Elasticity • Elastic strain • Hooke’s law – Stress is proportional to strain.
Longitudinal stress and strain dl l = ln 1 lo l lo
True strain
dl dε = l
εt = ∫
Engineering strain
∆l l1 − lo εe = = lo lo
εt = ln (1 + εe )
True stress
F σt = A
Engineering stress
σe =
Hooke’s law
σ E= ε
l1
F Ao E: Young’s modulus
Shear stress and strain τ =FA
γ = dl l = tan θ ≈ θ G= τ
γ
G: shear modulus or rigidity
Poisson’s ratio A body, upon being pulled, tends to contract laterally. Poisson’s ratio, υ = -(lateral strain)/(longitudinal strain) The stress σ33 generates ε11, ε22, ε33. υ = -ε11/ε33 = -ε22/ε33
Generalized Hooke’s law Normal stresses generate only normal strains. Strains produced by σ11: ε11 = σ11/E; ε22 = ε33 = - υσ11/E Shear stresses generate only shear strains. 1 ε 11 = [σ 11 − υ ( σ 22 + σ 33 ) ] E 1 ε 22 = [σ 22 − υ ( σ 11 + σ 33 ) ] E 1 ε 33 = [σ 33 − υ ( σ 22 + σ 11 ) ] E
σ 12 G σ 13 γ 13 = G σ γ 23 = 23 G γ 12 =
Plane stress: in sheets or plates (one dimension can be neglected with respect to the other two.) Plane strain: one of the dimensions is infinite with respect to the other two.
Elastic properties of materials
Mohr circle
Positive shear stresses produce counterclockwise rotation. Negative shear stresses produce clockwise rotation.
Principal stresses and maximum shear stresses Maximum shear stress orientation 45o
Principal stress orientation
Principal stress orientation
Pure shear
γ 2 = AC AO
Pure shear D
O
− ε 11 = AB OD γ 2 = AC AO
Simple shear
Relationship between G and E For pure shear
1 ( σ 1 − υσ 2 ) = σ 1 (1 + υ ) E E τ = −σ 1
ε 11 =
τ = Gγ Gγ (1 + υ ) E γ ε 11 = − 2
ε 11 = −
G is related to E by means of Poisson’s ratio.
G=
E 2(1 + υ )
Anisotropic effects σ 11 σ 12 σ 13 σ 11 σ 12 σ 13 σ 21 σ 22 σ 23 ≡ σ 12 σ 22 σ 23 σ σ σ σ σ σ 31 32 33 13 23 33
11→1;
22→2;
33→3;
σij = σji; εij = ε ji
23→4; 13→5;
12→6
σ 11 σ 12 σ 13 σ 1 σ 6 σ 5 σ 21 σ 22 σ 23 ≡ σ 6 σ 2 σ 4 σ 31 σ 32 σ 33 σ 5 σ 4 σ 3 ε 11 ε 12 ε 13 ε 1 ε 6 2 ε 5 2 ε 21 ε 22 ε 23 ≡ ε 6 2 ε 2 ε 4 2 ε 31 ε 32 ε 33 ε 5 2 ε 4 2 ε 3
ε 4 = 2ε 23 = γ 23 ε 5 = 2ε 13 = γ 13 ε 6 = 2ε 12 = γ 12
Hooke’s law σ 1 C11 σ 2 C21 σ C 3 = 31 σ 4 C41 σ C 5 51 σ C 6 61 σi = Cij ε j
εi = Sij σj
C12 C22 C32 C42 C52 C62
C13 C14 C23 C24 C33 C34 C43 C44 C53 C54 C63 C64
C15 C25 C35 C45 C55 C65
C16 ε 1 C26 ε 2 C36 ε 3 C46 ε 4 C56 ε 5 C66 ε 6
C: stiffness S: compliance
orthorrhomb ic
tetragonal
cubic
C11 C12 C 12 C22 C13 C23 0 0 0 0 0 0 C11 C 12 C13 0 0 C16
C13
0
C23 0 C33 0 0 C44 0 0 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66
C12 C11 C13 0
C13 C13 C33 0
0 0 0 C44
0 0 0 0
0 − C16
0 0
0 0
C44 0
C16 − C16 0 0 0 C66
C11 C12 C12 0 C 12 C11 C12 0 C12 C12 C11 0 0 0 C44 0 0 0 0 0 0 0 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44
isotropi c
C11 C12 C12 0 C 12 C11 C12 0 C12 C12 C11 0 0 0 C44 0 0 0 0 0 0 0 0 0
C44 = S11 S 12 S12 0 0 0
0 0 0 0 C44 0
0 0 C44 0 0 0
C11 − C12 2 S12 S11 S12
S12 S12 S11
0 0 0
0 0 0
0 0 0
0 0 0
S 44 0 0
0 S 44 0
S 44 = 2( S11 − S12 )
0 0 S 44 0 0 0
•
The stiffness and compliance matrices are symmetric, and the 36 components are reduced to 21. • The number of independent elastic constants depends on the symmetry of the crystals. • For cubic system, the number is three. C11, C12, C44 •
For isotropic system, C44 = (C11 – C12)/2. – two independent constants – Lame’s constants: µ = C44 = 1/S44 = G λ = C12 – Young’s modulus: E = 1/S11 – Rigidity or shear modulus: G = 1/2(S11 – S12) = 1/S44 – Poisson’s ratio: υ = -S12/S11 – Compressibility (B) and bulk modulus (K): ε 11 + ε 22 + ε 33 1 B= = K 1 (σ + σ + σ ) 11 22 33 3
Relationships between stresses and strains for isotropic materials 1 [σ 1 − υ ( σ 2 + σ 3 ) ] E 1 ε 2 = S12σ 1 + S11σ 2 + S12σ 3 = [σ 2 − υ ( σ 1 + σ 3 ) ] E 1 ε 3 = S12σ 1 + S12σ 2 + S11σ 3 = [σ 3 − υ ( σ 2 + σ 1 ) ] E
ε 1 = S11σ 1 + S12σ 2 + S12σ 3 =
σ 1 = C11ε 1 + C12ε 2 + C12ε 3 = ( 2µ + λ ) ε 1 + λε 2 + λε 3 σ 2 = C12ε 1 + C11ε 2 + C12ε 3 = λε 1 + ( 2µ + λ ) ε 2 + λε 3 σ 3 = C12ε 1 + C12ε 2 + C11ε 3 = λε 1 + λε 2 + ( 2µ + λ ) ε 3
σ4 G σ ε 5 = 2( S11 − S12 )σ 5 = 5 G σ6 ε 6 = 2( S11 − S12 )σ 6 = G ε 4 = 2( S11 − S12 )σ 4 =
1 ( C11 − C12 ) ε 4 = µε 4 2 1 σ 5 = ( C11 − C12 ) ε 5 = µε 5 2 1 σ 6 = ( C11 − C12 ) ε 6 = µε 6 2
σ4 =
Relations among elastic constants for isotropic materials
Orientation dependence of elastic moduli for monocrystals In a cubic material, the elastic moduli can be determined along any direction, from the elastic constants and the direction cosines of the direction [i j k]
(
)(
)
(
)(
)
1 = S11 − 2 S11 − S12 − 1 S 44 li21l 2j 2 + l 2j 2lk23 + li21lk23 2 Eijk
1 = S 44 + 4 S11 − S12 − 1 S 44 li21l 2j 2 + l 2j 2lk23 + li21lk23 2 Gijk
Orientataion dependence of Young’s modulus of single crystal
Elastic properties of polycrystalline metals