SOLUTIONS MANUAL COURTESY
Amir Tahir Khan (2005–CE-152) Saba Khalid*
(2005–CE-145)
Shahzaib Zahoor (2005–CE-133) Sarwat Hasnat
(2005–CE-129)
Haider Ali
(2005–CE-164) SECTION ‘C’
COMPUTER ENGINEERING
This manual contains solutions to all of the problems of Chapter 3 ‘Solution of Linear Systems AX=B’ in Numerical Methods Using MATLAB, Fourth Edition. If you spot an error in a solution or in the wording of a problem, we would greatly appreciate it if you would forward the information via email to us at
[email protected]
Submitted To Sir Muhammad Jamil Usmani Lecturer,Mathematics Department, SSUET
INDEX S.NO. 1
EXERCISE
Page
OBJECTIVE
#
Introduction to
3-24
vectors And Matrices 2
Properties of Vectors Upper Triangular
25-33
Gaussian Elimination
34-44
Iterative Methods for Linear Systems
Sarwat Hasnat 2005-CE-129
45-60
And Pivoting 5
Haider Ali 2005-CE-164
linear Systems 4
Amir Tahir Khan 2005-CE-152
And Matrices 3
SOLVED BY
Shahzaib Zahoor Khan 2005-CE-133
61-96
Saba Khalid* 2005-CE-145
2
CHAPTER 3 EXERCISES FOR INTRODUCTION To VECTOR & MATRICES
Q1.
Given the vectors x and Y, find (a) x+y, (b) x- Y, (c) 3x , ( d) II X II (e) 7Y – 4 X, (f) x. y, (g) 117Y – 4 X II.
(i) X = ( 3, - 4 ) and Y = ( - 2, 8)
SOLUTION :(a) X + Y The sum of the vectors X and Y is computed component by component. X + Y = ( X, + Y, X2 + Y2 , Xn + Yn) We have, X = 3, X2 = - 4,Y1 = -2 , Y2 = 8 Putting the values We get, (3,- 4) + (-2,8) = (3+ (-2) , - 4+8) = ( 3-2,4) = (1,4) Ans.
3
(b) X- Y The difference X – Y is formed by taking the difference in each coordinate: X _ Y = (X1 = Y1 , Y2 ------ Xn – Yn )
Putting the values We got,
= (3,-4) – (-2,8) = (3, -(-2) , - 4-8) = (3+2) , - 12) = (5, - 12)
(c) 3 X If C is a real number we define scalar multiplication as follows: CX = ( CX1, CX2 _ _ _ _ (Xn)
Putting the values we get, We get, 3 (3 , - 4) = ( 3 X 3, 3 X- 4) = ( 9 - 12)
(d) || X ||
4
The norm (or length) of the vector X is defined by , ||X ||= (X21 + X22 + ------- X2n )1/2 Putting the values , we get ||3 -4|| = (3)2 + (-4)2 )1/2 = ( 9+16)1/2 =(25)1/2 = (e)
5 Ans.
7Y – 4X
If c & d are scalars then the weighted difference dY – CX becomes, dY – cX =(dY-1 – CX1, dy2 – CX2-----dy2 - Cxn ) Let C = 4 & = 7 Putting the values, we get, 7(-2,8) – 4(3, -4) = (7 ( -2) -4(3) = (8)-4(-4)) = (14-12, 56 + 16)
(f) X. Y The dot product of two vectors , X and Y can be written as, X. Y = x1 y1 + x2 y2 + ------------ xn yn Putting the values , we get,
5
(3,-4) . (-2 ,8) = 3x-2+4 x 8 = - 6- 32 = - 38 Ans.
(g) ||7Y- 4X|| The distance between two points X to Y, ||Y – X|| = ((Y1-X1 )2 +( y2 – X2)2 + ------ (Yn-Xn)2 )1/2 According to condition, || dy – CX|| = (( dy1 – CX1) + ( Y2 – CX2 )2 + ------ (dYn-CXn)2 )1/2 Let C = 4 , d =7 Putting the values We get, || 7 ( -2,8) – ( 3\3-4) || = (( 7 x-2) 4x3)2 + ( 7 X 8 – 4 X -4)2 )1/2 = (( -14-12)2 + (56 +16)2 )1/2 = ((-26)2 + (72)2 )1/2 = (676 + 5184)1/2 = (5860)1/2 =2 or
Q1.
1465
76.55063684 Ans.
ii) X = ( -6, 3,2) & Y = (- 8,5,1) (a) X + Y
6
The sum of the vectors X & Y is computed component by component, X+ Y = (X1+Y1 X2 +Y2, --------- (Xn-Yn) We have X1 = -6, X2 = 3,X3 = 2, Y1 =- 8,y2 = 5 Y3 = 1 Putting the values We get, X + Y = ( - 6-8, 3+5 2+1) X + Y = ( - 14,8,3) Ans. (b)
X-Y
The difference of X – Y is formed by taking the difference in each coordinate, X + Y = (X1 – Y, X2 – y2, ------------- Xn – Yn) Putting the values we get, X – Y ( -6+ 8, 3-5, 2-1) X-Y = (2, - 2 ,1) (c)
3X
If C is a real number we define scalar multiplication as follows: C X = (3X-6, 3 X 3 , 3 X 2) 3 X = ( -18, 9,6) (d) || X || The norm (or length) of the vector X is defined by,
7
|| X || = (X12 + X12 + --------- Xn2)1/2 Putting the values We get, || X || = ((-6)2 + (3)2 + (2)2 )1/2 = ( 36 + 9 + 4)1/2 = (49)1/2 || x|| =7 Ans. (e) 7Y – 4X Let C = 4 & d =7 It C & D are scalars then weighted difference dY – cX becomes, dY – cX = ( dY1 – cX1, dY2 – cX2 ------- dYn – (Xn ) Putting the values We get, 7Y - 4X =(( 7X – 8) –(4X – 6),(7 X 5) – ( 4 X 3 )( 7 X 1) – (4 X 2)) = (- 56 + 24 , 35 – 12, 7 – 8 ) 7Y – 4X = (-32 , 23,-1) Ans. (f) X.Y The dot product of two vectors, X and Y Can be written as, X.Y = X1 Y1 + X2 Y2 + ---------- Xn Yn Putting the values we get, X .Y = ( C-6 X – 8) + ( 3X 5 ) + (2 X 1) = 48+ 15+ 2 X.Y 65 Ans.
8
(g) || 7Y – 4X|| The distance between two points X to Y, ||Y – X|| = ((y1 – X1)2 + ( Y2 –X2)2+ ----- (yn –Xn)2 )1/2 we find, || 7Y - 4X|| = ((7y1 - 4X1 )2 + (7y2 – 4x2)2 + (7Y3 – 4x3)2)1/2 Putting the values We get,
|| 7Y-4X|| = (( 7X -8)2 - (4X-6)2 + (7X5)2 – (4x3)2 + (7X1)2 – (4 X 2)2 )1/2
= ( ( -56) – (-24)-2 +(35)2 – (12)2 + (7)2 - (8)2 )1/2 = (3136 – 576 + 1225 – 144+49-64)1/2 = (3626)1/2 || 7Y -4X|| Q.1
(iii)
= 60.21627687 Ans.
X = ( 4-8,1) & Y = ( 1,-12,-11)
(a) X +Y The sum of the vectors X & Y is computed component by component. X+Y = (X1+ Y
1,
X2 , --------- (Xn + Yn)2 )
We have, X = 4, X X2 – 8, X3 = 1, Y, = 1, Y2 =- 12,Y3 = - 11 We get,
9
X+Y = (4+1, - 8- 12 ,1-11) = (5,-20, -10) Ans. (b) X – Y The difference X – Y is formed by taking the difference in each coordinate: X-Y = (X1+ Y
1,
X2 , --------- (Xn + Yn)2 )
X - Y = (4 - 1, - 8 + 12 ,1+11) = (3,4,12) Ans. (C) 3X It c is a real number , we define scalar multiplication as follows:CX = (CX,CX2------- CXn) Putting the values we get, 3X = ( 3X4, 3X-8, 3X1) 3X = ( 12- 24, 3) Ans. (d) || X || The norm ( or length) of the vector X is defined by, || X || = (X12 + X12 + ------ Xn2 )1/2 Putting the values we get, || X || = ((4)2 + (-8)2 + ------ (1)2 )1/2 = (16+ 64 + 1)1/2 = (81)1/2 || X || = 9 Ans.
10
(e) 7Y – 4X If C & D are scalars then the weighted difference dY – cX becomes, dy- Cx = ( dy1 – CX1 dy2 - (x2, ---------- dyn – CXn ) Putting the values we get, 7Y – 4X = ( 7( 1) – 4(4), 7 (-12) -4 ( -8) , 7 ( -11) – 4 (1)) = (7-16 , - 84 + 32, - 77 – 4) = ( -9 , -52, - 81) Ans. (f) X. Y The dot product of two vectors, X and Y can be written as, X.Y = X1 + X1 + X2 + X2 + ------ Xn Yn Putting the values we get, X. Y = ((x1) + ( -8X -12) + ( 1X -11) ) = ( 4+ 96 – 11) X . Y = 89 Ans.
(g) || 7Y – 4X|| The distance between two points X to Y, ||Y – X || = ( ( Y1 + Y1 )2 + ( Y2 + X2 )2 + ------ ( Xn Yn )2 )1/2 ||7Y – 4 X|| = ( ( 7Y1 + 4X1 )2 + ( 7Y2 + 4X2 )2 )1/2 Putting the values we get, || 7Y -4 X || = (( 7 X 1 – 4 X 4)2 + ( 7x – 12 – 4 x -8) + ( 7X-11 -4 X1)2 )1/2 = ((7-16)2 + (-84 + 32)2 +(-77 – 4))1/2
11
= (( - 9 )2 + ( -52)2 + (-81)2 )1/2 = (9346)1/2 || 7Y -4 X || = 96.67471231 Ans. Q1.
(iv) X = ( 1,-2,4,2) & Y= ( 3-5,- 4,0) X1 = 1, X2 = -2, X3 = 4, X4 = -2, & Y1 = 3, Y2 = -5, Y3 = -4, Y4 = 0,
(a) X + Y The sum of the vectors X & Y is computed component by component, X + Y = (X1 + Y1, X2 + Y2 + ------- Xn + Yn ) Putting the values we get, X + Y = (1+3, - 2- 5, 4-4, 2+0) X + Y = (4,-7,0,2) Ans.
(b) X – Y The difference X – Y is formed by taking the difference in each coordinate: X - Y = (X1 - Y1, X2 - Y2 - ------- Xn - Yn ) Putting the values we get, X + Y = (1- 3, - 2 + 5, 4+4, 2-0) X + Y = (-2,3,8,2) Ans. (c) 3X If C is a real number we define the scalar multiplication as follows:
12
CX = ( CX1, CX2, -------------CXn) Putting the values we get 3X = ( 3 X 1 , 3X -2 , 3 X 4, 3 X 2) 3 X = ( 3, - 6, 12, 6 ) Ans. (d) || X || The norm ( or length) of the vector X is defined by, || X || = (( X1 2 + X2 2 + ----------- Xn 2 ))1/2 Putting the values we get, || X || = ( (1)2 + (-2)2 + (4)2 +(2)2 )1/2 = ( 1+ 4 + 16 + 4 )1/2 = (25)1/2 || X|| = 5 Ans. (e) 7Y – 4X If C & d are scalars then weighted difference dY – Cx becomes, dY –cX = ( dY1 – Cx1 dy2 – CX2 ------ dYn – Cxn ) Putting the values we get, 7Y – 4X = ( (7 X 3 ) – (4 X 1) , ( 7 X -5 ) – ( 4X – 2), 7Y – 4X– (4 X 4) + ( 7 X 0 ) – ( 4 X 2), = ( 21-4,-35+8,-28,-16, 0-8) 7Y – 4X = ( 17, - 27, - 44, - 8 ) Ans.
(f) X.Y The dot product of two vectors X & Y can be written as,
13
X. Y = X1 Y1 + X2 Y2 + ------- Xn Yn Putting the values We get, X . Y = (( 1x 3) + (-2 X – 5) + ( 4 X 4) + ( 2 x 10) ) X . Y = (3+10-16+0) X . Y = - 3 Ans.
(g) || 7Y – 4 X || The distance between two points X to Y, || Y – X || = (( Y1 - X1 )2 + ( Y2 - X2 )2 + ----- ( Yn - Xn )2 Let C = 4 & d = 7 If C & d are scalar then, || 7Y – 4 X || = ((7Y1 - 4X1 )2 + (7Y2 - 4X2 )2 +----- (7Y3 - 4X3 )2 Putting the values We get, ||7Y- 4X|| = ( 7X3- 4X1)2 + ( 7X-5 – 4X-2)2 + ( 7X – 4 – 4 X 4)1/2 = ((17)2 + (- 27) 2 + (- 44) 2 + (- 8) 2 )1/2 = (289 + 7729+1936+64)
1/2
= (3018)1/2 || 7y -4X|| = 54.93632678 Ans. Q.2
Using the law of cosines, it can be shown that the angle θ
between two vectors X and Y is given bythe relation.
14
Cos ( θ) =
X.Y, || X || || Y ||
Find the angle, in radians, between the following vectors: (a) X = (-6,3,2) and Y = ( 2,-2,1) X1 =-6, X2 =3, X3 =2, & Y1 = 2, Y2 = -2, Y3 = 1,
SOLUTION: We know that, X.Y = X1 Y1 + X2 Y2 + X3 Y3 ------------- (1) Putting the values in equation
(1)
We get, = (-6) (2) + (3) ( -2) + ( 2) (1) = - 12 – 6 + 2 X.Y
= - 16
Also, || X || = (X12 X22 + X12 )
1/2
------------ (2)
Putting the values in equation ------------------ (2) We get, = (( - 6)2 + (3)2 + (2)2 )1/2 = (36 + 9 + 4 )1/2 = (49)1/2 || X || = 7 Now,
15
|| Y || = (Y12 Y22 + Y12 )
1/2
------------ (3)
Putting the values in eq. ………… (3) We get, = (2)2 + (-2)2 + (1)2 )1/2 = (4+4 +1)1/2 = (9)1/2 || Y || = 3 Since, Cos θ =
X.Y, || X || || Y || ------------(4)
Putting the values in equation …………. (4) (4)
=>
Cos θ =
− 16 7 x3
− 16 21
θ = Cos-1 ( -0.76190) θ = 2.437045 radians Ans. Q.2 (B) X = (4-8,1) and Y = ( 3,4,12) X1 = 4, X2 = -8, X3 = 1, & Y1 = 3, Y2 = 4, Y3 = 12,
SOLUTION We know that X.Y = X1 , Y1 + X2 , Y2 + X3 , Y3 ------------ (A) Putting the values in equation …………… (A) WE get,
16
= (( 4 X3) (-8) (4) + (1) (12)) = 12- 32 + 12 X. Y =-8 Also , || X || = ( X1 2 + X2 2 + X3 2 )1/2 ------------ (B) Putting the values in equation………………. (B) We get, B => = (42 + ( -8)2 + (1)2 )1/2 = (16+64+1)1/2 = (81)1/2 || X || = 9 Now, || Y || = ( Y1 2 + Y2 2 + Y3 2 )1/3 ------------ (C) Putting the values in equation…………. (C) (C) =>
= (32 + 42 + 122 )1/2
= (9+16+144)1/2 = (169)1/2 || Y || = 13 since Cos θ =
X.Y || X || || Y || ------------(D)
Putting the values in equation (D)
17
We get,
- 8, Cos θ = 9 x 13 ------------(4) - 8, Cos θ = 117 ------------(4) Cos θ = -0.06837 θ = Cos-1 (-0.06837) θ = 1.639225 radians Ans. Q3.
Two vectors X and Y are said to be orthogonal (perpendicular) if the angle between them is
∧
12.
(a)prove that X and Y are both orthogonal if and only if X.Y Proof:Assume that : X , Y ≠ 0 X.Y = 0 if and only if Cos θ =0 If and only if θ = (2n + 1)
∧ 2
If and only if X and y are or trogon Proved Use Part (a) to determine it the following vectors are orthogonal.
(b) X = (-6,4,2) and Y = (6,5,8) X1 =- 6, X2 = 4, X3 =- 2, & Y1 = 6, Y2 = 5, Y3 = 8,
SOLUTION :
18
WE KNOW THAT X.Y = X1 Y1 + X2 Y2 + X3 Y3 Putting the values we get, X.Y = ( -6) (6) + (4) (5) + (2) (8) = - 36+20+16 = - 36+36 X.Y = 0 Hence it is proved that given vectors are orthogonal Q.3 (c) X = (-4,8,3) and Y = (2,5,16) X1 =- 4, X2 = 8, X3 =- 3, & Y1 = 2, Y2 = 5, Y3 = 16,
SOLUTION:We know that X.Y = X1 Y1 + X2 Y2 + X3 Y3 Putting the values we get, X.Y = ( -4) (2) + (8) (5) + (3) (16) = - 8 + 40 + 48 = 90 ( ≠ 0 ) Hence the given vectors are not orthogonal.
Q3.
(d) X = (-5,7,2) and Y = ( 4,1,6)
SOLUTION: We know that
19
X.Y = X1 Y1 + X2 Y2 + X3 Y3 Putting the values we get, X.Y = ( -5) (4) + (7) (1 + (2 (6) = - 20+7+12 X.Y = -1 (≠ 0 ) Hence the given vectors are not orthogonal because X.Y ≠ 0.
Q4.
Find (a) A + B, (b) A-B and (c) 3A-2B for the matrices
A=
−1 9 4 2 −3 −6 0 5 7
,B=
2 −4 9 3 −5 7 8 1 −6
SOLUTION: (a) A + B
A+B=
−1 9 4 2 −3 −6 0 5 7
A+B=
4+2 −1− 4 9 + 9 2+3 −3+3 −6+ 7 0+8 5 +1 7−6
A+B=
− 5 18 6 5 0 1 8 6 1
2 −4 9 3 −5 7 8 1 −6
,+
Ans.
(b) A – B 20
A+B=
−1 9 4 2 −3 −6 0 5 7
A+B=
4−2 −1+ 4 9 − 9 2−3 −3−3 −6−7 0 −8 5 −1 7+6
A+B=
−3 0 2 − 1 2 − 13 − 8 4 13
,-
2 −4 9 3 −5 7 8 1 −6
Ans.
(c) 3A – 2B
3A
=
− 3 27 12 6 − 9 − 18 0 15 21
2B =
4 − 8 18 6 − 10 14 16 2 − 12
3B =
− 3 27 12 6 − 9 − 18 0 15 − 21
3B =
− 3 + 8 27 − 18 12 − 4 6 − 6 − 9 + 10 − 18 − 14 0 − 16 15 − 2 12 + 12
-
14 − 8 18 6 − 10 14 16 2 − 12
21
3A – 2B
Q.5
=
5 9 8 0 1 − 32 − 16 13 133
The Transpose of an MXN matrix A, denoted A" , is the N x matrix obtained from A by converting the rows of A to columns of A' that is , if A = [ bij]NXM , then the elements satisfy the relation. bji = aij for 1 ≤ ι ≤ M,1 ≤ j ≤ N Find the transpose of the following matrices.
(a)
− 2 5 12 1 4 −1 7 0 6 11 − 3 8
SOLUTION: Let the given matrix is A then, Transpose of a matrix
Or A1 =
Q.5
(b)
− 2 1 7 11 5 4 0 −3 12 − 1 6 8
Ans.
4 9 2 3 5 7 8 1 6
SOLUTION :
22
Let the given matrix is A then, Transpose of A
Or
Q.6
4 3 8 9 5 1 2 7 6
A1 =
Ans.
The square matrix A of dimension NX N is said to be symmetric if A= A´ (see Exercise 5 for the definition of A´) Determine whether the following square matrices are symmetric.
Or
1 −7 4 −7 2 0 4 0 3
A´ =
Ans.
SOLUTION
1 −7 4 −7 2 0 4 0 3
Let A =
A´ =
1 −7 4 −7 2 0 4 0 3
According to given condition, (A= A´) the given matrix is symmetric.
(b)
4 −7 1 0 2 −7 3 0 4
23
SOLUTION:
Let A =
A´ =
4 −7 1 0 2 −7 3 0 4
4 0 3 −7 2 0 1 −7 4
A ≠ A´ Hence it is not symmetric Q.6
(C) A = [ a ι j ]NXN where ji aιj = j − ji + i
j = i j ≠ i
aij=aji According to given condition, the given matrix is symmetric. Q.6
(d) A = [ a i j ]NXM, where
Cos( ji) aιj = i − ij − j
i= i≠
j j
Solution: Cos( ji) aιj = i − ij − j
i= i≠
j j
aij=aij According to given condition the given matrix is symmetric.
24
Properties of Vectors And Matrices
25
Q1.
Find AB & BA
−3 2 1 4
A=
5 0 2 −6
B=
SOLUTION
−3 2 1 4
AB =
− 15 + 4 0 − 12 5+8 0−6
=
Ans.
−3 2 1 4
5 0 2 −6
BA =
− 15 10 Ans. − 12 − 20
= Q2
5 0 2 −6
Find AB & BA SOLUTION
1 −2 3 2 0 5
B
3 0 −1 5 3 −2
3 + 2 + 9 − 10 − 6 = 6 + 15 − 10
14 − 16 21 − 10
A=
AB =
3 −6
BA =
−1+ 1
2 − 3 + 25
−1 − 6
3 −6
39 −1
=
9
2
Ans. 9 22
Ans.
−1 − 6 −1
26
Q3 A =
3 1 0 4
1 2 −2 −6
B =
(a) Find (AB) C
&
c=
2 −5 3 4
A (BC)
(b) Find A (B+C) & AB + AC (c) Find (A+B) C & AC + BC (d) Find (AB) ´ and B´ A´ Required matrices for the above
1 0 − 8 24
A=
B+C =
(a)
3 −3 1 −2
(AB) C =
=
=
BC =
A+ B =
1 0 − 8 − 24
8 3 − 22 − 14
AC =
9 − 11 12 16
4 3 −2 −2
2 −5 3 4
1(2) + (0)( 4) 1(−5) + 0(4) − 8(2) + (−24)3 − 8(−5) + (−24)4
2 −5 − 88 − 56
SOLUTION A (BC)
27
8 −3 − 22 − 14
3 1 0 4
3(8) + (1)(−22) 3(3) + 1(−14) 0(8) + 4(−22) 0(3) + 4(−4)
= (b)
=
2 −5 − 88 − 56
A (B + C) and AB + AC SOLUTION A (B + C)
3(3) + 1(1) 3(−3) + (1)(−2) 0(3) + 4(1) 0(−3) + (4)(−2)
=
=
10 − 11 4 −8
* AB + AC =
=
3 −3 1 −2
3 1 0 4
=
1 0 − 8 24
+
9 − 11 12 16
10 − 11 4 −8
(c) Find (A+B) C and AC + BC SOLUTION (A + B) C =
4 3 −2 −2
2 −5 3 4
28
(d)
=
4(2) + 3(3) 4(−5) + 3(4) − 2(2) − 2(3) − 2(−5) − 2(4)
=
15 − 8 − 10 2
(AB)´ & B´ A´
(AB) =
1 0 − 8 − 24
(AB)´ =
1 −8 0 − 24
and B´ A´ =
= Q4.
Ans.
3 0 1 −2 1 4 2 −6
3+0 −6+ 0 1 + 8 − 2 − 24
=
3 −6 9 − 26
Find A2 and B2
A=
−1 − 7 5 −2
2 0 6 5 −4 B = −1 3 −5 2
29
* A2 = AA =
−1 − 7 5 −2
=
− 1(−1) + (−7)5 − 1(−7) + (−7)( 2) 5(−1) + 2(5) 5(−7) + (2)( 2)
=
− 1 − 35 7 − 14 − 5 + 10 − 35 + 4
=
− 36 − 7 5 31
2 0 6 −1 5 −4 3 −5 2
2
* B = BB =
Q.5
−1 − 7 5 −2
2 0 6 −1 5 −4 3 −5 2
=
4 + 0 + 18 0 + 0 − 30 12 + 0 + 12 − 2 − 5 − 12 0 + 25 + 20 − 6 − 20 − 8 6 + 5 + 6 0 + 10 − 10 18 + 20 + 2
=
22 − 30 24 − 19 45 34 17 − 20 40
Find the determinant of following matrices of exist. (a) A =
det A =
−1 − 7 5 2 −1 − 7 5 2
= - 2 + 30 = 28
=
2 0 6 −1 5 −4 3 −5 2
det A =
2 0 6 −1 5 −4 3 −5 2
(b) A
= 2 (10 – 20 ) - 0 + 6 (5 – 15)
30
= 2 (-10) + 6 (-10) = - 20 – 60 = - 80
1 2 3 4 0 6
(c)
it is not square matrix , 50 det. Does not exist.
(d)
A=
1 0 0 0
2 2 0 0
Det A = 1
3 4 5 0
4 6 4 7
2 4 6 0 5 4 0 0 7
-2
0 4 6 0 5 4 0 0 7
= 1 (2 (35) -4(0) + 6(0) - 2 (0-4 (0) +6 (0) + 3 (0 – 0 + 0) - 4 (0) = (( 70 ) -4 (0) -2 (0) – 4 (0) = 70 Ans. Q6
Show that Rx (∝) Rx (- ∝ = I) We know that
31
1 0 0 0 Cos (∝) − Sin(∝) 0 Sin(∝) Cos(∝)
Rx (∝) Rx (- ∝ = i)
1 0 0 0 Cos (∝) − Sin(∝) 0 Sin(∝) Cos(∝)
1+ 0 + 0 0+0+0 0+0+0 2 2 0 + Cos Sin ∝ 0 + Sin ∝ Cos ∝ − Sin ∝ Cos ∝ = 0+0+0 0 + 0 + 0 0 + Sin ∝ Cos ∝ −Sin ∝ Cos ∝ 0 + Cos 2 Sin 2 ∝ Q7 (a)
Show that
Ry (B) Rx (∝)
Q7 (a)
0 Cos( β ) Sin(β ) sin( B) Sin(∝) Cos(∝) − CosBSin ∝ − Cos(d )Sin( β ) Sin(∝) Cosβ Cos (∝)
Rx (∝) Ry (β)
Cos (β ) 0 Sin( β ) 0 1 0 − Sin(β ) 0 Cos ( β )
=
1 0 0 0 Cos (∝) − Sin(∝) 0 Sin(∝) Cos(∝)
=
0 Cosβ Sinβ Sinβ Sin ∝ Cos ∝ − Cosβ Sin ∝ Cos ∝ Sinβ Sin ∝ Cosβ Cos ∝
7(b) Ry (β) Rx (∝)
=
Cosβ 0 Sinβ 0 1 0 − Sinβ 0 Cosβ
1 0 0 0 Cos ∝ − Sin ∝ 0 Sin ∝ Cos ∝
32
=
Cosβ + 0 + 0 0 + 0 + Sin ∝ Sinβ 0 + 0 + Cos ∝ Sinβ 0+0+0 0 + Cos ∝ +0 0 − Sin ∝ +0 − Sinβ + 0 + 0 0 + 0 + Cosβ Sin ∝ 0 + 0 + Cos ∝ Cosβ
=
Cosβ Sinβ Sin ∝ Cos ∝ Sinβ 0 − Sin ∝ Cos ∝ − Sinβ Cosβ Sin ∝ Cos ∝ Cosβ
33
EXERCISES FOR UPPER – TRIANGULAR LINEAR SYSTEMS. Solve upper triangular & find value of determinant of coefficient matrices
Q1.
3X1 - 2X2 + X3 - X4 ---------- (1) 4X2 – X3 + 2X4= - 3 ----------- (2) 2X3 + 3X4 = 11
--------------- (3)
5X9 = 15 ------------------- (4)
SOLUTION From Equation (1) 3X4 = 15 X4 =
15 5
3
Substituting value of 3X1 = 3 is equation ………………. (3) Equation ………….. (3) 2X3 + 3X4 = 11 2X2 + 2(3) =11 2X3 + 9 = 11 2X3 = 11-9 2X3 = 2 2X3 =
2 1 2
X3 = 1 Ans.
34
Substituting value of X3 = 1 , X4 = 3 is equation ………………. (2) Equation …………. (2) 4X2 - X3 + 2X4 = -3 4X2 – 1+2(3) =-3 4X2 – 1+6 = -3 4X2 = -3-6+1 4X2 = -8 4X2 =
8 2 4
X2 = 2 Ans. Substituting value of X2 = -2, X3 = 1, X4 = 3, is equation ……. (1) Equation …………. (1) 3X1 – 2X2 + X3 – X4
=
8
3X1 – 2(-2) +1-3 =8 3X1 + 4+1-3 = 8 3X1 = 8+3-1-4 3X1 = 8+3-1-4 3X1 = 6 X1 =
6 3
2
X1 = 2 Ans For efficient fo determinant matrix . DET = 3 X 4 X 2 X 5
35
= 12 X 10 DET = 120 X= 2, X2 =-2, X3 =1, X4 = 3 det = 120
Q2.
Ans.
5X1 -3X2 - 7X3 + X4 = -14
……………………. (1)
11X2 + 9X3 + 5X4 =22
……………………. (2)
3X3 - 13X4 = - 11
…………………….(3)
7X4 = 14
………………….. (4)
SOLUTION From equation ………….. (4) 7X4 = 14 X4 =
14 7
X4 = 2
2 Ans.
Substituting value of X4 = 2 in equation ………… (3) Equation …………………. (3) 3X3 - 13X4 = -11 3X3 – 13(2) =- 11 3X3 – 26 =- 11 3X3 = -11+26 3X3 = 15 X3 =
5 3 3
36
X3 = 5 Ans.
Substituting value of X3 = 5, X4 = 2 in equation ………… (2) Equation …………………. (2) 11X2 +9X3 + 5X4 = 22 11X2 + 9(5) + 5(2) = 22 11X2 + 45+10 = 22 11X2 = 22-10-45 11X2 = - 33 X2 =
3 3 11
X2 =-3
Substituting value of X2 = 3, X3 = 5, X4 = 2, in equation ………… (1) Equation …………………. (1) 5X1 - 3X2 - 7X3 + X4 = -14 5X1 -3 (-3) -7 (5) + 2 =- 14 5X1 + 9+35+2=-14 5X1 = - 14 -2 – 35 –9 5X1 = -60 X1 =
6 5
-12
X1 = -12 Ans.
37
For determinant of efficient matrix det = 5 x 11 x 3 x 7 = 55 x 21 det =1155 X1 = -12 , X2 = -3, X3 = 5, X4 = 2 Det = 115
4X1 – X2 + 2X3 + 4X4 – X5 = 4 …..…..….. (1)
Q3.
X2 + 6X3 + 2X4 + 7X5 = 0 …..…..….. (2)
−2X 4 − −2X 5 = 10..........(4) 3X 5 = 6.........................(5) SOLUTION 3X 5 = 6 6 2 3 X5 =2 X5 =
Substituting value of X 5 = 2 is equation ………………… (4) Equation…………. => 2X 4 − X 5 = 10 2X 4 − 2 = 10 2X 4 = 10 + 2 2X 4 = 12 −12 6 6 X 4 = −6 X4=
Substituting value of X 4 = −6, X 5 = X 5 = 2 is equation ……………(3)
38
Equation ……………… (3)
X 3 − X 4 − 2X 5 = 3 X 3 − (−6) − 2(2) = 3 X 3 +6−4 = 3 X 3 = 3+4−6 X 3 =1
Substituting value of X 3 = 1, X 4 = −6, X 5 = 0 is equation ……………(2) Equation ……………….. (2)
−2X 2 + 6X 3 + 2X 4 + 7X 5 = 0 −2X 2 + 6(1) + 2(−6) + 7(2) = 0 −2X 2 + 6 − 12 + 14 = 0 −2X 2 = −14 + 12 − 6 2X 2 = −8 2X 2 =
8 4 2
X2 =4 Substituting value of X 2 = 4, X 3 = 1, X 4 = −, X 5 = 2 is equation ……………(1) Equation ……………….. (1)
4X 1 − X 2 + 2X 3 + 2X 4 − X 5 = 4 4X 1 − 4 + 2(1) + 2(−6) − 2 = 4 4X 1 − 4 + 2 − 12 − 2 = 4 4X 1 = 4 + 4π m 2 + 2 + 12 4X 1 = 20 20 5 4 X1 =5 X1 =
for coefficient of Determinant matrix det=
39
4X (−2)X 1X (−2)X 3 = −8X (−2)x 3 = 16X 3 det = 48 X 1 = 52 = 4, X 3 = 1, X 4 = −6, X 5 = 2 det = 48
Q4.
Given
A
a1 a12 0 a 12 0 0
a13 a23 a33
b1 b12 b13 and B = 0 b12 b23 0 0 b33
Show that their product C AB is also upper triangular. a11 (b11 ) + a12 (0) + a13 (0) a11 (b12 ) + a12 (b 22 ) + a13 (0) a11 (b13 ) + a12 (b 23 ) + a13 (b33 ) a (b ) + a (0) + a (0) a (b ) + a (b ) + a (0) 0(b ) + a (b ) + a (b ) 22 23 11 12 22 22 23 13 23 23 23 33 11 22 0(b11 ) + 0(0) + a33 (0) 0(b12 ) + 0(b 22 ) + a33 (0) 0(b13 ) + 0(b 23 ) + a33 (b33 )
a11b11 a12b12 + a12b 22 a11b13 + a12b 23 + a13b 23 0 a22b 22 a23b 23 + a23b33 0 a33b33 0
Q5.
Solve the lower triangular system AX= B and find det (A).
2X 1 = 6.............................(1) −X 1 + 4X 2 = 5.....................(2) 3X 1 − 2X 2 − X 3 = 4.............(3) X 1 − 2X 2 + 6X 3 + 3X 41 = 2............(4)
40
Solution From equation …………….. (1) 2X 1 = 6.............................(1) 6 2X 1 3 2 X1=3
Substituting value of X 1 = 3 is equation ……………….(2) Equation = > X 1 + 4X 2 = 5 −3 + 4X 2 = 5 4X 2 = 5 + 3 X 2 =8 8 2 4 X2 =2 X2
Substituting value of X 1 = 3, X 2 = 2 is equation ………… (3) 3X 1 − 2X 2 − X 4 = 4 3(3) − 2(2) − X 3 = 4 9−4−X 3 = 4 −X 3 = 4 + 4 − 9 + X 3 = +1 X 3 =1
substituting value of X 1 = 3, X 2 = 2, X 3 = 1 is equation ………….. (4) Equation ………… (4) = >
41
X 1 − 2 X 2 + 6 X 3 + 3X 4 = 2 3 − 2(2) + 6(1) + 3X 4 = 2 3− 4 + 6 + 4−3 3X 4 = −3 −3 1 3 X 4 =1 X4=
for coefficient of determination matrix dt = 2 X 4X (-1) X 3 =-8X3 det = - 24
X 1 = −1, X 2 = 2, X 3 = 1, X 4 = 1 det =- 24 Ans.
Q6.
5X 1 = −10...............(1) X 1 = +3X 2 = ............(2) 3X 1 + 4X 2 + 2X 3 = 2.............(3) −X 1 + 3X 2 − 6X 3 − X 4 = 5............(4) Solution From equation ……………(1) 5X 1 = −10 −10 2 5 X 1 = −2 X1=
Substituting value of X 1 = −2 is equation………………. (2) Equation ………………..(2)
42
X 1 + 3X 2 = 4 −2 + 3X 2 = 4 +2 + 4 = 3X 2 3X 2 = 6 6 2 3 X2 =2 X2=
Substituting value of X 1 = 2, X 2 = 2 is equation………..…(3) Equation ………………..(3)
3X 1 + 4X 2 + 2X 3 = 2 3(−2) + 4(2) + 2X 3 = 2 −6 + 8 + 2X 3 = 2 2X 3 = 2 + 6 − 8 2X 3 = 0 0 2 X3 =0 X3=
Substituting Value of X 1 = 2, X 2 = 2, X 1 = X 3 = 0 is equation…… (4) Equation.. =>
− X 1 + 3X 2 − 6X 3 − X 4 = 5 −(−2) + 3(2) − 6(0) − X 4 = 5 2 + 6 − 0X 4 − 5 +X 4 = 5 − 2 − 6 + X 4 = −3 X 4 =3
for coefficient of determinant matrix dt = 5X3X2X (-1) det = -30
43
X 1 + X 2 + 6X 3 = 7 X 1 = −2, X 2 = 2, X 3 = 0, X 4 = 3 3X 2 + 15X 3 = 9 12X 3 = 12 det =- 30. Ans.
44
Gaussian Elimination and Pivoting Show that A X = B is equivalent to the upper – triangular system U x = y find solution.
1
2X 1 + 4X 2 − 6X 3 = −4
2X 1 + 4X 2 − 6X 3 = −4
X 1 + 5X 2 3X 3 = 10
3X 2 + 6X 3 = 12
X 1 + 3X 2 2X 3 = 5
3X 3 = 3
SOLUTION First we find A x = B is equivalent to 4x= Y UXY 2 4 −6 0 3 6 0 0 3
X 1 −4 X = 12 1 X 3 3
2X 1 + 4X 2 − 6X 3 = −4 3X 2 + 6X 3 = 12 3X 3 = 3
Y=
X 1 −3 X = 2 1 X 3 1
AX=B 2 4 −6 1 5 3 1 3 2
−3 −4 2 = 10 1 15
−6 + 8 − 6 −4 −3 + 10 + 3 = 10 −3 + 6 + 2 15
45
−4 −4 10 = 10 15 15
Ax = B is equitant to u x = Y 1 2 4 −6 1 5 3 = 1 2 1 3 2 1 2
0 0 1 0 1 1 3
0 2 4 −6 1 1 5 3 = m 1 21 1 3 2 m 31 m 32 U11 m U 12 11 m 31 U11
2 4 −6 0 3 6 0 0 3
0 0 1
U11 U12 0 U 22 0 0
U12
m12 U11 + U 22
m 31 U12 + m 32 U 22
U13 U 23 U 33
m 21 U13 + U 23 m 31 U13 + m 32 U 33 U13
U11 = 2, U12 = 4, U13 = −6
m 21 U11 = 1 m 21 (2) = 1 m 21 =
1 2
m 31 U11 = 1 m 31 (2) = 1 m 31 =
1 2
m 21 U11 + U 22 = 5
m 21 U13 + U 23 = 3
1 (4) + U 22 = 5 2 U 22 = 5 − 2
1 ( )(−6) + U 23 = 5 2 U 23 = 3 + 3
U 22 = 3
U 23 = 6
m 31 U 13 + m 23 U 23 + U 33 = 2
m 31 U 13 + m 23 U 23 + U 33 = 2
1 1 ( )(−6) + (1 / 3)(6) + U 33 = 2 ( )(−6) + (1 / 3)(6) + U 33 = 2 2 2 −3 + 2 + U 33 = 2 −3 + 2 + U 33 = 2 U 33 = 3
U 33 = 3
46
2 4 −6 1 5 3 1 3 2
1 1 = 2 1 2
0 0 2 4 −6 1 0 x 0 3 6 0 0 3 1 0 3
2 4 −6 2 4 −6 1 5 3 = 1 5 3 1 3 2 1 3 2
2
X 1 + X 2 + 6X 3 = 7
X 1 + X 2 + 6X 3 = 7
3X 2 + 15X 3 = 9
3X 2 + 15X 3 = 9
12X 3 = 12
12X 3 = 12
SOLUTION First we find A x= B is equivalent to u X = Y
UX =Y 2 4 −6 X 1 −4 0 3 6 X = 12 2 0 0 3 X 3 3
2X 1 4X 2 − 6X 3 = −7 3X 2 + 15X 3 = 9 12X 3 = 12
Y=
X 1 −3 X = 2 2 X 3 1
Ax =B 1 1 6 3 7 −1 2 9 −2 = 2 1 −2 3 1 10
47
1 1 6 X 1 7 7 −1 2 9 = X => 2 = 2 2 X 3 1 −2 3 10 10 1 1 6 1 1 6 −1 2 9 = −1 2 9 1 −2 3 1 −2 3
3)
2X 1 − 2X 2 + 5X 3 = 6
2X 1 − 2X 2 + 5X 3 = 6
2X 1 + 3X 2 + X 3 = 13
5X 2 + 4X 3 = 7
X 1 + 4X 2 − 4X 3 = 3
0.9X 3 = 1.8
SOLUTION Ux=Y 2 −2 5 0 5 −4 0 0 0.9
X 1 6 X = 7 2 X 3 1.8
2X 1 − 2X 2 + 5X 3 = 6 5X 2 + 4X 3 = 7 0.9X 3 = 1.8 X3
1.8 = 2,5X 2 − 4(2) = 7 0.9 5X 2 - 8= 7 X2 =3
2X 1 , 2(3) + 5(2) = 6 2X 1 − 6 + 10= 6 X1 =2 X1 =1
X 1 1 Y = X 2 = 3 X 3 2
A X= B
48
2 −2 5 1 6 2 3 1 3 = 13 −1 4 4 2 3
2-6+10 6 2+ 9+ 2 = 13 -1+12-8 3 6 6 13 = 13 3 3 2 −2 5 2 3 1 = −1 4 −4
1 1 −1 2
2 −2 5 2 3 1 = −1 4 −4
0 1 m 1 21 m 31 m 32
0 0 1
U11 m U 21 11 m 31 U11
U12
m 21 U13 + U 23 m 21 U13 + m13 U 25 + U 33
m 21 U12 + U 22
0 2 −2 5 1 0 = 0 5 −4 3 0 0 9 1 5 0
m 31 U 12 +, m 32 U 22
U11 U12 0 U 22 0 0
m11 U12 + U 22 = 0 m11 U11 = 1 m 21 (−5) = 1 m 21 =
−1 5
−1 )(2) + U 22 = 0 5 −2 + U 22 = 0 5 U 22 = 0.4
(
U13 U 23 U 33
U13
m 21 U13 + U 23 = 3 −1 )(−1) + U 23 = 3 5 1 + U 23 = 3 5 1 U 22 = 3 − 5 U 23 = 2.8
(
49
m 31 U12 + m 32 U 22 = 1
m 31 U11 = 3
−3 (2) + m 32 (0.4) = 1 5 −6 + m 32 (0.4) = 1 5 11 m 32 = 2
m 23 (−5) = 3 −3 5 U 23 = 2.8 m 31 =
1 0 0 −5 2 −1 1 0 3 = −1 1 0 5 3 1 6 −3 11 5 2 1
m 31 U11 = 3 m 23 (−5) = 3 −3 5 U 23 = 2.8 m 31 =
−1 −5 2 0 0.4 2.8 0 −10 0
−5 2 −1 −5 2 −1 1 0 3 = 1 0 3 3 1 6 3 1 6
5
Find the parabola Y = A+B+ (X2 that passes through (1,4),(2,7),(3,14) SOLUTION For each point me obtain equation electing x and Y. A+B+C = 4
(1,4) ………………… (i)
A+2B+4C = 7
(2,7)…………………..(ii)
A+3B+9C = 14
(3,14)…………………(iii)
A=B=C = 4 Subtracted equation (ii) from equation …………..(i) B+3C = 3 ………………… (ii) Subtracted equation (iii) from equation …………..(i) 2B +8C = 10……………..(v)
50
A+B+C =4 B+3C = 3 Subtracted equation (iii) from equation …………..(ii) two times 2C = 4 using back substitution. C =2 B= -3 A=5 The equation of parable is y= 2X2 – 3X+5. 6) Find parabola y = A+Bx + CX2 that passes through (1,6), (2,5), (3,2) Solution: A+B+C = 6
(1,6) ………………… (i)
A+2B+4C = 5
(2,5)…………………..(ii)
A+3B+9C = 2
(3,2)…………………(iii)
Subtracted equation (ii) and equation (iii) from equation (i) to climate A A+B+C = 6………………(i) B+3C = -1 ………………… (ii) 2B+8C =- 4…………. (5) Subtracted equation (5) from equation (4) two times A+B+C = 6………………(i) B+3C = -1 ………………… (ii) 2C =- 2…………. (5)
51
∴
C = -1 B=2 A=5
The equation of parabola is Y = X2 +2X + 5
Q9.
2X 1 + 4X 2 − 4X 3 + 0X 4 = 12 X 1 + 5X 2 − 5X 3 − 3X 4 = 18 2X 1 + 3X 2 + X 3 + 3X 4 = 8 X 1 + 4X 2 − 2X 3 − 2X 4 = 18
SOLUTION 2 1 2 1
4 −4 0 12 5 −5 −3 18 3 1 3 8 4 −2 2 8
R1 /2
1 1 2 1
2 −2 0 6 5 −5 −3 18 3 1 3 8 4 −2 2 8
R 2 – R1
1 1 2 1
2 −2 0 6 3 −3 −3 12 3 1 3` 8 4 −2 2 8
52
2 −2 0 6 3 −3 −3 12 3 1 3 8 4 0 2 2
R 4 – R1
1 1 2 1
R 4 – R1
1 2 −2 0 6 0 3 −3 −3 12 0 −1 5 3 −4 0 2 0 2 2
R4 + 2R3
1 2 −2 0 6 0 3 −3 −3 12 0 −1 5 3 −4 0 0 10 8 −6
1 0 0 0
2 −2 0 6 3 −3 −3 12 0 4 2 0 0 10 8 −6
R 4 - 2 R3
1 0 0 0
2 −2 0 6 3 −3 −3 12 0 4 2 0 0 2 4 −6
R4 – R5 /2
1 0 0 0
2 −2 0 6 3 −3 −3 12 0 4 2 0 0 0 3 −6
R1 x 2
2 0 0 0
4 −4 0 12 3 −3 −3 12 0 4 2 0 0 0 3 −6
R4 +
R2 3
53
2X 1 + 4X 3 − 4X 3 + 0X 4 = 12 3X 2 − 3X 3 − 3X 4 = 12 4X 3 + 2X 4 = 0 3X 4 = −6 X 4 = −2 3X 2 − 3(1) − 3(−2) = 12 X 2 =3 2X 1 + 4X 2 − 4X 3 = 12 X1 =2 4X 3 + 2(−2) = 0 4X 3 = 4 X 3 =1
Q.10
X 1 + 2X 2 + 0X 3 − X 4 = 9 2X 1 + 3X 2 − X 3 + 0X 4 = 9 0X 1 + 4X 2 − 2X 3 + 5X 4 = 26 5X 1 + 5X 2 + 2X 3 − 4X 4 = 32 SOLUTION 1 2 0 5
R2 - 2R1
2 0 −1 9 3 −1 0 9 4 2 −5 26 5 2 −4 32 1 2 0 −1 9 2 −1 −1 2 −9 0 4 2 −5 26 5 5 2 −4 32
54
R4 - 5R1
9 1 2 0 −1 0 −1 −1 2 −9 0 4 2 −5 26 1 −13 0 −5 2
R3 + 4R2
1 2 0 −1 9 0 −1 −1 2 −9 0 0 −2 3 −10 0 −5 2 1 −13
R4 + 5R2
1 2 0 −1 9 0 −1 −1 2 −9 0 0 −2 3 −10 0 0 7 −9 −13
R4 + 3R3
1 2 0 −1 9 0 −1 −1 2 −9 0 0 −2 3 −10 1 0 −13 0 0
R4 +1/2 R3
1 2 0 −1 0 −1 −1 2 0 0 −2 3 0 0 0 1.5
9 −9 −10 −3
Hence equation becomes
X 1 + 2X 2 + 0X 3 − 1X 4 = 9............(i ) −X 2 − X 3 + 2X 4 = −9............(ii ) −2X 3 + 3X 4 = −10............(iii ) 1.5X 4 = −3............(iv ) By Equation (iv) X4 = 3/1.5 X4 = -2
55
By equation (iii)
−2X 3 = −10 − 3(−2) −2X 3 = −4 X3 =2 By Equation (ii)
− X 2 = −9 + (2) − 2(−2)
X 2 =3
By equation (i)
X 1 = 9 − 2(3) − 2 X 1 =1 Q8.
4X 1 + 8X 2 + 4X 3 + 0X 4 = 8
X 1 + 5X 2 + 4X 3 + 0X 4 = −4 4X 1 + 4X 2 + 7X 3 + 2X 4 = 10
X 1 + 3X 2 + 0X 3 − 2X 4 = −4
SOLUTION
R1/4
4 1 1 1
8 5 4 3
4 0 8 4 −3 −4 7 2 10 0 −2 −4
1 1 1 1
2 5 4 3
1 0 2 4 −3 −4 7 2 10 0 −2 −4
56
R 2 – R1
1 0 1 1
2 3 4 3
1 0 2 3 −3 −6 7 2 8 0 −2 −4
R 4 – R1
1 0 1 1
2 1 0 2 3 3 −3 −6 4 6 2 8 1 −1 −2 −6
R3 – 2R1
1 0 0 0
2 1 0 2 3 3 −3 −6 0 8 6 20 1 −1 −2 −6
R3 – 2R1
1 0 0 0
2 1 0 2 3 3 −3 −6 0 8 6 20 0 −6 −3 −12
R4 – 2R2
1 0 0 0
2 1 0 2 3 3 −3 −6 0 8 6 20 0 −6 −3 −12 2
1/2R2 +1/4R3
1 0 0 0
1
3 3 0 8 0 0
2 −3 −6 6 20 1 1 2 0
by equation(iv) ∴ 1 X 4 =1 2
X4 =2
57
by equation (iii)
8X 3 + 6(2) = 20 8X 3 = 20 − 12 8X 3 = 8
X 3 =1 by equation (ii)
3X 2 + 3(1) − 3(2) = −6
X 2 = −1 by equation (i)
X 1 + 2(−1) + 1 = 2 X1 =3 Q11
X 1 + 2X 2 = 7 2X 1 + 3X 2 − X 3 = 9 4X 2 + 2X 3 + 3X 4 = 10 2X 3 − 4X 4 = 12
2R1 – R2
1 2 0 −1 0 4 0 0
0 0 7 1 0 −5 2 3 10 2 −4 12
4R2 – R3
1 0 0 0
2 1 0 0
0 0 7 1 0 5 2 −3 10 2 −4 12
4R4 – R3
1 0 0 0
2 1 0 0
0 0 7 1 0 5 2 −3 10 0 −1 2 58
−X 4 = 2
X 4 = −2
Ans.
2X 3 − 3(−2) = 10 2X 3 + 6 = 10
X3 =2 X 2 +2=5 X 2 =3 X 1 + 2(3) + 2 = 5 X 1 = −3 Q12
X1+X 2 =5 2X 1 − X 2 + 5X 3 = −9 3X 2 − 4X 3 + 2X 4 = 19 2X 3 + 6X 4 = 2 SOLUTION
R 2 – R1
1 1 0 2 −1 5 0 3 −4 0 0 2
0 5 0 −9 2 19 6 2
1 1 0 0 −3 5 0 3 −4 0 0 2
0 5 0 −9 2 19 6 2
59
R3 + R2
1 1 0 0 −3 5 0 3 −4 0 0 2
R4 - 2R3
1 1 0 −3 0 0 0 0
0 5 1 0
0 5 0 19 2 19 6 2 0 5 0 19 2 0 2 −34
2X 4 = −34
X 4 = −17 X 3 + 2(−17) = 0 X 3 = 34 −3X 2 + 5(34) + 0(17) = 19 −3X 2 = 19 − 169 −150 −3 X 2 = 50
X2−
X 1 + 50 = 5 X 1 = −45
60
ITERATIVE METHODS FOR LINEAR SYSTEMS
61
JACOBI Q1,
(a)
4X − y = 15
X 0 0 initial given Po = O = Y 0 0
X + 5y = 9
After rearing: Same equation order will come: 4X − y = 15 X + 5Y = 9
(1)
(2)
=>
4X = 15 − y 1 X = [15 + y ] 4
=>
5y = 9 − X 1 y = [9 − x ] 4
In general
1 [15 + yk ] 4 1 yk + 1 = [ 9 − xk ] 5
X k +1 =
Now pull K = 0
X 1=
1 [15 + y (0)] 4
1 [15] 4 = 3.75 =
y1=
1 [9 − x 0 ] 5
1 [ 9 − 0] 5 9 = 5 = 1.8 =
62
At k = 1
1 [15 + y 1 ] 4 1 = [15 + 1.8] 4 = 4.2
X2=
1 [9 − x 1 ] 5 1 = [9 − 3.75] 5 1 = [5.25] 5 = 1.05
y2 =
At k = 2
1 [15 + y 2 ] 4 1 = [15 + 1.05] 4 = 4.0125
x2 =
1 [15 + X 2 ] 5 1 = [ 9 − 4.2] 5 1 = [ 4.8] 5 = 0.5333
y2 =
At k = 2
1 [15 + y 3 ] 4 1 = [15 + 0.5333] 4 = 3.88333
X4=
63
1 [9 − X 3 ] 5 1 = [9 − 4.0125] 5 1 = [ 4.9875] 5 = 0.9975
y2 =
TABLE: K
XK
YK
0
3.75.
1.8
1
4.2
1.05
2
4.0125
0.5333
3
3.8833
0.9975
GAUSS – SEIDAL Q1(b)
4X − y = 15
X 0 initial given Po = O = Y 0
X + 5y = 9
0 0
After rearing: Same equation order will be follow:4X − y = 15 X + 5Y = 9
(1) = >
4X = 15 + y X =
1 [15 + y ] 4
64
(2)
=>
5y = 9 − X y =
1 [9 − X 5
]
as general
1 [15 + yk ] 4 1 yk + 1 = [ 9 − xk + 1] 5
X k +1 =
Now put K = 0
1 [15 + y 0 ] 4 1 = [15] 4 = 3.75
X1=
1 [9 − X 3 ] 5 1 = [9 − 3.75] 5 = 1.05
y1 =
Put K = 1
1 [15 + y 1 ] 4 1 = [15 + 1.05] 4 = 4.0125
X2=
65
1 [9 − X 2 ] 5 1 = [9 − 4.0125] 5 1 = [5.0006] 5 = 1.000125
y2 =
Now Put K = 3 ∴
1 [15 + y 3 ] 4 1 = [15 + 1.000125] 4 = 4.0000
X3=
1 [9 − X 4 ] 5 1 = [9 − 4.000 ] 5 1 = [9 − 4 ] 5 1 = 5 =1
y4 =
Q3.
(a)
K
XK
YK
0
3.75
1.05
1
4.0125
0.9975
2
3.9994
1.000125
3
4.0000
1
−X + 3 y = 1 6X − 2 y = 2
X 0 Initial given Po = O = Y 0
0 0
After rearing:
66
Equation rearranging
6X − 2 y = 2 −X + 3 y = 1 (1)
=>
6X = 2 + 2 y 1 6X 3 = [ 2 + 2 y ] 6 (2)
=> −X + 3 y = 1 3y = 1 + X =
1 [1 + X 3
]
In general
1 [ 2 + 2 yk ] 6 1 yk+1 = [1 + X k ] 3
Xk+1 =
NOW PUT K = 0 1 [2 + 2y ] 6 1 X = [ 2 + 2(0) ] 3 1 = [ 2 + 0] 6 2 = = 0.3333 6 X1 =
67
1 [1 + X ] 3 1 = [1 + 0] 3 1 = = 0.3333 3
Y1 =
AT K = 1
1 [2 + 2y 1] 6 1 X = [ 2 + 2(0.3333)] 6 1 = [ 2.666] 6 = 0.4444 X2 =
1 [1 + X 1 ] 3 1 = [1.0.333] 3 = 0.4444
y1 =
At K= 2
1 [2 + 2 y 2 ] 6 1 X = [ 2 + 2(0.4444)] 6 1 = [ 2.8888] 6 = 0.4814 X3 =
1 [1 + X 3 ] 3 1 = [1 + 0.4444] 3 1 = [1.4444] 3 = [ 0.4814]
y3 =
At K =3
68
1 [2 + 2y 3 ] 6 1 X = [ 2 + 2(0.4814)] 6 1 = [ 2.2928] 6 = 0.4938 X4 =
1 [1 + X 3 ] 3 1 = [1 + 0.4814] 3 1 = [1.4814] 3 = 0.4938
y4 =
Table
Q3.
(B)
K
XK
YK
0
0.3333
0.3333
1
0.4444
0.4444
2
0.4814
0.4814
3
0.4938
0.4938
−X + 3 y = 1 6X − 2 y = 2
X 0 0 Initial given Po = O = Y 0 0
After rearranging
6X − 2 y = 2 −X + 3 y = 1 (1)
=>
69
6X = 2 + 2 y 1 X 3 = [2 + 2 y ] 6 (3)
=> −X + 3 y = 1 3y = 1 + X =
1 [1 + X 3
]
In general
1 [ 2 + 2 yk ] 6 1 yk+1 = [1 + X k + 1] 3
Xk+1 =
NOW PUT K = 0 1 [2 + 2y 0 ] 6 1 X = [ 2 + 2(0) ] 6 = 0.3333 X1 =
1 [1 + Xk + 1] 3 1 = [1 + X 1 ] 3 1 = [1 + 0.3333] 3 = 0.4444
y1 =
Put K= 1
70
1 [2 + 2y 1] 6 1 X = [ 2 + 2(0.4444)] 6 = 0.4814 X2 =
1 [1 + X 2 ] 3 1 = [1 + 0.4814] 3 = 0.4938
y2 =
Put K= 2
1 [2 + 2 y 2 ] 6 1 X = [ 2 + 2(0.4938)] 6 1 = [ 2.9876] 6 = 0.4979 X3 =
1 [1 + X 3 ] 3 1 = [1 + 0.4979] 3 = 0.4993
y3 =
At k =3
1 [2 + 2y 3 ] 6 1 X = [ 2 + 2(0.4993)] 6 1 = [ 2.9986] 6 = 0.4998 X4 =
71
1 [1 + X 4 ] 3 1 = [1 + 0.4998] 3 = 0.4999
y4 =
Table
Q2.
(a)
K
XK
YK
0
0.3333
0.4444
1
0.4814
0.4938
2
0.4979
0.4993
3
0.4998
0.4999
8X − 3 y = 10 −X + 4 y = 6
X 0 Initial given Po = O = Y 0
0 0
After rearing: Equation rearranging
8X − 3 y = 10 −X + 4 y = 6 (1)
=>
8X = 10 + 3 y 1 X = [10 + 3 y ] 6 (2)
=>
4y = 6 + X 1 y = [6 + X 3
]
72
In general
1 [10 + 3 yk ] 8 1 yk+1 = [ 6 + X k ] 4
Xk+1 =
Now put K= 0
1 [10 + 3 y 0 ] 8 1 X = [10 + (0) ] 8 1 = [10] 8 = 1.25 X1 =
1 [6 + X 0 ] 4 1 = [ 6 + 0] 4 1 = [ 6] = 1.5 4
y1 =
At k = 1 1 [10 + 3y 1 ] 8 1 X = [10 + 3(1.5) ] 8 1 = [10 + 4.5] 8 1 = [14.5] =1.8125 8
X2 =
1 [6 + X 1 ] 4 1 = [ 6 + 1.25] 4 1 = [ 7.25] = 1.8125 4
y2 =
73
Now AT k = 2 1 [10 + 3y 2 ] 8 1 X = [10 + 3(1.8125)] 8 1 = [10 + 5.4375] 8 1 = [15.4375] = 1.9297 8
X3 =
1 [6 + X 2 ] 4 1 = [ 6 + 1.8125] 4 1 = [ 7.8125] = 1.9531 4
y1 =
At k = 3
1 [10 + 3y 3 ] 8 1 X = [10 + 3(1.9531)] 8 1 = [15.8593] 8 = 1.9824 X4 =
1 [6 + X 3 ] 4 1 = [ 6 + 1.9297 ] 4 1 = [ 7.9297 ] = 1.9824 4
y4 =
Table K
XK
YK
0
1.25
1.5
1
1.8125
1.8125
74
Q2.
(b)
2
1.9297
1.9531
3
1.9824
1.9824
8X − 3 y = 10 −X + 4 y = 6
X 0 0 Initial given Po = O = Y 0 0
After rearing: The same order will be written;
8X − 3 y = 10 −X + 4 y = 6 (1)
=> 8X − 3 y = 10 8X = 10 + 3 y X =
(2)
1 [10 + 3 y ] 8
=>
4y = 6 + X 1 y = [6 + X 4
]
In general
1 [10 + 3yk ] 8 1 yk+1 = [ 6 + X k + 1] 4
Xk+1 =
Now put K= 0
75
1 [10 + 3 y 0 ] 8 1 X = [10 + 3(0)] 8 1 = [10] 8 = 1.25 X1 =
1 [6 + X 1 ] 4 1 = [ 6 + 1.25] 4 1 = [ 7.25] = 1.8125 4
y1 =
Now At k = 1
1 [10 + 3y 1 ] 8 1 X = [10 + 3(1.8125)] 8 1 = [10 + 5.4375] 8 = 1.9297 X2 =
1 [6 + X 2 ] 4 1 = [ 6 + 1.9297 ] 4 1 = [ 7.9297 ] = 1.9824 4
y2 =
Now AT k = 2 1 [10 + 3y 2 ] 8 1 X = [10 + 3(1.9824)] 8 1 = [10 + 5.9472] 8 1 = [15.9472] = 1.9934 8
X3 =
76
1 [6 + X 3 ] 4 1 = [ 6 + 1.9934] 4 1 = [ 7.9934] = 1.9984 4
y3 =
At k = 3
1 [10 + 3y 3 ] 8 1 X = [10 + 3(1.9984)] 8 1 X = [10 + 5.9952] 8 1 = [15.9952] 8 = 1.9994 X4 =
1 [6 + X 4 ] 4 1 = [ 6 + 1.9994] 4 = 1.9998
y4 =
Table
Q4.
(a)
K
XK
YK
0
1.25
1.8125
1
1.9297
1.9824
2
1.9934
1.9984
3
1.9994
1.9998
2X + 3 y = 1 7X − 2 y = 1
X 0 0 Initial given Po = O = Y 0 0
After rearing: The same order will be written;
77
2X + 3 y = 1 7X − 2 y = 1 (1)
=>
7 = 1+ 2y 1 X [1 + 2 y ] 7 (2)
=>
3 y = 1 − 2X 1 y = [1 − 2X 3
]
In general
1 [1 + 2 yk ] 7 1 yk+1 = [1 − 2X k ] 3
Xk+1 =
Now put K= 0
1 [1 + 2 y 0 ] 7 1 = [1 + 2(0)] 7 1 = [1] 7 = 0.1428
X1 =
1 [1 − 2X 0 ] 3 1 = [1 − 2(0)] 3 1 = [1] = 0.3333 3
y1 =
Now At k = 1
78
1 [1 + 2 y 1 ] 7 1 X = [1 + 2(0.3333)] 7 1 = [1 + 0.6666] 7 = 0.2380 X2 =
1 [1 + 2X 1 ] 3 1 = [1 + 2(0.1428)] 3 1 = [1 + 0.2856] =0.4285 3
y2 =
Now AT k = 2 1 [1 + 2 y 2 ] 7 1 X = [1 + 2(0.4285) ] 7 = 0.2653
X3 =
1 [1 + 2X 2 ] 3 1 = [1 + 2(0.2380)] 3 1 = [1.476] =0.492 3
y3 =
At k = 3
1 [1 + 2 y 3 ] 7 1 X = [1 + 2(0.492)] 7 1 X = [1.984] 8 = 0.2834 X4 =
79
1 [1 + 2X 3 ] 3 1 = [1 + 2(0.2653) ] 3 = 0.5102
y4 =
Table
Q4.
(b)
K
XK
YK
0
0.1428
0.3333
1
0.2380
0.4285
2
0.2653
0.492
3
0.2834
0.5102
2X + 3 y = 1 7X − 2 y = 1
X 0 Initial given Po = O = Y 0
0 0
Equation rearranging
7X − 2 y = 1 2X + 3 y = 1 (1)
=>
7 = 1+ 2y 1 X [1 + 2 y ] 7
(2)
=>
3 y = 1 − 2X 1 y = [1 − 2X 3
]
80
In general
1 [1 + 2 yk ] 7 1 yk+1 = [1 − 2X k ] 3
Xk+1 =
Now put K= 0
1 [1 + 2 y 0 ] 7 1 = [1 + 2(0)] 7 1 = [1] 7 = 0.1428
X1 =
1 [1 − 2X 1 ] 3 1 = [1 − 2(0.1428)] 3 1 = [1 − 0.2856 ] 3 1 = [ 0.7144] = 0.2381 3
y1 =
Now At k = 1
1 [1 + 2 y 1 ] 7 1 = [1 + 2(0.2381)] 7 1 = [1.4762 ] 7 = 0.2109
X2 =
1 [1 − 2X 2 ] 3 1 = [1 − 2(0.2109)] 3 1 = [ 0.5782] =0.1927 3
y2 =
81
Now AT k = 2
1 [1 + 2 y 2 ] 7 1 X = [1 + 2(0.1927)] 7 1 = [1.3854] = 0.1979 7 X3 =
1 [1 − 2(0.1979)] 3 1 = [ 0.6042] =0.2014 3
y3 =
At k = 3
1 [1 + 2 y 3 ] 7 1 X = [1 + 2(0.2014)] 7 1 X = [1.4028] 8 = 0.2004 X4 =
1 [1 − 2X 4 ] 3 1 = [1 − 2(0.2004)] 3 1 = [ 0.5992] 3 = 0.1997
y4 =
82
Table
Q6.
(a)
K
XK
YK
0
0.1428
0.2381
1
0.2109
0.1927
2
0.1979
0.2014
3
0.2004
0.1997
2X + 3 y − 2 = 11 7X − 2 y + 2 = 10 −X + y + z 2 = 3
X 0 Initial given Po = O = Y 0
0 0
After rearranging
2X + 3 y − 2 = 11 7X − 2 y + 2 = 10 −X + y + z 2 = 3 (1)
=>
5X = [10 + y − z ] X (2)
1 [10 + y − z ] 5
=>
4z = 3 + X − y 1 z = [3 + X y ] 4 In general
83
1 [10 + yk − zk ] 5 1 yk+1 = [11 − 2X k − zk ] 8 1 zk+1 = [3 + X k − yk ] 4 Xk+1 =
Now put K= 0
1 [10 + y 0 − z 0] 5 1 = [10 + 0 − 0] 5 1 = [10] 5 =2
X1 =
1 [10 + y 0 − z 0] 5 1 = [10 + 0 − 0] 5 1 = [10] 5 =2
y1 =
Now At k = 1
1 [11 − 2x 0 + 20] 8 1 = [11] = 1.375 8
y1 =
1 [3 + X 0 − y 0 ] 4 1 = [ 3] 4 = 0.75
z1 =
=
1 (3 + 0 − 0) 4
Now AT k = 2
84
X2 =
1 [10 + y 1 − z 1 ] 5
1 [10 + 1.375 − 0.75) ] 5 = 2.125
=
1 [11 − 2X 1 + z 1 ] 8 1 = [11 − 2(2) + 0.75] = 0.96875 8
y2 =
1 [3 + X 2 − y 2 ] 4 1 = [ 3 + 2.125 − 0.96875] = 1.03906 4
z3 =
At k = 3 X4 =
1 [10 + 2 y 3 − z 3 ] 5
1 [10 + 0.995703 − 1.03906] 5 = 1.983594
=
y4 =
1 [11 − 2X 3 + z 3 ] 8
1 [11 − 2(2.0125) + 0.3906] 8 = 1.0017575
=
1 [3 + X 3 − y 3 ] 4 1 = [ 3 + 2.0125 − 0.95703] 4 1 = [ 4.05547 ] = 1.0138675 4
z4 =
85
Table K
Xk
YK
ZK
0
2
1.375
0.75
1
2.125
0.96875
0.90625
2
2.0125
0.95703
1.03906
3
1.983594
1.0017575
1.0138675
86
Q6.
(b)
2X + 3 y − z = 11 7X − 2 y + z = 10 − X + y + 4z = 3
X 0 Initial given Po = O Y 0 = z 0
0 0 0
After rearranging
2X + 3 y − z = 11 7X − 2 y + z = 10 − X + y + 4z = 3 (1)
=>
5X = [10 + y − z ] X (2)
1 [10 + y − z ] 5
=>
8 y = 11 − 2X + z 1 y = [11 − 2X + z ] 8 (3)
=>
4z = 3 + X − y 1 z = [3 + X − y ] 4 In general
1 [10 + yk − zk ] 5 1 yk+1 = [11 − 2X k + 1 − zk ] 8 1 zk+1 = [3 + X k + 1 − yk ] 4 Xk+1 =
Now put K= 0
87
1 [10 + 0 − 0] 5 1 = [10] 5 =2
X1 =
1 [10 + 2X 1 + z 0 ] 5 1 = [11 − 2(2) + 0] 5 1 = [11 − 4] 5 = 0.875
y1 =
1 [10 + X 1 − y 1 ] 4 1 = [ 3 + 2 − 0.875] 4 = 1.03125
z1 =
Now At k = 1
1 [10 + y 1 + z 1 ] 5 1 = [10 + 0.875 − 1.03125] = 1.96875 5
X1=
1 [11 + yX 2 + z 1 ] 8 1 = [11 − 2(1.96875) + 1.03125] 8 = 1.01171875
y2 =
1 [3 + X 2 − y 2 ] 4 1 = [ 3 + 1.96875 − 1.01171875] = 0.98925812 4
z3 =
Now AT k = 2
88
X3 =
1 [10 + y 2 − z 1 ] 5
1 [10 + 1.01171875 − 0.989257812)] 5 = 2.004492
=
1 [11 − 2X 3 + z 2 ] 8 1 = [11 − 2(2.004492) + 0.989257812] 8 1 = [ 7.980273812] 8 = 0.9975342265
y3 =
1 [3 + X 3 − y 3 ] 4 1 = [ 3 + 2.004492 − 0.9975342265] = 4 1 = [ 4.006957774] 4 = 1.001739443
z3 =
At k = 3
X4 =
1 [10 + y 3 − z 3 ] 5
1 [10 + 0.9975342265 − 1.001739443] 5 1 = [ 9.995794784] 4 = 1.999158957
=
y4 =
1 [11 − 2X 4 + z 3 ] 8
1 [11 − 2(1.999158957) + 1.001739443] 8 1 = [8.003421529] 4 = 1.000427691
=
89
1 [3 + X 4 − y 4 ] 4 1 = [ 3 + 1.999158957 − 1.000427691] 4 1 = [ 3.998731266] = 0.9996828165 4
z4 =
Table
Q6.
(b)
K
Xk
YK
ZK
0
0
0.875
1.03125
1
1.96875
1.01171875
0.98925812
2
2.004492
0.9975342265
1.001739443
3
1.999358957
1.000427691
0.9996828165
X − 5y − z = 8 4X − y − z = 13 2X − y − 6z = −2
X 0 Initial given Po = O Y 0 = z 0
0 0 0
After rearranging
X − 5y − z = 8 4X − y − z = 13 2X − y − 6z = −2 (1)
=>
4X = 13 − y + z 1 X [13 − y + z ] 4 (2)
=>
90
− y = −2 + 6z − 2X ≠ y = −(2 − 6z + 2x ) y = 2-6z+2X (3)
=>
− z = −8 + 5 y − X ≠ z = −(8 − 5 y + X ) z = 8-5y + X In general
1 [13 − yk + zk ] 4 1 yk+1 = [ 2 − 6Xk + 2zk ] 8 zk+1 = 8 − 5 yk + xk Xk+1 =
Now put K= 0
1 [13 − y 0 + z 0 ] 4 1 = [13 − 0 + 0] 4 1 = [13] = 3.25 4
X1 =
y 1 = 2 − 6 z 0 + 2X 0 = 2-6(0)+2(0) =2 z 1 = 8 − 5y 0 + X 0 = 8-5(0)+(0) = 8-0 =8
Now At k = 1
91
1 [13 − y 1 + z 1 ] 4 1 = [13 − 2 + 8] 4 1 = [19] = 4.75 4
X2=
y 2 = 2 − 6z 1 + 2X 1 = 2-6(8) +2(3.25) = 2-48+6.5 = -39.5 y 2 = 8 − 5y 1 + X 1 = 8-5(-39.5) +3.25 = 8+197.5+3.25 = 208.75
Now AT k = 2
X3 =
1 [13 − y 2 + z 2 ] 4
1 [13 − (−39.5) + 208.75] 4 1 = [ 261.25] = 65.3125 4 =
y 3 = 2 − 6z 2 + 2X 2 = 2-5(-39.5) +2(4.75) = 2-1252.5+9.5 = -1241 z 3 = 8 − 5y 2 + X 2 = 8-5(-39.5) +4.75 = 8+197.5+4.75 = 210.25
92
At k = 3 X4 =
1 [13 − y 3 + z 3 ] 4
1 [13 − (−1241) + 210.25] 4 1 = [1464.25] 4 = 366.0625
=
y 4 = 2 − 6z 3 + 2X 3 = 2-5(210.25) +2(65.3125) = 2-1261.5+130.625 = -1128.875 z 4 = 8 − 5y 3 + X 3 = 8-5(-1241) +65.3125 = 8+6205+65.3125 = 6278.3125
Table K
Xk
YK
ZK
0
3.25
2
8
1
4.75
-39.5
208.75
2
65.3125
-1241
210.25
3
366.0625
-1128.875
6278.3125
93
Q7.
(b)
X − 5y − z = 8 4X − y − z = 13 2X − y − 6z = −2
X 0 Initial given Po = O Y 0 = z 0
0 0 0
After rearranging
X − 5y − z = 8 4X − y − z = 13 2X − y − 6z = −2 (1)
=>
4X = 13 − y + z 1 X [13 − y + z ] 4 (2)
=>
− y = −2 − 6z + 2X (3)
=> −z = 8 − 5 y − X
In general 1 [13 − yk + zk ] 4 yk+1 = 2 − 6zk + 2X k + 1
Xk+1 =
zk+1 = 8 − 5 yk + 1 + xk + 1
Now put K= 0
1 [13 − y 0 + z 0 ] 4 1 = [13 − 0 + 0] 4 1 = [13 − 0 + 0] = 3.25 4
X1 =
94
y 1 = 2 − 6z 0 + 2X 1 = 2-6(0)+2(3.25) = 8.5 z 1 = 8 − 5y 1 + X 1 = 8-5(8.5) + (3.25) = 8-42.5+3.25 = -31.25
Now At k = 1 1 [13 − y 1 + z 1 ] 4 1 = [13 − 8.5 + (−31.25)] 4 1 = [13 − 8.5 − 31.25] 4
X2=
=
1 [ −26.75] = 6.6875 4
y 2 = 2 − 6z 1 + 2X 2 = 2-6(-31.25) +2(-6.6875) = 2+187.5-13.375 = 176.125 y 2 = 8 − 5y 2 + X 2 = 8-5(176.125) +(-6.6875) = 8-880.625-6.6875 = -879.3125
Now AT k = 2
95
X3 =
1 [13 − y 2 + z 2 ] 4
1 [13 − (176.125) + (−879.3125)] 4 1 = [13 − 176.125 − 879.3125] 4 1 = [ −1042.4375] = −260.6093 4 =
y 3 = 2 − 6z 2 + 2X 3 = 2-6(-879.3125) +2(-260.6093) = 2+5275.875-521.2186 = 4756.6564 z 3 = 8 − 5y 3 + X 3 = 8-5(4756.6564) +(-260.6093) = 8-23783.282-260.6093 = -24035.8913
At k = 3 X4 =
1 [13 − y 3 + z 3 ] 4
1 [13 − (−1241) + 210.25] 4 1 = [1464.25] 4 = 366.0625
=
y 4 = 2 − 6z 3 + 2X 3 = 2-5(210.25) +2(65.3125) = 2-1261.5+130.625 = -1128.875
96
z 4 = 8 − 5y 3 + X 3 = 8-5(-1241) +65.3125 = 8+6205+65.3125 = 6278.3125
Table K
Xk
YK
ZK
0
3.25
8.5
-31.25
1
-6.6875
176.125
-879.3125
2
-260.6093
4756.6564
-24035.8913
97