داﻧﺸﮕﺎﻩ اﻣﺎم ﺣﺴﻴﻦ )ع(
ﻓﺼﻞ :۵ ﻋﻨﻮان درس :
ﻣﻌﺎدﻻت رﻳﺎﺿﯽ ﺗﺤﺖ ﺷﺮاﻳﻂ ﻓﺘﻮﮔﺮاﻣﺘﺮی ﺟﻬﺖ ارﺗﺒﺎط ﺑﻴﻦ ﺗﺼﻮﻳﺮ و زﻣﻴﻦ
Analytical Photogrammetry
اراﺋﻪ دهﻨﺪﻩ :
ﺻﻔﺎ ﺧﺰاﺋﻲ E-mail:
[email protected] ﻧﻴﻤﺴﺎل ﺗﺤﺼﻴﻠﯽ ٨۵-٨۶-٢ : 1
2
ﻣﻌﺎدﻻت هﻢ ﺧﻄﯽ
ﮐﻤﭙﺎراﺗﻮر ﺗﻮﺟﻴﻪ داﺧﻠﯽ
Collinearity Equations
ﺑﺎ ﻓﺮض ﺡﺬف اﻋﻮﺟﺎﺟﺎت و اﻧﺠﺎم ﺗﻮﺟﻴﻪ داﺧﻠﻲ ﺗﻮﺟﻴﻪ ﻧﺴﺒﯽ
ﺗﺼﻮﻳﺮ
ﺗﺒﺪﻳﻼت 2Dو 3D
ﻣﺪل
ﺗﻮﺟﻴﻪ ﻣﻄﻠﻖ
4
ﻣﻌﺎدﻻت رﻳﺎﺿﯽ ﺗﺤﺖ ﺷﺮاﻳﻂ ﻓﺘﻮﮔﺮاﻣﺘﺮی
زﻣﻴﻦ
3
)mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007
1
z
OA = k* R * Oa (kϕw) Oa
y
κ
= λ * M * OA ( wϕk )
φ
O (X0 Y0 Z0)
-c
ω x
y x
Z a (x, y, –c)
Y A (X Y Z) ٥
X ٦
x a x p xa − x p oa = ya − y p = ya − y p − c 0 − c →
Oa
OA
٧
٨
mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007)
2
Oa
= λ * M * OA ( wϕk )
. ﻣﻌﺎدﻝﻪ اول را ﺑﺮ ﻣﻌﺎدﻝﻪ ﺱﻮم ﺗﻘﺴﻴﻢ ﻣﻲ آﻨﻴﻢ٢ ﺡﺎل ٩
١٠
ﻣﻌﺎدﻻت هﻢ ﺧﻄﯽ Collinearity Condition
ﺵﺮط هﻢ ﺧﻄﯽ
m ( X − X 0 ) + m12 (Y − Y0 ) + m13 (Z − Z0 ) x = xo − f 11 m31( X − X 0 ) + m32 (Y − Y0 ) + m33 (Z − Z0 ) m ( X − X 0 ) + m22 (Y − Y0 ) + m23 (Z − Z0 ) y = yo − f 21 m31( X − X 0 ) + m32 (Y − Y0 ) + m33 (Z − Z0 )
ﻣﻌﺎدﻻت ﻣﻌﻜﻮس
Z0
m (x − xo ) + m21( y − yo ) + m31(− f ) X = X0 + (Z − Z0 ) ⋅ 11 m13(x − xo ) + m23( y − yo ) + m33(− f )
ﺗﺎ۶ ﺗﺎ٣
ﺗﻌﺪاد پﺎراﻣﺘﺮهﺎ ؟
m (x − xo ) + m22( y − yo ) + m32(− f ) Y = Y0 + (Z − Z0 ) ⋅ 12 m13(x − xo ) + m23( y − yo ) + m33(− f )
ﺡﺪاﻗﻞ ﺗﻌﺪاد ﻧﻘﻄﻪ آﻨﺘﺮل ﻣﻮرد ﻧﻴﺎز ؟
X0 Y0 ١٢
11
mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007)
3
DLT ﺗﻔﺎوت ﺗﻌﺪاد پﺎراﻣﺘﺮهﺎی ﺷﺮط هﻢ ﺧﻄﯽ و ﺟﻬﺖ ارﺗﺒﺎط ﺑﻴﻦ ﺗﺼﻮﻳﺮ و زﻣﻴﻦ
ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺧﻄﻲ
x − x0 = − f
M1 X M3X
M X y − y0 = − f 2 M3X
x =
m11 M = m21 m31
m12 m22 m32
m13 M 1 m23 M 2 m33 M 3
. ﭘﺎراﻣﺘﺮ اﺱﺖ٩ ﭘﺎراﻣﺘﺮ وﻝﻲ ﻣﻌﺪﻻت ﺵﺮط هﻢ ﺧﻄﻲ داراي١١ دارایDLT درﺣﺎﻝﻴﻜﻪ، ﻓﻀﺎی ﺧﺎم دو ﺑﻌﺪی)آﻤﭙﺎراﺗﻮر( را ﺑﻪ ﻓﻀﺎی ﺱﻪ ﺑﻌﺪی)زﻣﻴﻦ( ﻣﺮﺗﺒﻂ ﻣﯽ ﻧﻤﺎیﺪDLT ﺑﻨﺎﺑﺮایﻦ اﺧﺘﻼف در. ﻓﻀﺎی ﺗﺼﻮیﺮ را ﺑﻪ ﻓﻀﺎی ﺱﻪ ﺑﻌﺪی زﻣﻴﻦ ارﺗﺒﺎط ﻣﻲ دهﺪ،ﺵﺮط هﻢ ﺧﻄﯽ .ﻓﻀﺎی ﺗﺼﻮیﺮ اﺱﺖ . ﻣﯽ ﺑﺎﺵﺪnonnon-orthogonality وaffinity ﭘﺎراﻣﺘﺮ٢ ﺑﻨﺎﺑﺮایﻦ اﺧﺘﻼف در
X − X0 X = Y − Y0 Z − Z 0
a1 X + a 2Y + a 3 Z + a 4 c1 X + c 2Y + c 3 Z + 1
b X + b 2Y + b3 Z + b 4 y = 1 c1 X + c 2 Y + c 3 Z + 1
δα
λx ≠ λ y
ﺑﺮای دورﺑﻴﻨﻬﺎی ﻏﻴﺮ ﻣﺘﺮیﮏ- ﺱﺮیﻊ و ﺁﺱﺎن ﺑﻮدﻩ – هﻤﻴﺸﻪ ﺟﻮاﺑﮕﻮ ﻧﻴﺴﺖ- ﺧﻄﯽ اﺱﺖ:DLT . دﻗﻴﻖ ﺑﻮدﻩ و هﻤﻮارﻩ ﺟﻮاﺑﮕﻮ هﺴﺘﻨﺪ- ﻏﻴﺮ ﺧﻄﯽ اﻧﺪ و ﻧﻴﺎز ﺑﻪ ﺧﻄﯽ ﺱﺎزی دارﻧﺪ: ﺵﺮط هﻢ ﺧﻄﯽ
DLT Transformation
١٣ 14
Collinearity Equation Linearization
ﺧﻄﻲ ﺱﺎزي ﻣﻌﺎدﻻت هﻢ ﺧﻄﻲ ﺑﻪ آﻤﻚ ﺑﺴﻂ ﺱﺮي ﺗﻴﻠﻮر
ﻣﻌﺎدﻝﻪ اول
Tayler power series very good approximation
m ( X − X 0 ) + m12 (Y − Y0 ) + m13 (Z − Z0 ) x = x p − f 11 m31( X − X 0 ) + m32 (Y − Y0 ) + m33 (Z − Z0 )
c11 = m ( X − X 0 ) + m22 (Y − Y0 ) + m23 (Z − Z0 ) y = y p − f 21 m31( X − X 0 ) + m32 (Y − Y0 ) + m33 (Z − Z0 )
f [r ⋅ (cos φ ⋅ ∆X + sin ω ⋅ sin φ ⋅ ∆Y − cos ω ⋅ sin φ ⋅ ∆Z ) q2 − q ⋅ (− sin φ ⋅ cos κ ⋅ ∆X + sin ω ⋅ cos φ ⋅ cos κ ⋅ ∆Y − cos ω ⋅ cos φ ⋅ cos κ ⋅ ∆Z )]
c12 =
؟f ﻣﺸﺘﻖ ﻧﺴﺒﺖ ﺑﻪ
dx = c11dω + c12 dφ + c13 dκ − c14 dX 0 − c15 dY0 − c16 dZ 0 + c14 dX + c15 dY + c16 dZ dy = c21dω + c22 dφ + c23 dκ − c24 dX 0 − c25 dY0 − c26 dZ 0 + c24 dX + c25 dY + c26 dZ dX0, dY0, dZ0 = corrections to exposure station location dXA, dYA, dZA = corrections to ground coordinates
r q
f [r ⋅ (− m 33 ⋅ ∆Y + m 32 ⋅ ∆Z ) − q ⋅ ( −m13 ⋅ ∆Y + m12 ⋅ ∆Z )] q2
c13 = −
where: c’s = coefficients equal to partial derivatives dω, dφ, dκ = corrections to angular attitude
x − xo = − f
f (m 21 ⋅ ∆X + m 22 ⋅ ∆Y + m 23 ⋅ ∆Z ) q
f (r ⋅ m31 − q ⋅ m11) q2 f c15 = 2 (r ⋅ m 32 − q ⋅ m12) q f c16 = 2 (r ⋅ m33 − q ⋅ m13) q c14 =
١٥
١٦
mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007)
4
s q
ﺡﻞ ﻣﺴﺎﺋﻞ ﻓﺘﻮﮔﺮاﻣﺘﺮی
y − yo = − f
ﻣﻌﺎدﻝﻪ دوم
f ]) c21 = 2 [ s ⋅ ( − m33 ⋅ ∆Y + m32 ⋅ ∆Z ) − q ⋅ ( − m 23 ⋅ ∆Y + m 22 ⋅ ∆Z q
ﻣﺴﺎﺋﻞ ﻣﺮﺑﻮط ﺑﻪ یﮏ ﻋﮑﺲ ﻣﺴﺎﺋﻞ ﻣﺮﺑﻮط ﺑﻪ یﮏ زوج ﻋﮑﺲ ﻣﺴﺎﺋﻞ ﻣﺮﺑﻮط ﺑﻪ ﺑﻴﺶ از یﮏ زوج ﻋﮑﺲ )ﻣﺜﻠﺚ ﺑﻨﺪی(
f ) [ s ⋅ (cos φ ⋅ ∆X + sin ω ⋅ sin φ ⋅ ∆Y − cos ω ⋅ sin φ ⋅ ∆Z q2 ]) − q ⋅ (− sin φ ⋅ sin κ ⋅ ∆X − sin ω ⋅ cos φ ⋅ sin κ ⋅ ∆Y + cos ω ⋅ cos φ ⋅ sin κ ⋅ ∆Z
= c22
f ) ( m11 ⋅ ∆X + m12 ⋅ ∆Y + m13 ⋅ ∆Z q f )c24 = 2 ( s ⋅ m31 − q ⋅ m 21 q f )c25 = 2 ( s ⋅ m32 − q ⋅ m 22 q = c23
f )( s ⋅ m33 − q ⋅ m 23 q2
= c26
١٧ 18
ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﻲ ﺑﺎ ﻳﻚ ﻋﻜﺲ
ﺡﻞ ﻣﺴﺎﺋﻞ ﻓﺘﻮﮔﺮاﻣﺘﺮی ﻣﺴﺎﺋﻞ ﻣﺮﺑﻮط ﺑﻪ یﮏ ﻋﮑﺲ
ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﻲ :ﺗﻬﻴﻪ ﻧﻘﺸﻪ از ﻳﮏ ﻋﮑﺲ
در اﺑﺘﺪا ﺑﺎیﺴﺘﯽ دو کﺎر ذیﻞ ﺗﻮاﻣﺎ اﻧﺠﺎم ﮔﺮدﻧﺪ :
ﺣﺨﻒ ﺧﻄﺎهﺎی ﺱﻴﺴﺘﻤﺎﺗﻴﮏ)اﻋﻮﺟﺎﺟﺎت( -ﺗﻮﺟﻴﻪ داﺧﻠﯽ :از ﺱﻴﺴﺘﻢ ﻣﺨﺘﺼﺎت کﻤﭙﺎراﺗﻮر ﺑﻪ ﻋﮑﺲ ﺑﺮویﻢ
در ﻣﺮﺡﻠﻪ ﺑﻌﺪ : -١ﻣﺤﺎﺱﺒﻪ اﻝﻤﺎﻧﻬﺎی ﺗﻮﺟﻴﻪ ﺧﺎرﺟﯽ دورﺑﻴﻦ )(EOP -٢ﻣﺤﺎﺱﺒﻪ ﻣﺨﺘﺼﺎت زﻣﻴﻨﯽ هﺮ ﻧﻘﻄﻪ اﺧﺘﻴﺎری
20
ﺗﺮﻓﻴﻊ ﻓﻀﺎﻳﯽ
ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﻲ
ﺗﻘﺎﻃﻊ ﻓﻀﺎﻳﯽ
19
)mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007
5
Space Resection
ﺗﺮﻓﻴﻊ ﻓﻀﺎیﯽ-١
ﻣﺨﺘﺼﺎت ﻧﻘﺎط آﻨﺘﺮل زﻣﻴﻨﻲ ﻣﻌﻠﻮم ﻣﻲ ﺑﺎﺵﺪ
0
ﻣﻘﺎدﻳﺮ اوﻝﻴﻪ پﺎراﻣﺘﺮهﺎی ﻣﺠﻬﻮل ؟ 0
0
dx = c11dω + c12 dφ + c13 dκ − c14 dX 0 − c15 dY0 − c16 dZ 0 + c14 dX + c15 dY + c16 dZ 0
0
dy = c21dω + c22 dφ + c23 dκ − c24 dX 0 − c25 dY0 − c26 dZ 0 + c24 dX + c25 dY + c26 dZ ١ ﻧﻘﻄﻪ
dx1 c11 c12 dy c 1 21 c22 . . . = . . . dxn c11 c12 dyn c21 c22
c13 c23
− c14 − c24
− c15 − c25
.
.
.
.
.
.
c13 c23
− c14 − c24
− c15 − c25
2n × 1
− c16 dω − c26 dϕ . dk . . dX 0 − c16 dY0 − c26 dZ 0 2n × 6
n ﻧﻘﻄﻪ
0
ω0 = ϕ 0 = 0 2D similarity ﺗﺒﺪﻳﻞ
a X x y 1 0 b Y = y − x 0 1 c d
X = ( A T . A) −1 . AT .L
λ0 = a 2 + b 2 b K 0 = Arc tan( ) a
X0 = c Y0 = d K 0 = AZ AB − AZ ab = Arc tan(
YB − Y A y − yA ) − Arc tan( B ) XB − XA xB − x A
−
Z 0 = λ. f + h AB
6× 1
−
ﺗﺎ٣ ﺡﺪاﻗﻞ ﻧﻘﺎط آﻨﺘﺮل ﻣﻮرد ﻧﻴﺎز ؟
Z 0 = H − h AB
∧
δ X = ( A T . A) −1 A.T δL
٢١
٢٢
ﻣﺤﺎﺱﺒﻪ ﻣﺨﺘﺼﺎت زﻣﻴﻨﯽ هﺮ ﻧﻘﻄﻪ اﺧﺘﻴﺎری-٢
ﻣﺤﺎﺱﺒﻪ ﻣﺨﺘﺼﺎت زﻣﻴﻨﯽ هﺮ ﻧﻘﻄﻪ اﺧﺘﻴﺎری-٢
ﻣﻌﺎدﻻت ﻣﻌﻜﻮس هﻢ ﺧﻄﻲ
ﻣﻮﻗﻌﻴﺖ و وﺿﻌﻴﺖ ﻣﺮآﺰ ﺗﺼﻮﻳﺮ ﻣﻌﻠﻮم اﺱﺖ O a
m (x − xo ) + m21( y − yo ) + m31(− f ) X = X0 + (Z − Z0 ) ⋅ 11 m13(x − xo ) + m23( y − yo ) + m33(− f ) m (x − xo ) + m22( y − yo ) + m32(− f ) Y = Y0 + (Z − Z0 ) ⋅ 12 m13(x − xo ) + m23( y − yo ) + m33(− f ) ( ﻣﻮﺟﻮد ﺑﺎﺷﺪDTM) ﺑﺎﻳﺪ ﻣﺪل رﻗﻮﻣﻲ ارﺗﻔﺎﻋﻲ زﻣﻴﻦ: ﺑﺮاي ﺡﻞ
Terrain Surface A2
زﻣﻴﻦ ﻣﺴﻄﺢ ﺑﺎﺷﺪ
ﺗﻘﺎﻃﻊ A
Vertical View Plane
X=
a1 x + a2 y + a3 c1 x + c2 y + 1
Y=
b1 x + b2 y + b3 c1 x + c2 y + 1
اﺱﺎس ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﯽ2D Projective
: ﺑﻨﺎﺑﺮایﻦ ﻣﻌﺎدﻻت ﭘﺮوژآﺘﻴﻮ دو ﺑﻌﺪي ) اﺣﺘﻴﺎﺟﻲ ﺑﻪ ﺗﻮﺟﻴﻪ داﺧﻠﻲ ﻧﺪاﺵﺘﻪ و ﻣﺴﺘﻘﻴﻤﺎ از: • اﮔﺮ زﻣﻴﻦ ﻣﺴﻄﺢ ﺑﺎﺵﺪ (ﻣﺨﺘﺼﺎت دﺱﺘﮕﺎهﻲ ﺑﻪ زﻣﻴﻦ ﻣﻲ رﺱﻴﻢ A1
Z0 ٢٣
ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺧﻄﻲ: • اﮔﺮ زﻣﻴﻦ ﻧﺎ ﻣﺴﻄﺢ ﺑﺎﺵﺪ
٢٤
mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007)
6
ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﯽ ﺑﺎ اﺱﺘﻔﺎدﻩ از ﻳﮏ زوج ﻋﮑﺲ
ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﻲ ﺑﺎ ﻳﻚ زوج ﻋﻜﺲ
ﺗﺮﻓﻴﻊ ﻓﻀﺎﻳﯽ
(EOP) ﻣﺤﺎﺱﺒﻪ اﻝﻤﺎﻧﻬﺎی ﺗﻮﺟﻴﻪ ﺧﺎرﺟﯽ دورﺑﻴﻦ-١
ﺗﻘﺎﻃﻊ ﻓﻀﺎﻳﯽ
ﻣﺤﺎﺱﺒﻪ ﻣﺨﺘﺼﺎت زﻣﻴﻨﯽ هﺮ ﻧﻘﻄﻪ اﺧﺘﻴﺎری-٢
ﺗﺮﻓﻴﻊ و ﺗﻘﺎﻃﻊ ﻓﻀﺎیﻲ: راﻩ ﺣﻞ اول اﻧﺠﺎم ﻣﺮاﺣﻞ ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ و ﻣﻄﻠﻖ: راﻩ ﺣﻞ دوم
25
26
ﺗﺮﻓﻴﻊ ﻓﻀﺎیﯽ-١
ﺗﻘﺎﻃﻊ ﻓﻀﺎیﯽ-٢
ﻣﺸﺨﺺ آﺮدن ﻣﻮﻗﻌﻴﺖ و وﺽﻌﻴﺖ ﻣﺮاآﺰ ﺗﺼﻮیﺮ دو ﻋﻜﺲ c c dx'1 dy ' c c 1 . . . . . . ' ' dx'n c11 c12 c ' c ' dy 'n = 21 22 0 dx" 0 1 0 0 dx"1 0 . 0 0 . 0 dx"n 0 0 dy"n 0 0 ' 11 ' 21
' 12 ' 22
c c
−c −c
−c −c
−c −c
. .
. .
. .
. .
c13' ' c23
− c14' ' − c24
− c15' ' − c25
0 0 0
0 0 0
0 0 0
0 0 0
0 0
0 0
0 0
0 0
c11"
c12"
c13"
0
" 21
" 22
" 23
' 13 ' 23
0
' 14 ' 24
0
' 15 ' 25
0
' 16 ' 26
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 − c16' ' − c26 (n) 0
0 0
0 0
0 0
0 0
c11" c12" " " c21 c22
c13" " c23
− c14" " − c24
− c15" " − c25
(1)
c
c
c
− c14"
− c15"
−c
−c
" 24
4n×1 ﺗﺎ٣ ﺡﺪاﻗﻞ ﻧﻘﺎط آﻨﺘﺮل ﻣﻮرد ﻧﻴﺎز ؟
" 25
0
0 dω ' 0 dϕ ' 0 dk ' 0 dX '0 0 dY '0 0 dZ ' 0 . − c16" dω" " − c26 dϕ " dk " (1) dX "0 (n) " dY "0 − c16 dZ "0 " − c26
0
0
0
∧
0
0
0
0
0
0
0
dy = c21dω + c22 dφ + c23 dκ − c24 dX 0 − c25 dY0 − c26 dZ 0 + c24 dX + c25 dY + c26 dZ
dx ' c14' dy ' ' c 24 . . = . . dx " c14" " dy " c 24
c16' ' c 26 dX . . dY . dZ " c16 " c 26
c15' ' c 25 .
. c15" " c 25
3×1
4n×3
4n×1 ∧
4n×12
δ X = ( A T . A) −1 A.T δL
0
dx = c11dω + c12 dφ + c13 dκ − c14 dX 0 − c15 dY0 − c16 dZ 0 + c14 dX + c15 dY + c16 dZ
δ X = ( A . A) A.T δL ٢٧
T
−1
٢٨
mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007)
7
ﻣﻘﺎدﻳﺮ اوﻝﻴﻪ پﺎراﻣﺘﺮهﺎی ﻣﺠﻬﻮل ؟
راﻩ ﺣﻞ دوم : اﻧﺠﺎم ﻣﺮاﺣﻞ ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ و ﻣﻄﻠﻖ ﺑﻄﻮر ﺟﺪاﮔﺎﻧﻪ
B = ( X "0 − X '0 ) 2 + (Y "0 −Y '0 ) 2 "p = x'− x
O2
'B.x P ' x” Y = B. y P =X
ﺗﻮﺟﻴﻪ ﻧﺴﺒﯽ ﺑﺎ ﺷﺮط هﻢ ﺧﻄﯽ
B
”y
’x ”a
O1
’y ’a
B. f Z = Z '0 − p
A
29 30
ﺗﻮﺟﻴﻪ ﻧﺴﺒﯽ ﺑﺎ ﺷﺮط هﻢ ﺧﻄﯽ
b
O2
در ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ،هﺪف :ﻣﺸﺨﺺ آﺮدن وﺽﻌﻴﺖ ﻧﺴﺒﻲ دو دورﺑﻴﻦ
’y
”y
در ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ اﺑﺘﺪا ﺑﺎیﺴﺘﻲ ﻣﺸﺨﺺ آﻨﻴﻢ آﻪ از ﭼﻪ روﺵﻲ اﺱﺘﻔﺎدﻩ ﻣﻲ آﻨﻴﻢ :یﻜﻄﺮﻓﻪ یﺎ دو ﻃﺮﻓﻪ ﻓﺮض :یﻜﻄﺮﻓﻪ ﺑﻨﺎﺑﺮایﻦ ۶ :اﻝﻤﺎن ﺗﻮﺟﻴﻪ ﺧﺎرﺟﻲ را ﺑﺮاي ﻋﻜﺲ ﺱﻤﺖ راﺱﺖ یﺎ ﭼﭗ را ﺙﺎﺑﺖ ﻓﺮض ﻣﻴﻜﻨﻴﻢ .ﺑﻨﺎﺑﺮایﻦ ﻣﺸﺘﻘﺎت ﺟﺰﺋﻲ ﺁﻧﻬﺎ ﺻﻔﺮ اﺱﺖ
”x
O1
’x ”a
’a
dx' = c'14 dX + c'15 dY + c'16 dZ
ﺑﺮاي ﻋﻜﺲ ﺱﻤﺖ ﭼﭗ ﺑﺮاي ﻋﻜﺲ ﺱﻤﺖ راﺱﺖ
dy ' = c '24 dX + c'25 dY + c'26 dZ
0
" dx" = c"11 dω"+c"12 dφ "+c"13 dκ "−c"14 dX "0 −c"15 dY "0 −c"16 dZ "0 +c"14 dX "+c"15 dY "+c"16 dZ
0
" dy" = c"21 dω"+c"22 dφ "+c"23 dκ "−c"24 dX "0 −c"25 dY "0 −c"26 dZ "0 +c"24 dX "+c"25 dY "+c"26 dZ
A ﺗﻌﺪاد ﻣﻌﺎدﻻت 4n : ﺗﻌﺪاد ﻣﺠﻬﻮﻻت 3n+5 :
ﺣﺪاﻗﻞ ﺗﻌﺪاد ﻧﻘﻄﻪ آﻨﺘﺮل ﻣﻮرد ﻧﻴﺎز ۵ :ﺗﺎ ٣١
32
)mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007
8
ﻣﻘﺎدﻳﺮ اوﻝﻴﻪ پﺎراﻣﺘﺮهﺎی ﻣﺠﻬﻮل ؟ در ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ﺑﺎ ﺵﺮط هﻢ ﺧﻄﻲ ﭼﻨﺎﻧﭽﻪ از ٢٠ﻧﻘﻄﻪ اﺱﺘﻔﺎدﻩ آﻨﻴﻢ ،ﺗﻌﺪاد ﻣﺠﻬﻮﻻت ؟ اﺑﻌﺎد ﻣﺎﺗﺮیﺲ ﻧﺮﻣﺎل ؟
3*20+5=65
w" = 0
ϕ"= 0
)(65)* (65 ' a 'b
− AZ
" a "b
O2
k " = AZ
b m = arbitary = bm
ﻣﻌﺎیﺐ ایﻦ روش ؟ -١اﺑﻌﺎد ﺑﺰرگ ﻣﺎﺗﺮیﺲ ﻧﺮﻣﺎل -٢ﺑﺪﺱﺖ ﺁوردن ﻣﻘﺎدیﺮ ﺗﻘﺮیﺒﻲ)اوﻝﻴﻪ( ﻧﻴﺎز اﺱﺖ
?H
”y ”x
’x ”a
’y ’a
Z
A
33
در ﺵﺮط هﻢ ﺧﻄﻲ ﻓﺮض ﻣﺎ ﺑﺮ ایﻦ ﺑﻮد آﻪ ﭘﺎﻻیﺶ ﻋﻜﺴﻲ و ﺗﻮﺟﻴﻪ داﺧﻠﻲ اﻧﺠﺎم ﮔﺮﻓﺘﻪ اﺱﺖ. اﻣﺎ ﭼﻨﺎﻧﭽﻪ از دورﺑﻴﻨﻬﺎي ﻏﻴﺮ ﻣﺘﺮیﻚ دیﺠﻴﺘﺎﻝﻲ)در ﻓﺘﻮﮔﺮاﻣﺘﺮي ﺑﺮد آﻮﺗﺎﻩ( اﺱﺘﻔﺎدﻩ ﻧﻤﺎﺋﻴﻢ ،ﺑﺎیﺴﺘﻲ ﭘﺎراﻣﺘﺮهﺎي ﺗﻮﺟﻴﻪ داﺧﻠﻲ و ﻧﻴﺰ اﻋﻮﺟﺎﺟﺎت ﺵﻌﺎﻋﻲ و ﻣﻤﺎﺱﻲ ﻝﻨﺰ را ﻧﻴﺰ ﺑﻪ ﻋﻨﻮان ﻣﺠﻬﻮﻻت در ﻧﻈﺮ ﺑﮕﻴﺮیﻢ. ﺵﺮط هﻢ ﺧﻄﻲ ﺑﺎ ﭘﺎراﻣﺘﺮهﺎي اﺽﺎﻓﻲ
آﺎﻝﻴﺒﺮاﺱﻴﻮن دورﺑﻴﻨﻬﺎي ﻣﺘﺮیﻚ : -١ﻓﺎﺻﻠﻪ آﺎﻧﻮﻧﻲ )اﺻﻠﻲ( -٢ﻣﻮﻗﻌﻴﺖ ﻧﻘﻄﻪ اﺻﻠﻲ ﻧﺴﺒﺖ ﺑﻪ ﻓﻴﺪوﺵﺎل ﻣﺎرآﻬﺎ -٣ﻣﺨﺘﺼﺎت ﻓﻴﺪوﺵﺎل ﻣﺎرآﻬﺎ -۴ﻣﺸﺨﺼﺎت اﻋﻮﺟﺎﺟﺎت)ﺵﻌﺎﻋﻲ و ﻣﻤﺎﺱﻲ( ﻝﻨﺰهﺎ
ﺗﻌﺪاد ﭘﺎراﻣﺘﺮهﺎي ﻣﺠﻬﻮل ؟ 6+3+6 = 15
36
= H
" 0
" p = x '− x ' b .x X = m P 'b .y Y = m P b .f Z = H − m p
ﻣﺰیﺖ ایﻦ روش ؟ ﻣﺨﺘﺼﺎت ﻣﺪل هﻤﺰﻣﺎن ﺑﺎ ﺣﻞ ﻣﺠﻬﻮﻻت ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ﻣﺤﺎﺱﺒﻪ ﻣﻲ ﮔﺮدﻧﺪ.
34
" 0
X
Y 0" = 0 ,...
bm
O1
M1 X M3X
ﻣﻘﺪﻣﻪ اي ﺑﺮ Self Calibration
x − x0 + δx = −c
M X y − y0 + δy = −c 2 M3X ) δx = F (c, x0 , y0 , k1 , k 2 , k3 , p1 , p2 , p3 ) δy = G (c, x0 , y0 , k1 , k 2 , k3 , p1 , p2 , p3
35
)mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007
9
ﺷﺮط هﻢ ﺹﻔﺤﻪ ای
D.L.Tﺑﺎ ﭘﺎراﻣﺘﺮهﺎي اﺽﺎﻓﻲ
Collinearity Condition
هﻨﺪﺱﻪ Epipolar
Epipolar plane Epipolar lines Conjugated points
a1 X + a 2Y + a 3 Z + a 4 c1 X + c 2Y + c 3 Z + 1
= x + δx
b1 X + b 2 Y + b 3 Z + b 4 c1 X + c 2 Y + c 3 Z + 1
= y + δy
) δx = F (k1 , k 2 , k3 , p1 , p2 , p3 ) δy = G (k1 , k 2 , k3 , p1 , p2 , p3
ﺻﻔﺤﻪ ﮔﺬرﻧﺪﻩ از ﻣﺮاآﺰ ﺗﺼﻮیﺮ و ﻧﻘﺎط ﻧﻈﻴﺮ ﻋﻜﺴﻲ در یﻚ stereopair ﻣﺤﻞ ﺗﻼﻗﻲ ﺻﻔﺤﻪ اﭘﻲ ﭘﻮﻻر ﺑﺎ ﻋﻜﺲ هﺎ
ﺗﻌﺪاد ﭘﺎراﻣﺘﺮهﺎي ﻣﺠﻬﻮل ؟ 11+6 = 17
ﺱﻴﺴﺘﻢ ﻣﺨﺘﺼﺎت ﻣﺪل 37
38
ﻣﻌﺎدﻻت هﻢ ﺻﻔﺤﻪ اي راﻩ ﺣﻞ اول :
ﺷﺮط هﻢ ﺹﻔﺤﻪ ای
aX 0' + bY0' + cZ 0' + d = 0 aX 0" + bY0" + cZ 0" + d = 0
Y
ax + by + cz + d = 0 '
'
ﭼﻨﺪ ﺻﻔﺤﻪ اﭘﻲ ﭘﻮﻻر داریﻢ ؟
'
ax " + by " + cz " + d = 0
b
pc2
X
ﺑﺮاي ﻧﺸﺎن دادن یﻚ ﺻﻔﺤﻪ ٣ ،ﻧﻘﻄﻪ آﺎﻓﻴﺴﺖ .ﭘﺲ یﻜﻲ از ﻣﻌﺎدﻻت اﺽﺎﻓﻲ اﺱﺖ یﺎ ﻣﺴﺘﻘﻞ ﻧﻴﺴﺖ
”y ”x
a ( X − X 0' ) + b(Y0" − Y0' ) + c ( Z 0" − Z 0' ) = 0 " 0
ax ' + by ' + cz ' + d = 0
’x ”a
pc1
’y
ﺑﻴﻨﻬﺎیﺖ
در ﭼﻪ ﺻﻮرت ﺻﻔﺤﻪ اﭘﻲ ﭘﻮﻻر ایﺠﺎد ﺧﻮاهﺪ ﺵﺪ؟ اﻧﺠﺎم ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ﭘﺲ ﺵﺮط هﻢ ﺻﻔﺤﻪ اي دﻗﻴﻘﺎ ﻣﺨﻼف ﺵﺮط هﻢ ﺧﻄﻲ اﺱﺖ!
’a
ax" + by " + cz " + d = 0
Z
ﺑﻲ ﻧﻬﺎیﺖ ﺻﻔﺤﻪ اﭘﻲ ﭘﻮﻻر داریﻢ .ﭘﺲ دﺗﺮﻣﻴﻨﺎن ﺽﺮایﺐ ﻣﻌﺎدﻻت ﺑﺎیﺴﺘﻲ ﺻﻔﺮ ﺑﺎﺵﺪ bz b = bx2 + by2 + bz2
٤٠
by
∆Z
bx
x' y ' z ' = 0 "x" y" z
or
z' = 0 "z
∆Y
∆X
'y "y
'x "x
A
ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺻﻔﺤﻪ اي 39
)mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007
10
ﻣﻌﺎدﻻت هﻢ ﺻﻔﺤﻪ اي
راﻩ ﺣﻞ ﺱﻮم :
ﻣﻌﺎدﻻت هﻢ ﺻﻔﺤﻪ اي
راﻩ ﺣﻞ دوم :
→
→
→
b − R1 + R2 = 0
→
→
→
pc2
b .( R1× R 2 ) = 0 by
bx
z1 = 0
y1
x1
bz z2
y2
x2
b
”y ”x
ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺻﻔﺤﻪ اي
’x ”a
’a
R2
R1
ﭘﺎراﻣﺘﺮهﺎي ﻣﺠﻬﻮل )در ﺗﻘﺎﻃﻊ ﻓﻀﺎیﻲ(؟
→
x2 x"− x0 → b1 = y2 M 2T y"− y0 z 2 − f
→
R2 = λ2 a2
" ' bx X 0 − X 0 b = by = Y0" − Y0' " ' bz Z 0 − Z 0
x1 x'− x0 → a1 = y1 = M 1T y '− y0 z1 − f
→
bx x1 x2 b − λ M T y + λ M T y = 0 y 1 1 1 2 2 2 bz z1 z 2
A
١٢ﺗﺎ ٤١
bz
ﺧﻄﻲ ﺱﺎزي ﻣﻌﺎدﻻت هﻢ ﺻﻔﺤﻪ اي
bx
x' y ' z ' = 0 "x" y" z
c5(1) dbY c5( 2 ) dbZ . dw . dϕ ( n) dk c5 اﺑﻌﺎد ﻣﺎﺗﺮیﺲ ﻧﺮﻣﺎل ؟ 5*5
( F = F0 +
c1bY + c2bZ + c3 dw + c4 dϕ + c5 dk + c6 = 0
)c4(1 )c4( 2
”a
’a
R2
R1
bz z1 = 0 z2
by y1 y2
bx x1 x2
A
ﻣﺘﺪ :ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ یﻚ ﻃﺮﻓﻪ
F
)c3(1 ) c3( 2
”x
’x
’y
ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ﺑﺎ ﻣﻌﺎدﻻت هﻢ ﺻﻔﺤﻪ اي
∂F ∂F ∂F ∂F ∂F ( ) 0 dbY + ") 0 dbZ + ( ) 0 dx"+( ) 0 dy"+( ) 0 dz = 0 "∂z "∂y "∂x ∂∆Z ∂∆Y
یﻚ ﻣﻌﺎدﻝﻪ ﺑﺮاي ٢ﻧﻘﻄﻪ ﻧﻈﻴﺮ ﻋﻜﺴﻲ
→
”y
→
b − λ1 a1 + λ2 a2 = 0
ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺻﻔﺤﻪ اي
by
pc2
٣ﻣﻌﺎدﻝﻪ داریﻢ ﺑﺎ دو ﻣﺠﻬﻮل یﻜﻲ را ﺣﺬف ﻣﻲ آﻨﻴﻢ .ﺗﻨﻬﺎ یﻚ ﻣﻌﺎدﻝﻪ ﺑﺎﻗﻲ ﻣﻲ ﻣﺎﻧﺪ .ﺁﻧﺮا ﺑﻪ ﺻﻮرت دﺗﺮﻣﻴﻨﺎﻧﻲ ﻣﻲ ﻧﻮیﺴﺴﻢ
٤٢
٤٤
R1 = λ1 a1
b
pc1
λ1 , λ2
١٢ﭘﺎراﻣﺘﺮﺗﻮﺟﻴﻪ ﺧﺎرﺟﻲ )اﻝﻤﺎﻧﻬﺎي وﺽﻌﻴﺖ و ﻣﻮﻗﻌﻴﺖ دو ﻣﺮآﺰ ﺗﺼﻮیﺮ( ﺣﺪاﻗﻞ ﺗﻌﺪاد ﻧﻘﻄﻪ آﻨﺘﺮل ؟
→
pc1
’y
→
) c6(1) c1(1 ) ( 2 ) ( 2 c6 c1 . = . . . ) c ( n ) c ( n 6 1
)c2(1 ) c2( 2
.
.
.
.
.
.
) c4( n
) c3( n
) c2( n
ﻓﺮض ﻣﻲ آﻨﻴﻢ ﺽﺮیﺐ ﻣﻘﻴﺎس دو ﻋﻜﺲ )ﺑﺮاي ﺗﻤﺎم ﻧﻘﺎط دو ﻋﻜﺲ( ﺑﺮاﺑﺮ و یﻜﻲ ﺑﺎﺵﺪ ﻋﻜﺲ ﺱﻤﺖ ﭼﭗ را ﺙﺎﺑﺖ ﻣﻲ آﻨﻴﻢ ﭘﺎراﻣﺘﺮهﺎي ﻣﺠﻬﻮل ؟ ۵ﺗﺎ
"w" , ϕ " , k " , by" , bz
ﺣﺪاﻗﻞ ﺗﻌﺪاد ﻧﻘﺎط آﻨﺘﺮل ﻣﻮرد ﻧﻴﺎز ؟ ۵ﺗﺎ
ﻣﺮﺣﻠﻪ ﺑﻌﺪ :ﺗﻘﺎﻃﻊ ﻓﻀﺎیﻲ
∧
δ X = ( A T . A) −1 A.T δL 43
)mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007
11
ﺷﺮط هﻢ ﺹﻔﺤﻪ اي ﺗﻘﺮﻳﺒﻲ
ﻣﻘﺎدیﺮ اوﻝﻴﻪ ؟
ﻓﺮض اول z’=z”=f : ﻓﺮض دوم :ﻧﻘﺎط اﺱﺘﺎﻧﺪارد ﻣﺪل ) ۶ﻧﻘﻄﻪ( ﺑﻪ ﺻﻮرت ﻗﺮیﻨﻪ ﺑﺎﺵﻨﺪ 4 ﻓﺮض ﺱﻮم bY = bZ = 0 :
3
w =ϕ = 0 ' k = AZ a"b" − AZ a 'b
2
1
bY = bZ = 0
6
5
b d
b dby 0 dbz b dw 0 dϕ b dk 0
0 0 bd
0 1 0 1 bd 1 + d 2
0 bd 0
bd 1 + d 2 bd 1 + d 2 bd 1 + d 2
py1 − b py − b 2 py3 − b = py4 − b py5 − b py6 − b
1 ]) [( p2 + p4 + p6 ) − ( p1 + p3 + p5 3 1 ]) dw = 2 [2( p1 + p2 ) − ( p3 + p4 + p5 + p6 4d 1 = dϕ ]) [( p4 − p6 ) − ( p3 − p5 2bd 1 = dby ) dw(3 + 2d 2 ) + ( p2 + p4 + p6 3b 1 = dbz ) ( p6 − p4 2bd
ﻣﺰیﺖ ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺧﻄﻲ ﺑﺮ ﺵﺮط هﻢ ﺻﻔﺤﻪ اي در ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ؟ ﭘﺲ از ﺱﺮﺵﻜﻨﻲ ﻣﺪل ،ﻣﺪل ﺱﻪ ﺑﻌﺪي ﻣﻌﻠﻮم اﺱﺖ .ﭘﺲ اﺣﺘﻴﺎﺟﻲ ﺑﻪ ﺗﻘﺎﻃﻊ ﻓﻀﺎیﻲ ﻧﻴﺴﺖ.
= dk
]
46
∧
ﻣﺰیﺖ ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺻﻔﺤﻪ اي ﺑﺮ ﺵﺮط هﻢ ﺧﻄﻲ در ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ؟ ﻧﻴﺎزي ﺑﻪ ﻣﺤﺎﺱﺒﺎت ﭘﻴﭽﻴﺪﻩ ﻣﻘﺎدیﺮ اوﻝﻴﻪ ﺑﺮاي ﭘﺎراﻣﺘﺮهﺎي ﻣﺠﻬﻮل ﻧﻴﺴﺖ. ﺵﺮط هﻢ ﺧﻄﻲ ﺑﺎ ﻓﻀﺎي ﺗﺼﻮیﺮ و ﻣﺪل ﺱﺮوآﺎر دارد ،در ﺣﺎﻝﻴﻜﻪ ﺵﺮط هﻢ ﺻﻔﺤﻪ اي ﺗﻨﻬﺎ ﺑﺎ ﻓﻀﺎي ﺗﺼﻮیﺮ ﺱﺮوآﺎر دارد. اﺑﻌﺎد آﻮﭼﻚ ﻣﺎﺗﺮیﺲ ﻧﺮﻣﺎل .ﺑﺎ اﻓﺰایﺶ ﻧﻘﺎط ،و ﻣﺎﺗﺮیﺲ ﻧﺮﻣﺎل ﺑﺰرگ ﻧﻤﻲ ﺵﻮد
X = ( AT . A) −1 A.T L
[
45
)mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007
12