0 b12 b23   0 0 b33 

Show that their product C AB is also upper triangular.  a11 (b11 ) + a12 (0) + a13 (0) a11 (b12 ) + a12 (b 22 ) + a13 (0) a11 (b13 ) + a12 (b 23 ) + a13 (b33 )  a (b ) + a (0) + a (0) a (b ) + a (b ) + a (0) 0(b ) + a (b ) + a (b )  22 23 11 12 22 22 23 13 23 23 23 33   11 22  0(b11 ) + 0(0) + a33 (0) 0(b12 ) + 0(b 22 ) + a33 (0) 0(b13 ) + 0(b 23 ) + a33 (b33 ) 

a11b11 a12b12 + a12b 22 a11b13 + a12b 23 + a13b 23   0  a22b 22 a23b 23 + a23b33    0  a33b33 0

Q5.

Solve the lower triangular system AX= B and find det (A).

2X 1 = 6.............................(1) −X 1 + 4X 2 = 5.....................(2) 3X 1 − 2X 2 − X 3 = 4.............(3) X 1 − 2X 2 + 6X 3 + 3X 41 = 2............(4)

40

Solution From equation …………….. (1) 2X 1 = 6.............................(1) 6 2X 1 3 2 X1=3

Substituting value of X 1 = 3 is equation ……………….(2) Equation = > X 1 + 4X 2 = 5 −3 + 4X 2 = 5 4X 2 = 5 + 3 X 2 =8 8 2 4 X2 =2 X2

Substituting value of X 1 = 3, X 2 = 2 is equation ………… (3) 3X 1 − 2X 2 − X 4 = 4 3(3) − 2(2) − X 3 = 4 9−4−X 3 = 4 −X 3 = 4 + 4 − 9 + X 3 = +1 X 3 =1

substituting value of X 1 = 3, X 2 = 2, X 3 = 1 is equation ………….. (4) Equation ………… (4) = >

41

X 1 − 2 X 2 + 6 X 3 + 3X 4 = 2 3 − 2(2) + 6(1) + 3X 4 = 2 3− 4 + 6 + 4−3 3X 4 = −3 −3 1 3 X 4 =1 X4=

for coefficient of determination matrix dt = 2 X 4X (-1) X 3 =-8X3 det = - 24

X 1 = −1, X 2 = 2, X 3 = 1, X 4 = 1 det =- 24 Ans.

Q6.

5X 1 = −10...............(1) X 1 = +3X 2 = ............(2) 3X 1 + 4X 2 + 2X 3 = 2.............(3) −X 1 + 3X 2 − 6X 3 − X 4 = 5............(4) Solution From equation ……………(1) 5X 1 = −10 −10 2 5 X 1 = −2 X1=

Substituting value of X 1 = −2 is equation………………. (2) Equation ………………..(2)

42

X 1 + 3X 2 = 4 −2 + 3X 2 = 4 +2 + 4 = 3X 2 3X 2 = 6 6 2 3 X2 =2 X2=

Substituting value of X 1 = 2, X 2 = 2 is equation………..…(3) Equation ………………..(3)

3X 1 + 4X 2 + 2X 3 = 2 3(−2) + 4(2) + 2X 3 = 2 −6 + 8 + 2X 3 = 2 2X 3 = 2 + 6 − 8 2X 3 = 0 0 2 X3 =0 X3=

Substituting Value of X 1 = 2, X 2 = 2, X 1 = X 3 = 0 is equation…… (4) Equation.. =>

− X 1 + 3X 2 − 6X 3 − X 4 = 5 −(−2) + 3(2) − 6(0) − X 4 = 5 2 + 6 − 0X 4 − 5 +X 4 = 5 − 2 − 6 + X 4 = −3 X 4 =3

for coefficient of determinant matrix dt = 5X3X2X (-1) det = -30

43

X 1 + X 2 + 6X 3 = 7 X 1 = −2, X 2 = 2, X 3 = 0, X 4 = 3 3X 2 + 15X 3 = 9 12X 3 = 12 det =- 30. Ans.

44

Gaussian Elimination and Pivoting Show that A X = B is equivalent to the upper – triangular system U x = y find solution.

1

2X 1 + 4X 2 − 6X 3 = −4

2X 1 + 4X 2 − 6X 3 = −4

X 1 + 5X 2 3X 3 = 10

3X 2 + 6X 3 = 12

X 1 + 3X 2 2X 3 = 5

3X 3 = 3

SOLUTION First we find A x = B is equivalent to 4x= Y UXY  2 4 −6  0 3 6     0 0 3 

X 1   −4   X  = 12   1    X 3   3 

2X 1 + 4X 2 − 6X 3 = −4 3X 2 + 6X 3 = 12 3X 3 = 3

Y=

X 1   −3 X  =  2   1    X 3   1 

AX=B  2 4 −6  1 5 3     1 3 2 

 −3  −4   2  = 10       1   15 

 −6 + 8 − 6   −4   −3 + 10 + 3 = 10       −3 + 6 + 2   15 

45

 −4   −4  10  = 10       15   15 

Ax = B is equitant to u x = Y  1  2 4 −6   1 5 3  =  1   2  1 3 2  1  2

 0 0  1 0   1 1 3 

0  2 4 −6   1 1 5 3  =  m 1    21  1 3 2   m 31 m 32  U11 m U  12 11  m 31 U11

 2 4 −6  0 3 6     0 0 3 

0 0  1 

 U11 U12  0 U 22   0 0

U12

m12 U11 + U 22

m 31 U12 + m 32 U 22

U13  U 23   U 33 

 m 21 U13 + U 23   m 31 U13 + m 32 U 33  U13

U11 = 2, U12 = 4, U13 = −6

m 21 U11 = 1 m 21 (2) = 1 m 21 =

1 2

m 31 U11 = 1 m 31 (2) = 1 m 31 =

1 2

m 21 U11 + U 22 = 5

m 21 U13 + U 23 = 3

1 (4) + U 22 = 5 2 U 22 = 5 − 2

1 ( )(−6) + U 23 = 5 2 U 23 = 3 + 3

U 22 = 3

U 23 = 6

m 31 U 13 + m 23 U 23 + U 33 = 2

m 31 U 13 + m 23 U 23 + U 33 = 2

1 1 ( )(−6) + (1 / 3)(6) + U 33 = 2 ( )(−6) + (1 / 3)(6) + U 33 = 2 2 2 −3 + 2 + U 33 = 2 −3 + 2 + U 33 = 2 U 33 = 3

U 33 = 3

46

 2 4 −6  1 5 3     1 3 2 

 1  1 =  2 1  2

 0 0  2 4 −6   1 0  x  0 3 6    0 0 3   1 0 3 

 2 4 −6   2 4 −6  1 5 3  = 1 5 3       1 3 2   1 3 2 

2

X 1 + X 2 + 6X 3 = 7

X 1 + X 2 + 6X 3 = 7

3X 2 + 15X 3 = 9

3X 2 + 15X 3 = 9

12X 3 = 12

12X 3 = 12

SOLUTION First we find A x= B is equivalent to u X = Y

UX =Y  2 4 −6   X 1   −4   0 3 6   X  = 12     2    0 0 3   X 3   3 

2X 1 4X 2 − 6X 3 = −7 3X 2 + 15X 3 = 9 12X 3 = 12

Y=

X 1   −3 X  =  2   2    X 3   1 

Ax =B  1 1 6  3  7  −1 2 9   −2  =  2         1 −2 3  1  10 

47

 1 1 6 X 1  7 7  −1 2 9  =  X  =>  2  =  2   2        X 3   1 −2 3 10  10   1 1 6  1 1 6  −1 2 9  =  −1 2 9       1 −2 3  1 −2 3

3)

2X 1 − 2X 2 + 5X 3 = 6

2X 1 − 2X 2 + 5X 3 = 6

2X 1 + 3X 2 + X 3 = 13

5X 2 + 4X 3 = 7

X 1 + 4X 2 − 4X 3 = 3

0.9X 3 = 1.8

SOLUTION Ux=Y  2 −2 5   0 5 −4     0 0 0.9 

X 1  6 X  =  7   2    X 3  1.8

2X 1 − 2X 2 + 5X 3 = 6 5X 2 + 4X 3 = 7 0.9X 3 = 1.8 X3

1.8 = 2,5X 2 − 4(2) = 7 0.9 5X 2 - 8= 7 X2 =3

2X 1 , 2(3) + 5(2) = 6 2X 1 − 6 + 10= 6 X1 =2 X1 =1

X 1  1    Y =  X 2  =  3   X 3   2 

A X= B

48

 2 −2 5   1  6  2 3 1   3  = 13        −1 4 4   2   3 

 2-6+10  6  2+ 9+ 2  = 13     -1+12-8  3  6 6 13 = 13      3   3   2 −2 5  2 3 1 =    −1 4 −4 

 1   1   −1 2

 2 −2 5  2 3 1 =    −1 4 −4 

0  1 m 1  21  m 31 m 32

0 0  1 

 U11 m U  21 11  m 31 U11

U12

  m 21 U13 + U 23  m 21 U13 + m13 U 25 + U 33 

m 21 U12 + U 22

0  2 −2 5   1 0  =  0 5 −4       3 0 0 9 1  5  0

m 31 U 12 +, m 32 U 22

 U11 U12  0 U 22   0 0

m11 U12 + U 22 = 0 m11 U11 = 1 m 21 (−5) = 1 m 21 =

−1 5

−1 )(2) + U 22 = 0 5 −2 + U 22 = 0 5 U 22 = 0.4

(

U13  U 23   U 33 

U13

m 21 U13 + U 23 = 3 −1 )(−1) + U 23 = 3 5 1 + U 23 = 3 5 1 U 22 = 3 − 5 U 23 = 2.8

(

49

m 31 U12 + m 32 U 22 = 1

m 31 U11 = 3

−3 (2) + m 32 (0.4) = 1 5 −6 + m 32 (0.4) = 1 5 11 m 32 = 2

m 23 (−5) = 3 −3 5 U 23 = 2.8 m 31 =

    1 0 0  −5 2 −1    1 0 3  =  −1 1 0     5   3 1 6   −3 11   5 2 1 

m 31 U11 = 3 m 23 (−5) = 3 −3 5 U 23 = 2.8 m 31 =

−1   −5 2  0 0.4 2.8    0 −10   0

 −5 2 −1  −5 2 −1 1 0 3 = 1 0 3      3 1 6   3 1 6 

5

Find the parabola Y = A+B+ (X2 that passes through (1,4),(2,7),(3,14) SOLUTION For each point me obtain equation electing x and Y. A+B+C = 4

(1,4) ………………… (i)

A+2B+4C = 7

(2,7)…………………..(ii)

A+3B+9C = 14

(3,14)…………………(iii)

A=B=C = 4 Subtracted equation (ii) from equation …………..(i) B+3C = 3 ………………… (ii) Subtracted equation (iii) from equation …………..(i) 2B +8C = 10……………..(v)

50

A+B+C =4 B+3C = 3 Subtracted equation (iii) from equation …………..(ii) two times 2C = 4 using back substitution. C =2 B= -3 A=5 The equation of parable is y= 2X2 – 3X+5. 6) Find parabola y = A+Bx + CX2 that passes through (1,6), (2,5), (3,2) Solution: A+B+C = 6

(1,6) ………………… (i)

A+2B+4C = 5

(2,5)…………………..(ii)

A+3B+9C = 2

(3,2)…………………(iii)

Subtracted equation (ii) and equation (iii) from equation (i) to climate A A+B+C = 6………………(i) B+3C = -1 ………………… (ii) 2B+8C =- 4…………. (5) Subtracted equation (5) from equation (4) two times A+B+C = 6………………(i) B+3C = -1 ………………… (ii) 2C =- 2…………. (5)

51



C = -1 B=2 A=5

The equation of parabola is Y = X2 +2X + 5

Q9.

2X 1 + 4X 2 − 4X 3 + 0X 4 = 12 X 1 + 5X 2 − 5X 3 − 3X 4 = 18 2X 1 + 3X 2 + X 3 + 3X 4 = 8 X 1 + 4X 2 − 2X 3 − 2X 4 = 18

SOLUTION 2 1  2  1

4 −4 0  12  5 −5 −3 18 3 1 3 8    4 −2 2   8 

R1 /2

1 1  2  1

2 −2 0   6  5 −5 −3 18 3 1 3 8    4 −2 2   8 

R 2 – R1

1 1  2  1

2 −2 0   6  3 −3 −3 12  3 1 3`   8     4 −2 2   8 

52

2 −2 0   6  3 −3 −3 12  3 1 3 8    4 0 2 2

R 4 – R1

1 1  2  1

R 4 – R1

 1 2 −2 0   6   0 3 −3 −3 12       0 −1 5 3   −4      0 2 0 2   2 

R4 + 2R3

 1 2 −2 0   6   0 3 −3 −3 12       0 −1 5 3   −4       0 0 10 8   −6 

1 0  0  0

2 −2 0   6  3 −3 −3 12  0 4 2 0    0 10 8   −6 

R 4 - 2 R3

1 0  0  0

2 −2 0   6  3 −3 −3 12  0 4 2 0    0 2 4   −6 

R4 – R5 /2

1 0  0  0

2 −2 0   6  3 −3 −3 12  0 4 2 0    0 0 3   −6 

R1 x 2

2 0  0  0

4 −4 0  12  3 −3 −3 12  0 4 2 0    0 0 3   −6 

R4 +

R2 3

53

2X 1 + 4X 3 − 4X 3 + 0X 4 = 12 3X 2 − 3X 3 − 3X 4 = 12 4X 3 + 2X 4 = 0 3X 4 = −6 X 4 = −2 3X 2 − 3(1) − 3(−2) = 12 X 2 =3 2X 1 + 4X 2 − 4X 3 = 12 X1 =2 4X 3 + 2(−2) = 0 4X 3 = 4 X 3 =1

Q.10

X 1 + 2X 2 + 0X 3 − X 4 = 9 2X 1 + 3X 2 − X 3 + 0X 4 = 9 0X 1 + 4X 2 − 2X 3 + 5X 4 = 26 5X 1 + 5X 2 + 2X 3 − 4X 4 = 32 SOLUTION 1 2  0  5

R2 - 2R1

2 0 −1  9  3 −1 0   9  4 2 −5  26     5 2 −4   32   1 2 0 −1  9   2 −1 −1 2   −9       0 4 2 −5  26       5 5 2 −4  32 

54

R4 - 5R1

9  1 2 0 −1  0 −1 −1 2 −9     0 4 2 −5 26    1 −13  0 −5 2

R3 + 4R2

 1 2 0 −1  9   0 −1 −1 2   −9       0 0 −2 3  −10       0 −5 2 1  −13

R4 + 5R2

 1 2 0 −1  9   0 −1 −1 2  −9       0 0 −2 3  −10       0 0 7 −9  −13

R4 + 3R3

 1 2 0 −1  9   0 −1 −1 2   −9       0 0 −2 3  −10      1 0   −13 0 0

R4 +1/2 R3

 1 2 0 −1  0 −1 −1 2     0 0 −2 3    0 0 0 1.5

 9  −9     −10     −3

Hence equation becomes

X 1 + 2X 2 + 0X 3 − 1X 4 = 9............(i ) −X 2 − X 3 + 2X 4 = −9............(ii ) −2X 3 + 3X 4 = −10............(iii ) 1.5X 4 = −3............(iv ) By Equation (iv) X4 = 3/1.5 X4 = -2

55

By equation (iii)

−2X 3 = −10 − 3(−2) −2X 3 = −4 X3 =2 By Equation (ii)

− X 2 = −9 + (2) − 2(−2)

X 2 =3

By equation (i)

X 1 = 9 − 2(3) − 2 X 1 =1 Q8.

4X 1 + 8X 2 + 4X 3 + 0X 4 = 8

X 1 + 5X 2 + 4X 3 + 0X 4 = −4 4X 1 + 4X 2 + 7X 3 + 2X 4 = 10

X 1 + 3X 2 + 0X 3 − 2X 4 = −4

SOLUTION

R1/4

4 1  1  1

8 5 4 3

4 0 8 4 −3 −4  7 2 10   0 −2 −4 

1 1  1  1

2 5 4 3

1 0 2 4 −3 −4  7 2 10   0 −2 −4 

56

R 2 – R1

1 0  1  1

2 3 4 3

1 0 2 3 −3 −6  7 2 8  0 −2 −4 

R 4 – R1

1 0  1  1

2 1 0 2 3 3 −3 −6 4 6 2 8  1 −1 −2 −6

R3 – 2R1

1 0  0  0

2 1 0 2 3 3 −3 −6 0 8 6 20  1 −1 −2 −6

R3 – 2R1

1 0  0  0

2 1 0 2 3 3 −3 −6  0 8 6 20   0 −6 −3 −12 

R4 – 2R2

1 0  0  0

2 1 0 2 3 3 −3 −6  0 8 6 20   0 −6 −3 −12  2

1/2R2 +1/4R3

1 0  0   0

1

3 3 0 8 0 0

2 −3 −6   6 20   1 1 2  0

by equation(iv) ∴ 1 X 4 =1 2

X4 =2

57

by equation (iii)

8X 3 + 6(2) = 20 8X 3 = 20 − 12 8X 3 = 8

X 3 =1 by equation (ii)

3X 2 + 3(1) − 3(2) = −6

X 2 = −1 by equation (i)

X 1 + 2(−1) + 1 = 2 X1 =3 Q11

X 1 + 2X 2 = 7 2X 1 + 3X 2 − X 3 = 9 4X 2 + 2X 3 + 3X 4 = 10 2X 3 − 4X 4 = 12

2R1 – R2

1 2  0 −1  0 4  0 0

0 0 7 1 0 −5 2 3 10   2 −4 12 

4R2 – R3

1 0  0  0

2 1 0 0

0 0 7 1 0 5 2 −3 10   2 −4 12 

4R4 – R3

1 0  0  0

2 1 0 0

0 0 7 1 0 5 2 −3 10   0 −1 2  58

−X 4 = 2

X 4 = −2

Ans.

2X 3 − 3(−2) = 10 2X 3 + 6 = 10

X3 =2 X 2 +2=5 X 2 =3 X 1 + 2(3) + 2 = 5 X 1 = −3 Q12

X1+X 2 =5 2X 1 − X 2 + 5X 3 = −9 3X 2 − 4X 3 + 2X 4 = 19 2X 3 + 6X 4 = 2 SOLUTION

R 2 – R1

1 1 0  2 −1 5   0 3 −4  0 0 2

0 5 0 −9  2 19   6 2

1 1 0  0 −3 5   0 3 −4  0 0 2

0 5 0 −9  2 19   6 2

59

R3 + R2

1 1 0  0 −3 5   0 3 −4  0 0 2

R4 - 2R3

1 1  0 −3  0 0  0 0

0 5 1 0

0 5 0 19  2 19   6 2 0 5 0 19  2 0  2 −34 

2X 4 = −34

X 4 = −17 X 3 + 2(−17) = 0 X 3 = 34 −3X 2 + 5(34) + 0(17) = 19 −3X 2 = 19 − 169 −150 −3 X 2 = 50

X2−

X 1 + 50 = 5 X 1 = −45

60

ITERATIVE METHODS FOR LINEAR SYSTEMS

61

JACOBI Q1,

(a)

4X − y = 15

 X 0 0 initial given Po = O  =   Y 0   0 

X + 5y = 9

After rearing: Same equation order will come: 4X − y = 15 X + 5Y = 9

(1)

(2)

=>

4X = 15 − y 1 X = [15 + y ] 4

=>

5y = 9 − X 1 y = [9 − x ] 4

In general

1 [15 + yk ] 4 1 yk + 1 = [ 9 − xk ] 5

X k +1 =

Now pull K = 0

X 1=

1 [15 + y (0)] 4

1 [15] 4 = 3.75 =

y1=

1 [9 − x 0 ] 5

1 [ 9 − 0] 5 9 = 5 = 1.8 =

62

At k = 1

1 [15 + y 1 ] 4 1 = [15 + 1.8] 4 = 4.2

X2=

1 [9 − x 1 ] 5 1 = [9 − 3.75] 5 1 = [5.25] 5 = 1.05

y2 =

At k = 2

1 [15 + y 2 ] 4 1 = [15 + 1.05] 4 = 4.0125

x2 =

1 [15 + X 2 ] 5 1 = [ 9 − 4.2] 5 1 = [ 4.8] 5 = 0.5333

y2 =

At k = 2

1 [15 + y 3 ] 4 1 = [15 + 0.5333] 4 = 3.88333

X4=

63

1 [9 − X 3 ] 5 1 = [9 − 4.0125] 5 1 = [ 4.9875] 5 = 0.9975

y2 =

TABLE: K

XK

YK

0

3.75.

1.8

1

4.2

1.05

2

4.0125

0.5333

3

3.8833

0.9975

GAUSS – SEIDAL Q1(b)

4X − y = 15

 X 0 initial given Po = O  = Y 0 

X + 5y = 9

0 0  

After rearing: Same equation order will be follow:4X − y = 15 X + 5Y = 9

(1) = >

4X = 15 + y X =

1 [15 + y ] 4

64

(2)

=>

5y = 9 − X y =

1 [9 − X 5

]

as general

1 [15 + yk ] 4 1 yk + 1 = [ 9 − xk + 1] 5

X k +1 =

Now put K = 0

1 [15 + y 0 ] 4 1 = [15] 4 = 3.75

X1=

1 [9 − X 3 ] 5 1 = [9 − 3.75] 5 = 1.05

y1 =

Put K = 1

1 [15 + y 1 ] 4 1 = [15 + 1.05] 4 = 4.0125

X2=

65

1 [9 − X 2 ] 5 1 = [9 − 4.0125] 5 1 = [5.0006] 5 = 1.000125

y2 =

Now Put K = 3 ∴

1 [15 + y 3 ] 4 1 = [15 + 1.000125] 4 = 4.0000

X3=

1 [9 − X 4 ] 5 1 = [9 − 4.000 ] 5 1 = [9 − 4 ] 5 1 = 5 =1

y4 =

Q3.

(a)

K

XK

YK

0

3.75

1.05

1

4.0125

0.9975

2

3.9994

1.000125

3

4.0000

1

−X + 3 y = 1 6X − 2 y = 2

 X 0 Initial given Po = O  = Y 0 

0 0  

After rearing:

66

Equation rearranging

6X − 2 y = 2 −X + 3 y = 1 (1)

=>

6X = 2 + 2 y 1 6X 3 = [ 2 + 2 y ] 6 (2)

=> −X + 3 y = 1 3y = 1 + X =

1 [1 + X 3

]

In general

1 [ 2 + 2 yk ] 6 1 yk+1 = [1 + X k ] 3

Xk+1 =

NOW PUT K = 0 1 [2 + 2y ] 6 1 X = [ 2 + 2(0) ] 3 1 = [ 2 + 0] 6 2 = = 0.3333 6 X1 =

67

1 [1 + X ] 3 1 = [1 + 0] 3 1 = = 0.3333 3

Y1 =

AT K = 1

1 [2 + 2y 1] 6 1 X = [ 2 + 2(0.3333)] 6 1 = [ 2.666] 6 = 0.4444 X2 =

1 [1 + X 1 ] 3 1 = [1.0.333] 3 = 0.4444

y1 =

At K= 2

1 [2 + 2 y 2 ] 6 1 X = [ 2 + 2(0.4444)] 6 1 = [ 2.8888] 6 = 0.4814 X3 =

1 [1 + X 3 ] 3 1 = [1 + 0.4444] 3 1 = [1.4444] 3 = [ 0.4814]

y3 =

At K =3

68

1 [2 + 2y 3 ] 6 1 X = [ 2 + 2(0.4814)] 6 1 = [ 2.2928] 6 = 0.4938 X4 =

1 [1 + X 3 ] 3 1 = [1 + 0.4814] 3 1 = [1.4814] 3 = 0.4938

y4 =

Table

Q3.

(B)

K

XK

YK

0

0.3333

0.3333

1

0.4444

0.4444

2

0.4814

0.4814

3

0.4938

0.4938

−X + 3 y = 1 6X − 2 y = 2

 X 0 0 Initial given Po = O  =   Y 0   0 

After rearranging

6X − 2 y = 2 −X + 3 y = 1 (1)

=>

69

6X = 2 + 2 y 1 X 3 = [2 + 2 y ] 6 (3)

=> −X + 3 y = 1 3y = 1 + X =

1 [1 + X 3

]

In general

1 [ 2 + 2 yk ] 6 1 yk+1 = [1 + X k + 1] 3

Xk+1 =

NOW PUT K = 0 1 [2 + 2y 0 ] 6 1 X = [ 2 + 2(0) ] 6 = 0.3333 X1 =

1 [1 + Xk + 1] 3 1 = [1 + X 1 ] 3 1 = [1 + 0.3333] 3 = 0.4444

y1 =

Put K= 1

70

1 [2 + 2y 1] 6 1 X = [ 2 + 2(0.4444)] 6 = 0.4814 X2 =

1 [1 + X 2 ] 3 1 = [1 + 0.4814] 3 = 0.4938

y2 =

Put K= 2

1 [2 + 2 y 2 ] 6 1 X = [ 2 + 2(0.4938)] 6 1 = [ 2.9876] 6 = 0.4979 X3 =

1 [1 + X 3 ] 3 1 = [1 + 0.4979] 3 = 0.4993

y3 =

At k =3

1 [2 + 2y 3 ] 6 1 X = [ 2 + 2(0.4993)] 6 1 = [ 2.9986] 6 = 0.4998 X4 =

71

1 [1 + X 4 ] 3 1 = [1 + 0.4998] 3 = 0.4999

y4 =

Table

Q2.

(a)

K

XK

YK

0

0.3333

0.4444

1

0.4814

0.4938

2

0.4979

0.4993

3

0.4998

0.4999

8X − 3 y = 10 −X + 4 y = 6

 X 0 Initial given Po = O  = Y 0 

0   0

After rearing: Equation rearranging

8X − 3 y = 10 −X + 4 y = 6 (1)

=>

8X = 10 + 3 y 1 X = [10 + 3 y ] 6 (2)

=>

4y = 6 + X 1 y = [6 + X 3

]

72

In general

1 [10 + 3 yk ] 8 1 yk+1 = [ 6 + X k ] 4

Xk+1 =

Now put K= 0

1 [10 + 3 y 0 ] 8 1 X = [10 + (0) ] 8 1 = [10] 8 = 1.25 X1 =

1 [6 + X 0 ] 4 1 = [ 6 + 0] 4 1 = [ 6] = 1.5 4

y1 =

At k = 1 1 [10 + 3y 1 ] 8 1 X = [10 + 3(1.5) ] 8 1 = [10 + 4.5] 8 1 = [14.5] =1.8125 8

X2 =

1 [6 + X 1 ] 4 1 = [ 6 + 1.25] 4 1 = [ 7.25] = 1.8125 4

y2 =

73

Now AT k = 2 1 [10 + 3y 2 ] 8 1 X = [10 + 3(1.8125)] 8 1 = [10 + 5.4375] 8 1 = [15.4375] = 1.9297 8

X3 =

1 [6 + X 2 ] 4 1 = [ 6 + 1.8125] 4 1 = [ 7.8125] = 1.9531 4

y1 =

At k = 3

1 [10 + 3y 3 ] 8 1 X = [10 + 3(1.9531)] 8 1 = [15.8593] 8 = 1.9824 X4 =

1 [6 + X 3 ] 4 1 = [ 6 + 1.9297 ] 4 1 = [ 7.9297 ] = 1.9824 4

y4 =

Table K

XK

YK

0

1.25

1.5

1

1.8125

1.8125

74

Q2.

(b)

2

1.9297

1.9531

3

1.9824

1.9824

8X − 3 y = 10 −X + 4 y = 6

 X 0 0 Initial given Po = O  =   Y 0   0 

After rearing: The same order will be written;

8X − 3 y = 10 −X + 4 y = 6 (1)

=> 8X − 3 y = 10 8X = 10 + 3 y X =

(2)

1 [10 + 3 y ] 8

=>

4y = 6 + X 1 y = [6 + X 4

]

In general

1 [10 + 3yk ] 8 1 yk+1 = [ 6 + X k + 1] 4

Xk+1 =

Now put K= 0

75

1 [10 + 3 y 0 ] 8 1 X = [10 + 3(0)] 8 1 = [10] 8 = 1.25 X1 =

1 [6 + X 1 ] 4 1 = [ 6 + 1.25] 4 1 = [ 7.25] = 1.8125 4

y1 =

Now At k = 1

1 [10 + 3y 1 ] 8 1 X = [10 + 3(1.8125)] 8 1 = [10 + 5.4375] 8 = 1.9297 X2 =

1 [6 + X 2 ] 4 1 = [ 6 + 1.9297 ] 4 1 = [ 7.9297 ] = 1.9824 4

y2 =

Now AT k = 2 1 [10 + 3y 2 ] 8 1 X = [10 + 3(1.9824)] 8 1 = [10 + 5.9472] 8 1 = [15.9472] = 1.9934 8

X3 =

76

1 [6 + X 3 ] 4 1 = [ 6 + 1.9934] 4 1 = [ 7.9934] = 1.9984 4

y3 =

At k = 3

1 [10 + 3y 3 ] 8 1 X = [10 + 3(1.9984)] 8 1 X = [10 + 5.9952] 8 1 = [15.9952] 8 = 1.9994 X4 =

1 [6 + X 4 ] 4 1 = [ 6 + 1.9994] 4 = 1.9998

y4 =

Table

Q4.

(a)

K

XK

YK

0

1.25

1.8125

1

1.9297

1.9824

2

1.9934

1.9984

3

1.9994

1.9998

2X + 3 y = 1 7X − 2 y = 1

 X 0 0 Initial given Po = O  =   Y 0   0 

After rearing: The same order will be written;

77

2X + 3 y = 1 7X − 2 y = 1 (1)

=>

7 = 1+ 2y 1 X [1 + 2 y ] 7 (2)

=>

3 y = 1 − 2X 1 y = [1 − 2X 3

]

In general

1 [1 + 2 yk ] 7 1 yk+1 = [1 − 2X k ] 3

Xk+1 =

Now put K= 0

1 [1 + 2 y 0 ] 7 1 = [1 + 2(0)] 7 1 = [1] 7 = 0.1428

X1 =

1 [1 − 2X 0 ] 3 1 = [1 − 2(0)] 3 1 = [1] = 0.3333 3

y1 =

Now At k = 1

78

1 [1 + 2 y 1 ] 7 1 X = [1 + 2(0.3333)] 7 1 = [1 + 0.6666] 7 = 0.2380 X2 =

1 [1 + 2X 1 ] 3 1 = [1 + 2(0.1428)] 3 1 = [1 + 0.2856] =0.4285 3

y2 =

Now AT k = 2 1 [1 + 2 y 2 ] 7 1 X = [1 + 2(0.4285) ] 7 = 0.2653

X3 =

1 [1 + 2X 2 ] 3 1 = [1 + 2(0.2380)] 3 1 = [1.476] =0.492 3

y3 =

At k = 3

1 [1 + 2 y 3 ] 7 1 X = [1 + 2(0.492)] 7 1 X = [1.984] 8 = 0.2834 X4 =

79

1 [1 + 2X 3 ] 3 1 = [1 + 2(0.2653) ] 3 = 0.5102

y4 =

Table

Q4.

(b)

K

XK

YK

0

0.1428

0.3333

1

0.2380

0.4285

2

0.2653

0.492

3

0.2834

0.5102

2X + 3 y = 1 7X − 2 y = 1

 X 0 Initial given Po = O  = Y 0 

0 0  

Equation rearranging

7X − 2 y = 1 2X + 3 y = 1 (1)

=>

7 = 1+ 2y 1 X [1 + 2 y ] 7

(2)

=>

3 y = 1 − 2X 1 y = [1 − 2X 3

]

80

In general

1 [1 + 2 yk ] 7 1 yk+1 = [1 − 2X k ] 3

Xk+1 =

Now put K= 0

1 [1 + 2 y 0 ] 7 1 = [1 + 2(0)] 7 1 = [1] 7 = 0.1428

X1 =

1 [1 − 2X 1 ] 3 1 = [1 − 2(0.1428)] 3 1 = [1 − 0.2856 ] 3 1 = [ 0.7144] = 0.2381 3

y1 =

Now At k = 1

1 [1 + 2 y 1 ] 7 1 = [1 + 2(0.2381)] 7 1 = [1.4762 ] 7 = 0.2109

X2 =

1 [1 − 2X 2 ] 3 1 = [1 − 2(0.2109)] 3 1 = [ 0.5782] =0.1927 3

y2 =

81

Now AT k = 2

1 [1 + 2 y 2 ] 7 1 X = [1 + 2(0.1927)] 7 1 = [1.3854] = 0.1979 7 X3 =

1 [1 − 2(0.1979)] 3 1 = [ 0.6042] =0.2014 3

y3 =

At k = 3

1 [1 + 2 y 3 ] 7 1 X = [1 + 2(0.2014)] 7 1 X = [1.4028] 8 = 0.2004 X4 =

1 [1 − 2X 4 ] 3 1 = [1 − 2(0.2004)] 3 1 = [ 0.5992] 3 = 0.1997

y4 =

82

Table

Q6.

(a)

K

XK

YK

0

0.1428

0.2381

1

0.2109

0.1927

2

0.1979

0.2014

3

0.2004

0.1997

2X + 3 y − 2 = 11 7X − 2 y + 2 = 10 −X + y + z 2 = 3

 X 0 Initial given Po = O  = Y 0 

0   0

After rearranging

2X + 3 y − 2 = 11 7X − 2 y + 2 = 10 −X + y + z 2 = 3 (1)

=>

5X = [10 + y − z ] X (2)

1 [10 + y − z ] 5

=>

4z = 3 + X − y 1 z = [3 + X y ] 4 In general

83

1 [10 + yk − zk ] 5 1 yk+1 = [11 − 2X k − zk ] 8 1 zk+1 = [3 + X k − yk ] 4 Xk+1 =

Now put K= 0

1 [10 + y 0 − z 0] 5 1 = [10 + 0 − 0] 5 1 = [10] 5 =2

X1 =

1 [10 + y 0 − z 0] 5 1 = [10 + 0 − 0] 5 1 = [10] 5 =2

y1 =

Now At k = 1

1 [11 − 2x 0 + 20] 8 1 = [11] = 1.375 8

y1 =

1 [3 + X 0 − y 0 ] 4 1 = [ 3] 4 = 0.75

z1 =

=

1 (3 + 0 − 0) 4

Now AT k = 2

84

X2 =

1 [10 + y 1 − z 1 ] 5

1 [10 + 1.375 − 0.75) ] 5 = 2.125

=

1 [11 − 2X 1 + z 1 ] 8 1 = [11 − 2(2) + 0.75] = 0.96875 8

y2 =

1 [3 + X 2 − y 2 ] 4 1 = [ 3 + 2.125 − 0.96875] = 1.03906 4

z3 =

At k = 3 X4 =

1 [10 + 2 y 3 − z 3 ] 5

1 [10 + 0.995703 − 1.03906] 5 = 1.983594

=

y4 =

1 [11 − 2X 3 + z 3 ] 8

1 [11 − 2(2.0125) + 0.3906] 8 = 1.0017575

=

1 [3 + X 3 − y 3 ] 4 1 = [ 3 + 2.0125 − 0.95703] 4 1 = [ 4.05547 ] = 1.0138675 4

z4 =

85

Table K

Xk

YK

ZK

0

2

1.375

0.75

1

2.125

0.96875

0.90625

2

2.0125

0.95703

1.03906

3

1.983594

1.0017575

1.0138675

86

Q6.

(b)

2X + 3 y − z = 11 7X − 2 y + z = 10 − X + y + 4z = 3

 X 0   Initial given Po = O Y 0  = z 0   

0   0 0  

After rearranging

2X + 3 y − z = 11 7X − 2 y + z = 10 − X + y + 4z = 3 (1)

=>

5X = [10 + y − z ] X (2)

1 [10 + y − z ] 5

=>

8 y = 11 − 2X + z 1 y = [11 − 2X + z ] 8 (3)

=>

4z = 3 + X − y 1 z = [3 + X − y ] 4 In general

1 [10 + yk − zk ] 5 1 yk+1 = [11 − 2X k + 1 − zk ] 8 1 zk+1 = [3 + X k + 1 − yk ] 4 Xk+1 =

Now put K= 0

87

1 [10 + 0 − 0] 5 1 = [10] 5 =2

X1 =

1 [10 + 2X 1 + z 0 ] 5 1 = [11 − 2(2) + 0] 5 1 = [11 − 4] 5 = 0.875

y1 =

1 [10 + X 1 − y 1 ] 4 1 = [ 3 + 2 − 0.875] 4 = 1.03125

z1 =

Now At k = 1

1 [10 + y 1 + z 1 ] 5 1 = [10 + 0.875 − 1.03125] = 1.96875 5

X1=

1 [11 + yX 2 + z 1 ] 8 1 = [11 − 2(1.96875) + 1.03125] 8 = 1.01171875

y2 =

1 [3 + X 2 − y 2 ] 4 1 = [ 3 + 1.96875 − 1.01171875] = 0.98925812 4

z3 =

Now AT k = 2

88

X3 =

1 [10 + y 2 − z 1 ] 5

1 [10 + 1.01171875 − 0.989257812)] 5 = 2.004492

=

1 [11 − 2X 3 + z 2 ] 8 1 = [11 − 2(2.004492) + 0.989257812] 8 1 = [ 7.980273812] 8 = 0.9975342265

y3 =

1 [3 + X 3 − y 3 ] 4 1 = [ 3 + 2.004492 − 0.9975342265] = 4 1 = [ 4.006957774] 4 = 1.001739443

z3 =

At k = 3

X4 =

1 [10 + y 3 − z 3 ] 5

1 [10 + 0.9975342265 − 1.001739443] 5 1 = [ 9.995794784] 4 = 1.999158957

=

y4 =

1 [11 − 2X 4 + z 3 ] 8

1 [11 − 2(1.999158957) + 1.001739443] 8 1 = [8.003421529] 4 = 1.000427691

=

89

1 [3 + X 4 − y 4 ] 4 1 = [ 3 + 1.999158957 − 1.000427691] 4 1 = [ 3.998731266] = 0.9996828165 4

z4 =

Table

Q6.

(b)

K

Xk

YK

ZK

0

0

0.875

1.03125

1

1.96875

1.01171875

0.98925812

2

2.004492

0.9975342265

1.001739443

3

1.999358957

1.000427691

0.9996828165

X − 5y − z = 8 4X − y − z = 13 2X − y − 6z = −2

 X 0   Initial given Po = O Y 0  = z 0   

0   0 0  

After rearranging

X − 5y − z = 8 4X − y − z = 13 2X − y − 6z = −2 (1)

=>

4X = 13 − y + z 1 X [13 − y + z ] 4 (2)

=>

90

− y = −2 + 6z − 2X ≠ y = −(2 − 6z + 2x ) y = 2-6z+2X (3)

=>

− z = −8 + 5 y − X ≠ z = −(8 − 5 y + X ) z = 8-5y + X In general

1 [13 − yk + zk ] 4 1 yk+1 = [ 2 − 6Xk + 2zk ] 8 zk+1 = 8 − 5 yk + xk Xk+1 =

Now put K= 0

1 [13 − y 0 + z 0 ] 4 1 = [13 − 0 + 0] 4 1 = [13] = 3.25 4

X1 =

y 1 = 2 − 6 z 0 + 2X 0 = 2-6(0)+2(0) =2 z 1 = 8 − 5y 0 + X 0 = 8-5(0)+(0) = 8-0 =8

Now At k = 1

91

1 [13 − y 1 + z 1 ] 4 1 = [13 − 2 + 8] 4 1 = [19] = 4.75 4

X2=

y 2 = 2 − 6z 1 + 2X 1 = 2-6(8) +2(3.25) = 2-48+6.5 = -39.5 y 2 = 8 − 5y 1 + X 1 = 8-5(-39.5) +3.25 = 8+197.5+3.25 = 208.75

Now AT k = 2

X3 =

1 [13 − y 2 + z 2 ] 4

1 [13 − (−39.5) + 208.75] 4 1 = [ 261.25] = 65.3125 4 =

y 3 = 2 − 6z 2 + 2X 2 = 2-5(-39.5) +2(4.75) = 2-1252.5+9.5 = -1241 z 3 = 8 − 5y 2 + X 2 = 8-5(-39.5) +4.75 = 8+197.5+4.75 = 210.25

92

At k = 3 X4 =

1 [13 − y 3 + z 3 ] 4

1 [13 − (−1241) + 210.25] 4 1 = [1464.25] 4 = 366.0625

=

y 4 = 2 − 6z 3 + 2X 3 = 2-5(210.25) +2(65.3125) = 2-1261.5+130.625 = -1128.875 z 4 = 8 − 5y 3 + X 3 = 8-5(-1241) +65.3125 = 8+6205+65.3125 = 6278.3125

Table K

Xk

YK

ZK

0

3.25

2

8

1

4.75

-39.5

208.75

2

65.3125

-1241

210.25

3

366.0625

-1128.875

6278.3125

93

Q7.

(b)

X − 5y − z = 8 4X − y − z = 13 2X − y − 6z = −2

 X 0   Initial given Po = O Y 0  = z 0   

0   0 0  

After rearranging

X − 5y − z = 8 4X − y − z = 13 2X − y − 6z = −2 (1)

=>

4X = 13 − y + z 1 X [13 − y + z ] 4 (2)

=>

− y = −2 − 6z + 2X (3)

=> −z = 8 − 5 y − X

In general 1 [13 − yk + zk ] 4 yk+1 = 2 − 6zk + 2X k + 1

Xk+1 =

zk+1 = 8 − 5 yk + 1 + xk + 1

Now put K= 0

1 [13 − y 0 + z 0 ] 4 1 = [13 − 0 + 0] 4 1 = [13 − 0 + 0] = 3.25 4

X1 =

94

y 1 = 2 − 6z 0 + 2X 1 = 2-6(0)+2(3.25) = 8.5 z 1 = 8 − 5y 1 + X 1 = 8-5(8.5) + (3.25) = 8-42.5+3.25 = -31.25

Now At k = 1 1 [13 − y 1 + z 1 ] 4 1 = [13 − 8.5 + (−31.25)] 4 1 = [13 − 8.5 − 31.25] 4

X2=

=

1 [ −26.75] = 6.6875 4

y 2 = 2 − 6z 1 + 2X 2 = 2-6(-31.25) +2(-6.6875) = 2+187.5-13.375 = 176.125 y 2 = 8 − 5y 2 + X 2 = 8-5(176.125) +(-6.6875) = 8-880.625-6.6875 = -879.3125

Now AT k = 2

95

X3 =

1 [13 − y 2 + z 2 ] 4

1 [13 − (176.125) + (−879.3125)] 4 1 = [13 − 176.125 − 879.3125] 4 1 = [ −1042.4375] = −260.6093 4 =

y 3 = 2 − 6z 2 + 2X 3 = 2-6(-879.3125) +2(-260.6093) = 2+5275.875-521.2186 = 4756.6564 z 3 = 8 − 5y 3 + X 3 = 8-5(4756.6564) +(-260.6093) = 8-23783.282-260.6093 = -24035.8913

At k = 3 X4 =

1 [13 − y 3 + z 3 ] 4

1 [13 − (−1241) + 210.25] 4 1 = [1464.25] 4 = 366.0625

=

y 4 = 2 − 6z 3 + 2X 3 = 2-5(210.25) +2(65.3125) = 2-1261.5+130.625 = -1128.875

96

z 4 = 8 − 5y 3 + X 3 = 8-5(-1241) +65.3125 = 8+6205+65.3125 = 6278.3125

Table K

Xk

YK

ZK

0

3.25

8.5

-31.25

1

-6.6875

176.125

-879.3125

2

-260.6093

4756.6564

-24035.8913

97

Related Documents

Chap 3
May 2020 11
Chap 3
November 2019 26
Chap 3
December 2019 22
Chap 3
November 2019 13
Chap 3
November 2019 19
Chap 3
November 2019 19