Ch5

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ch5 as PDF for free.

More details

  • Words: 4,347
  • Pages: 12
‫داﻧﺸﮕﺎﻩ اﻣﺎم ﺣﺴﻴﻦ )ع(‬

‫ﻓﺼﻞ ‪:۵‬‬ ‫ﻋﻨﻮان درس ‪:‬‬

‫ﻣﻌﺎدﻻت رﻳﺎﺿﯽ ﺗﺤﺖ ﺷﺮاﻳﻂ ﻓﺘﻮﮔﺮاﻣﺘﺮی‬ ‫ﺟﻬﺖ ارﺗﺒﺎط ﺑﻴﻦ ﺗﺼﻮﻳﺮ و زﻣﻴﻦ‬

‫‪Analytical Photogrammetry‬‬

‫اراﺋﻪ دهﻨﺪﻩ ‪:‬‬

‫ﺻﻔﺎ ﺧﺰاﺋﻲ‬ ‫‪E-mail: [email protected]‬‬ ‫ﻧﻴﻤﺴﺎل ﺗﺤﺼﻴﻠﯽ ‪٨۵-٨۶-٢ :‬‬ ‫‪1‬‬

‫‪2‬‬

‫ﻣﻌﺎدﻻت هﻢ ﺧﻄﯽ‬

‫ﮐﻤﭙﺎراﺗﻮر‬ ‫ﺗﻮﺟﻴﻪ داﺧﻠﯽ‬

‫‪Collinearity Equations‬‬

‫ﺑﺎ ﻓﺮض ﺡﺬف اﻋﻮﺟﺎﺟﺎت و اﻧﺠﺎم ﺗﻮﺟﻴﻪ داﺧﻠﻲ‬ ‫ﺗﻮﺟﻴﻪ ﻧﺴﺒﯽ‬

‫ﺗﺼﻮﻳﺮ‬

‫ﺗﺒﺪﻳﻼت ‪ 2D‬و ‪3D‬‬

‫ﻣﺪل‬

‫ﺗﻮﺟﻴﻪ ﻣﻄﻠﻖ‬

‫‪4‬‬

‫ﻣﻌﺎدﻻت رﻳﺎﺿﯽ ﺗﺤﺖ‬ ‫ﺷﺮاﻳﻂ ﻓﺘﻮﮔﺮاﻣﺘﺮی‬

‫زﻣﻴﻦ‬

‫‪3‬‬

‫)‪mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007‬‬

‫‪1‬‬

z

OA = k* R * Oa (kϕw) Oa

y

κ

= λ * M * OA ( wϕk )

φ

O (X0 Y0 Z0)

-c

ω x

y x

Z a (x, y, –c)

Y A (X Y Z) ٥

X ٦

 x a   x p   xa − x p  oa =  ya  −  y p  =  ya − y p  − c   0   − c  →

Oa

OA

٧

٨

mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007)

2

Oa

= λ * M * OA ( wϕk )

.‫ ﻣﻌﺎدﻝﻪ اول را ﺑﺮ ﻣﻌﺎدﻝﻪ ﺱﻮم ﺗﻘﺴﻴﻢ ﻣﻲ آﻨﻴﻢ‬٢ ‫ﺡﺎل‬ ٩

١٠

‫ﻣﻌﺎدﻻت هﻢ ﺧﻄﯽ‬ Collinearity Condition

‫ﺵﺮط هﻢ ﺧﻄﯽ‬

 m ( X − X 0 ) + m12 (Y − Y0 ) + m13 (Z − Z0 )  x = xo − f  11   m31( X − X 0 ) + m32 (Y − Y0 ) + m33 (Z − Z0 )  m ( X − X 0 ) + m22 (Y − Y0 ) + m23 (Z − Z0 )  y = yo − f  21   m31( X − X 0 ) + m32 (Y − Y0 ) + m33 (Z − Z0 ) 

‫ﻣﻌﺎدﻻت ﻣﻌﻜﻮس‬

Z0

 m (x − xo ) + m21( y − yo ) + m31(− f )  X = X0 + (Z − Z0 ) ⋅  11   m13(x − xo ) + m23( y − yo ) + m33(− f )

‫ ﺗﺎ‬۶ ‫ ﺗﺎ‬٣

‫ﺗﻌﺪاد پﺎراﻣﺘﺮهﺎ ؟‬

 m (x − xo ) + m22( y − yo ) + m32(− f ) Y = Y0 + (Z − Z0 ) ⋅  12   m13(x − xo ) + m23( y − yo ) + m33(− f ) 

‫ﺡﺪاﻗﻞ ﺗﻌﺪاد ﻧﻘﻄﻪ آﻨﺘﺮل ﻣﻮرد ﻧﻴﺎز ؟‬

X0 Y0 ١٢

11

mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007)

3

DLT ‫ﺗﻔﺎوت ﺗﻌﺪاد پﺎراﻣﺘﺮهﺎی ﺷﺮط هﻢ ﺧﻄﯽ و‬ ‫ﺟﻬﺖ ارﺗﺒﺎط ﺑﻴﻦ ﺗﺼﻮﻳﺮ و زﻣﻴﻦ‬

‫ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺧﻄﻲ‬

x − x0 = − f

M1 X M3X

M X y − y0 = − f 2 M3X

x =

 m11 M = m21 m31

m12 m22 m32

m13  M 1 m23  M 2 m33  M 3

.‫ ﭘﺎراﻣﺘﺮ اﺱﺖ‬٩ ‫ ﭘﺎراﻣﺘﺮ وﻝﻲ ﻣﻌﺪﻻت ﺵﺮط هﻢ ﺧﻄﻲ داراي‬١١ ‫ دارای‬DLT ‫ درﺣﺎﻝﻴﻜﻪ‬،‫ ﻓﻀﺎی ﺧﺎم دو ﺑﻌﺪی)آﻤﭙﺎراﺗﻮر( را ﺑﻪ ﻓﻀﺎی ﺱﻪ ﺑﻌﺪی)زﻣﻴﻦ( ﻣﺮﺗﺒﻂ ﻣﯽ ﻧﻤﺎیﺪ‬DLT ‫ ﺑﻨﺎﺑﺮایﻦ اﺧﺘﻼف در‬.‫ ﻓﻀﺎی ﺗﺼﻮیﺮ را ﺑﻪ ﻓﻀﺎی ﺱﻪ ﺑﻌﺪی زﻣﻴﻦ ارﺗﺒﺎط ﻣﻲ دهﺪ‬،‫ﺵﺮط هﻢ ﺧﻄﯽ‬ .‫ﻓﻀﺎی ﺗﺼﻮیﺮ اﺱﺖ‬ .‫ ﻣﯽ ﺑﺎﺵﺪ‬nonnon-orthogonality ‫ و‬affinity ‫ ﭘﺎراﻣﺘﺮ‬٢ ‫ﺑﻨﺎﺑﺮایﻦ اﺧﺘﻼف در‬

X − X0 X =  Y − Y0   Z − Z 0 

a1 X + a 2Y + a 3 Z + a 4 c1 X + c 2Y + c 3 Z + 1

b X + b 2Y + b3 Z + b 4 y = 1 c1 X + c 2 Y + c 3 Z + 1

δα

„

„

λx ≠ λ y

‫ ﺑﺮای دورﺑﻴﻨﻬﺎی ﻏﻴﺮ ﻣﺘﺮیﮏ‬-‫ ﺱﺮیﻊ و ﺁﺱﺎن ﺑﻮدﻩ – هﻤﻴﺸﻪ ﺟﻮاﺑﮕﻮ ﻧﻴﺴﺖ‬-‫ ﺧﻄﯽ اﺱﺖ‬:DLT .‫ دﻗﻴﻖ ﺑﻮدﻩ و هﻤﻮارﻩ ﺟﻮاﺑﮕﻮ هﺴﺘﻨﺪ‬-‫ ﻏﻴﺮ ﺧﻄﯽ اﻧﺪ و ﻧﻴﺎز ﺑﻪ ﺧﻄﯽ ﺱﺎزی دارﻧﺪ‬: ‫ﺵﺮط هﻢ ﺧﻄﯽ‬

DLT Transformation

„

„ „

١٣ 14

Collinearity Equation Linearization

‫ﺧﻄﻲ ﺱﺎزي ﻣﻌﺎدﻻت هﻢ ﺧﻄﻲ‬ ‫ﺑﻪ آﻤﻚ ﺑﺴﻂ ﺱﺮي ﺗﻴﻠﻮر‬

‫ﻣﻌﺎدﻝﻪ اول‬

Tayler power series very good approximation

 m ( X − X 0 ) + m12 (Y − Y0 ) + m13 (Z − Z0 )  x = x p − f  11   m31( X − X 0 ) + m32 (Y − Y0 ) + m33 (Z − Z0 )

c11 =  m ( X − X 0 ) + m22 (Y − Y0 ) + m23 (Z − Z0 ) y = y p − f  21   m31( X − X 0 ) + m32 (Y − Y0 ) + m33 (Z − Z0 ) 

f [r ⋅ (cos φ ⋅ ∆X + sin ω ⋅ sin φ ⋅ ∆Y − cos ω ⋅ sin φ ⋅ ∆Z ) q2 − q ⋅ (− sin φ ⋅ cos κ ⋅ ∆X + sin ω ⋅ cos φ ⋅ cos κ ⋅ ∆Y − cos ω ⋅ cos φ ⋅ cos κ ⋅ ∆Z )]

c12 =

‫ ؟‬f ‫ﻣﺸﺘﻖ ﻧﺴﺒﺖ ﺑﻪ‬

dx = c11dω + c12 dφ + c13 dκ − c14 dX 0 − c15 dY0 − c16 dZ 0 + c14 dX + c15 dY + c16 dZ dy = c21dω + c22 dφ + c23 dκ − c24 dX 0 − c25 dY0 − c26 dZ 0 + c24 dX + c25 dY + c26 dZ dX0, dY0, dZ0 = corrections to exposure station location dXA, dYA, dZA = corrections to ground coordinates

r q

f [r ⋅ (− m 33 ⋅ ∆Y + m 32 ⋅ ∆Z ) − q ⋅ ( −m13 ⋅ ∆Y + m12 ⋅ ∆Z )] q2

c13 = −

where: c’s = coefficients equal to partial derivatives dω, dφ, dκ = corrections to angular attitude

x − xo = − f

f (m 21 ⋅ ∆X + m 22 ⋅ ∆Y + m 23 ⋅ ∆Z ) q

f (r ⋅ m31 − q ⋅ m11) q2 f c15 = 2 (r ⋅ m 32 − q ⋅ m12) q f c16 = 2 (r ⋅ m33 − q ⋅ m13) q c14 =

١٥

١٦

mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007)

4

‫‪s‬‬ ‫‪q‬‬

‫ﺡﻞ ﻣﺴﺎﺋﻞ ﻓﺘﻮﮔﺮاﻣﺘﺮی‬

‫‪y − yo = − f‬‬

‫ﻣﻌﺎدﻝﻪ دوم‬

‫‪f‬‬ ‫]) ‪c21 = 2 [ s ⋅ ( − m33 ⋅ ∆Y + m32 ⋅ ∆Z ) − q ⋅ ( − m 23 ⋅ ∆Y + m 22 ⋅ ∆Z‬‬ ‫‪q‬‬

‫„ ﻣﺴﺎﺋﻞ ﻣﺮﺑﻮط ﺑﻪ یﮏ ﻋﮑﺲ‬ ‫„ ﻣﺴﺎﺋﻞ ﻣﺮﺑﻮط ﺑﻪ یﮏ زوج ﻋﮑﺲ‬ ‫„ ﻣﺴﺎﺋﻞ ﻣﺮﺑﻮط ﺑﻪ ﺑﻴﺶ از یﮏ زوج ﻋﮑﺲ )ﻣﺜﻠﺚ ﺑﻨﺪی(‬

‫‪f‬‬ ‫) ‪[ s ⋅ (cos φ ⋅ ∆X + sin ω ⋅ sin φ ⋅ ∆Y − cos ω ⋅ sin φ ⋅ ∆Z‬‬ ‫‪q2‬‬ ‫]) ‪− q ⋅ (− sin φ ⋅ sin κ ⋅ ∆X − sin ω ⋅ cos φ ⋅ sin κ ⋅ ∆Y + cos ω ⋅ cos φ ⋅ sin κ ⋅ ∆Z‬‬

‫= ‪c22‬‬

‫‪f‬‬ ‫) ‪( m11 ⋅ ∆X + m12 ⋅ ∆Y + m13 ⋅ ∆Z‬‬ ‫‪q‬‬ ‫‪f‬‬ ‫)‪c24 = 2 ( s ⋅ m31 − q ⋅ m 21‬‬ ‫‪q‬‬ ‫‪f‬‬ ‫)‪c25 = 2 ( s ⋅ m32 − q ⋅ m 22‬‬ ‫‪q‬‬ ‫= ‪c23‬‬

‫‪f‬‬ ‫)‪( s ⋅ m33 − q ⋅ m 23‬‬ ‫‪q2‬‬

‫= ‪c26‬‬

‫‪١٧‬‬ ‫‪18‬‬

‫ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﻲ ﺑﺎ ﻳﻚ ﻋﻜﺲ‬

‫ﺡﻞ ﻣﺴﺎﺋﻞ ﻓﺘﻮﮔﺮاﻣﺘﺮی‬ ‫„ ﻣﺴﺎﺋﻞ ﻣﺮﺑﻮط ﺑﻪ یﮏ ﻋﮑﺲ‬

‫ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﻲ ‪ :‬ﺗﻬﻴﻪ ﻧﻘﺸﻪ از ﻳﮏ ﻋﮑﺲ‬

‫در اﺑﺘﺪا ﺑﺎیﺴﺘﯽ دو کﺎر ذیﻞ ﺗﻮاﻣﺎ اﻧﺠﺎم ﮔﺮدﻧﺪ ‪:‬‬

‫ ﺣﺨﻒ ﺧﻄﺎهﺎی ﺱﻴﺴﺘﻤﺎﺗﻴﮏ)اﻋﻮﺟﺎﺟﺎت(‬‫‪ -‬ﺗﻮﺟﻴﻪ داﺧﻠﯽ‪ :‬از ﺱﻴﺴﺘﻢ ﻣﺨﺘﺼﺎت کﻤﭙﺎراﺗﻮر ﺑﻪ ﻋﮑﺲ ﺑﺮویﻢ‬

‫در ﻣﺮﺡﻠﻪ ﺑﻌﺪ ‪:‬‬ ‫‪ -١‬ﻣﺤﺎﺱﺒﻪ اﻝﻤﺎﻧﻬﺎی ﺗﻮﺟﻴﻪ ﺧﺎرﺟﯽ دورﺑﻴﻦ )‪(EOP‬‬ ‫‪ -٢‬ﻣﺤﺎﺱﺒﻪ ﻣﺨﺘﺼﺎت زﻣﻴﻨﯽ هﺮ ﻧﻘﻄﻪ اﺧﺘﻴﺎری‬

‫‪20‬‬

‫ﺗﺮﻓﻴﻊ ﻓﻀﺎﻳﯽ‬

‫ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﻲ‬

‫ﺗﻘﺎﻃﻊ ﻓﻀﺎﻳﯽ‬

‫‪19‬‬

‫)‪mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007‬‬

‫‪5‬‬

Space Resection

‫ ﺗﺮﻓﻴﻊ ﻓﻀﺎیﯽ‬-١

‫ﻣﺨﺘﺼﺎت ﻧﻘﺎط آﻨﺘﺮل زﻣﻴﻨﻲ ﻣﻌﻠﻮم ﻣﻲ ﺑﺎﺵﺪ‬

0

‫ﻣﻘﺎدﻳﺮ اوﻝﻴﻪ پﺎراﻣﺘﺮهﺎی ﻣﺠﻬﻮل ؟‬ 0

0

dx = c11dω + c12 dφ + c13 dκ − c14 dX 0 − c15 dY0 − c16 dZ 0 + c14 dX + c15 dY + c16 dZ 0

0

dy = c21dω + c22 dφ + c23 dκ − c24 dX 0 − c25 dY0 − c26 dZ 0 + c24 dX + c25 dY + c26 dZ ١ ‫ﻧﻘﻄﻪ‬

 dx1   c11 c12  dy  c  1   21 c22  .   . .  = . . .    dxn   c11 c12    dyn  c21 c22

c13 c23

− c14 − c24

− c15 − c25

.

.

.

.

.

.

c13 c23

− c14 − c24

− c15 − c25

2n × 1

− c16   dω  − c26   dϕ  .   dk  .  .  dX 0    − c16 dY0    − c26   dZ 0  2n × 6

n ‫ﻧﻘﻄﻪ‬

0

ω0 = ϕ 0 = 0 2D similarity ‫ﺗﺒﺪﻳﻞ‬

a     X   x y 1 0  b   Y  =  y − x 0 1  c        d 

X = ( A T . A) −1 . AT .L

λ0 = a 2 + b 2 b K 0 = Arc tan( ) a

X0 = c Y0 = d K 0 = AZ AB − AZ ab = Arc tan(

YB − Y A y − yA ) − Arc tan( B ) XB − XA xB − x A



Z 0 = λ. f + h AB

6× 1



‫ ﺗﺎ‬٣ ‫ﺡﺪاﻗﻞ ﻧﻘﺎط آﻨﺘﺮل ﻣﻮرد ﻧﻴﺎز ؟‬

Z 0 = H − h AB



δ X = ( A T . A) −1 A.T δL

٢١

٢٢

‫ ﻣﺤﺎﺱﺒﻪ ﻣﺨﺘﺼﺎت زﻣﻴﻨﯽ هﺮ ﻧﻘﻄﻪ اﺧﺘﻴﺎری‬-٢

‫ ﻣﺤﺎﺱﺒﻪ ﻣﺨﺘﺼﺎت زﻣﻴﻨﯽ هﺮ ﻧﻘﻄﻪ اﺧﺘﻴﺎری‬-٢

‫ﻣﻌﺎدﻻت ﻣﻌﻜﻮس هﻢ ﺧﻄﻲ‬

‫ﻣﻮﻗﻌﻴﺖ و وﺿﻌﻴﺖ ﻣﺮآﺰ ﺗﺼﻮﻳﺮ ﻣﻌﻠﻮم اﺱﺖ‬ O a

 m (x − xo ) + m21( y − yo ) + m31(− f )  X = X0 + (Z − Z0 ) ⋅  11   m13(x − xo ) + m23( y − yo ) + m33(− f )  m (x − xo ) + m22( y − yo ) + m32(− f ) Y = Y0 + (Z − Z0 ) ⋅  12   m13(x − xo ) + m23( y − yo ) + m33(− f )  ‫( ﻣﻮﺟﻮد ﺑﺎﺷﺪ‬DTM) ‫ ﺑﺎﻳﺪ ﻣﺪل رﻗﻮﻣﻲ ارﺗﻔﺎﻋﻲ زﻣﻴﻦ‬: ‫ﺑﺮاي ﺡﻞ‬

Terrain Surface A2

‫زﻣﻴﻦ ﻣﺴﻄﺢ ﺑﺎﺷﺪ‬

‫ﺗﻘﺎﻃﻊ‬ A

Vertical View Plane

X=

a1 x + a2 y + a3 c1 x + c2 y + 1

Y=

b1 x + b2 y + b3 c1 x + c2 y + 1

‫ اﺱﺎس ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﯽ‬2D Projective

: ‫ﺑﻨﺎﺑﺮایﻦ‬ ‫ ﻣﻌﺎدﻻت ﭘﺮوژآﺘﻴﻮ دو ﺑﻌﺪي ) اﺣﺘﻴﺎﺟﻲ ﺑﻪ ﺗﻮﺟﻴﻪ داﺧﻠﻲ ﻧﺪاﺵﺘﻪ و ﻣﺴﺘﻘﻴﻤﺎ از‬: ‫• اﮔﺮ زﻣﻴﻦ ﻣﺴﻄﺢ ﺑﺎﺵﺪ‬ (‫ﻣﺨﺘﺼﺎت دﺱﺘﮕﺎهﻲ ﺑﻪ زﻣﻴﻦ ﻣﻲ رﺱﻴﻢ‬ A1

Z0 ٢٣

‫ ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺧﻄﻲ‬: ‫• اﮔﺮ زﻣﻴﻦ ﻧﺎ ﻣﺴﻄﺢ ﺑﺎﺵﺪ‬

٢٤

mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007)

6

‫ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﯽ ﺑﺎ اﺱﺘﻔﺎدﻩ از ﻳﮏ زوج ﻋﮑﺲ‬

‫ﺗﺮﻣﻴﻢ ﺗﺤﻠﻴﻠﻲ ﺑﺎ ﻳﻚ زوج ﻋﻜﺲ‬

‫ﺗﺮﻓﻴﻊ ﻓﻀﺎﻳﯽ‬

(EOP) ‫ ﻣﺤﺎﺱﺒﻪ اﻝﻤﺎﻧﻬﺎی ﺗﻮﺟﻴﻪ ﺧﺎرﺟﯽ دورﺑﻴﻦ‬-١

‫ﺗﻘﺎﻃﻊ ﻓﻀﺎﻳﯽ‬

‫ ﻣﺤﺎﺱﺒﻪ ﻣﺨﺘﺼﺎت زﻣﻴﻨﯽ هﺮ ﻧﻘﻄﻪ اﺧﺘﻴﺎری‬-٢

‫ ﺗﺮﻓﻴﻊ و ﺗﻘﺎﻃﻊ ﻓﻀﺎیﻲ‬: ‫راﻩ ﺣﻞ اول‬ ‫ اﻧﺠﺎم ﻣﺮاﺣﻞ ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ و ﻣﻄﻠﻖ‬: ‫راﻩ ﺣﻞ دوم‬

25

26

‫ ﺗﺮﻓﻴﻊ ﻓﻀﺎیﯽ‬-١

‫ ﺗﻘﺎﻃﻊ ﻓﻀﺎیﯽ‬-٢

‫ﻣﺸﺨﺺ آﺮدن ﻣﻮﻗﻌﻴﺖ و وﺽﻌﻴﺖ ﻣﺮاآﺰ ﺗﺼﻮیﺮ دو ﻋﻜﺲ‬ c c  dx'1    dy '  c c  1  .  .   .   .  .  .   ' '  dx'n   c11 c12  c ' c '   dy 'n  =  21 22 0  dx"   0  1  0 0  dx"1   0  .  0    0  .  0 dx"n   0 0 dy"n   0 0 ' 11 ' 21

' 12 ' 22

c c

−c −c

−c −c

−c −c

. .

. .

. .

. .

c13' ' c23

− c14' ' − c24

− c15' ' − c25

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

0 0

c11"

c12"

c13"

0

" 21

" 22

" 23

' 13 ' 23

0

' 14 ' 24

0

' 15 ' 25

0

' 16 ' 26

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 − c16' ' − c26 (n) 0

0 0

0 0

0 0

0 0

c11" c12" " " c21 c22

c13" " c23

− c14" " − c24

− c15" " − c25

(1)

c

c

c

− c14"

− c15"

−c

−c

" 24

4n×1 ‫ ﺗﺎ‬٣ ‫ﺡﺪاﻗﻞ ﻧﻘﺎط آﻨﺘﺮل ﻣﻮرد ﻧﻴﺎز ؟‬

" 25

0

0    dω '  0  dϕ '  0    dk '  0    dX '0  0   dY '0  0   dZ '  0 .  − c16"   dω"   "  − c26  dϕ "    dk "  (1)     dX "0  (n)   "  dY "0 − c16     dZ "0  "  − c26 

0

0

0



0

0

0

0

0

0

0

dy = c21dω + c22 dφ + c23 dκ − c24 dX 0 − c25 dY0 − c26 dZ 0 + c24 dX + c25 dY + c26 dZ

 dx '   c14'  dy '   '    c 24  .   .  =  .   .  dx "   c14"    "  dy "   c 24

c16'  '  c 26   dX .   . dY .   dZ "   c16  " c 26 

c15' ' c 25 .

. c15" " c 25

    3×1

4n×3

4n×1 ∧

4n×12

δ X = ( A T . A) −1 A.T δL

0

dx = c11dω + c12 dφ + c13 dκ − c14 dX 0 − c15 dY0 − c16 dZ 0 + c14 dX + c15 dY + c16 dZ

δ X = ( A . A) A.T δL ٢٧

T

−1

٢٨

mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007)

7

‫ﻣﻘﺎدﻳﺮ اوﻝﻴﻪ پﺎراﻣﺘﺮهﺎی ﻣﺠﻬﻮل ؟‬

‫راﻩ ﺣﻞ دوم ‪:‬‬ ‫اﻧﺠﺎم ﻣﺮاﺣﻞ ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ و ﻣﻄﻠﻖ ﺑﻄﻮر ﺟﺪاﮔﺎﻧﻪ‬

‫‪B = ( X "0 − X '0 ) 2 + (Y "0 −Y '0 ) 2‬‬ ‫"‪p = x'− x‬‬

‫‪O2‬‬

‫'‪B.x‬‬ ‫‪P‬‬ ‫' ‪x” Y = B. y‬‬ ‫‪P‬‬ ‫=‪X‬‬

‫ﺗﻮﺟﻴﻪ ﻧﺴﺒﯽ ﺑﺎ ﺷﺮط هﻢ ﺧﻄﯽ‬

‫‪B‬‬

‫”‪y‬‬

‫’‪x‬‬ ‫”‪a‬‬

‫‪O1‬‬

‫’‪y‬‬ ‫’‪a‬‬

‫‪B. f‬‬ ‫‪Z = Z '0 −‬‬ ‫‪p‬‬

‫‪A‬‬

‫‪29‬‬ ‫‪30‬‬

‫ﺗﻮﺟﻴﻪ ﻧﺴﺒﯽ ﺑﺎ ﺷﺮط هﻢ ﺧﻄﯽ‬

‫‪b‬‬

‫‪O2‬‬

‫در ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ‪ ،‬هﺪف ‪ :‬ﻣﺸﺨﺺ آﺮدن وﺽﻌﻴﺖ ﻧﺴﺒﻲ دو دورﺑﻴﻦ‬

‫’‪y‬‬

‫”‪y‬‬

‫در ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ اﺑﺘﺪا ﺑﺎیﺴﺘﻲ ﻣﺸﺨﺺ آﻨﻴﻢ آﻪ از ﭼﻪ روﺵﻲ اﺱﺘﻔﺎدﻩ ﻣﻲ آﻨﻴﻢ ‪ :‬یﻜﻄﺮﻓﻪ یﺎ دو ﻃﺮﻓﻪ‬ ‫ﻓﺮض ‪ :‬یﻜﻄﺮﻓﻪ‬ ‫ﺑﻨﺎﺑﺮایﻦ ‪ ۶ :‬اﻝﻤﺎن ﺗﻮﺟﻴﻪ ﺧﺎرﺟﻲ را ﺑﺮاي ﻋﻜﺲ ﺱﻤﺖ راﺱﺖ یﺎ ﭼﭗ را ﺙﺎﺑﺖ ﻓﺮض ﻣﻴﻜﻨﻴﻢ‪ .‬ﺑﻨﺎﺑﺮایﻦ‬ ‫ﻣﺸﺘﻘﺎت ﺟﺰﺋﻲ ﺁﻧﻬﺎ ﺻﻔﺮ اﺱﺖ‬

‫”‪x‬‬

‫‪O1‬‬

‫’‪x‬‬ ‫”‪a‬‬

‫’‪a‬‬

‫‪dx' = c'14 dX + c'15 dY + c'16 dZ‬‬

‫ﺑﺮاي ﻋﻜﺲ ﺱﻤﺖ ﭼﭗ‬ ‫ﺑﺮاي ﻋﻜﺲ ﺱﻤﺖ راﺱﺖ‬

‫‪dy ' = c '24 dX + c'25 dY + c'26 dZ‬‬

‫‪0‬‬

‫" ‪dx" = c"11 dω"+c"12 dφ "+c"13 dκ "−c"14 dX "0 −c"15 dY "0 −c"16 dZ "0 +c"14 dX "+c"15 dY "+c"16 dZ‬‬

‫‪0‬‬

‫" ‪dy" = c"21 dω"+c"22 dφ "+c"23 dκ "−c"24 dX "0 −c"25 dY "0 −c"26 dZ "0 +c"24 dX "+c"25 dY "+c"26 dZ‬‬

‫‪A‬‬ ‫ﺗﻌﺪاد ﻣﻌﺎدﻻت ‪4n :‬‬ ‫ﺗﻌﺪاد ﻣﺠﻬﻮﻻت ‪3n+5 :‬‬

‫ﺣﺪاﻗﻞ ﺗﻌﺪاد ﻧﻘﻄﻪ آﻨﺘﺮل ﻣﻮرد ﻧﻴﺎز ‪ ۵ :‬ﺗﺎ‬ ‫‪٣١‬‬

‫‪32‬‬

‫)‪mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007‬‬

‫‪8‬‬

‫ﻣﻘﺎدﻳﺮ اوﻝﻴﻪ پﺎراﻣﺘﺮهﺎی ﻣﺠﻬﻮل ؟‬ ‫در ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ﺑﺎ ﺵﺮط هﻢ ﺧﻄﻲ ﭼﻨﺎﻧﭽﻪ از ‪ ٢٠‬ﻧﻘﻄﻪ اﺱﺘﻔﺎدﻩ آﻨﻴﻢ‪ ،‬ﺗﻌﺪاد ﻣﺠﻬﻮﻻت ؟‬ ‫اﺑﻌﺎد ﻣﺎﺗﺮیﺲ ﻧﺮﻣﺎل ؟‬

‫‪3*20+5=65‬‬

‫‪w" = 0‬‬

‫‪ϕ"= 0‬‬

‫)‪(65)* (65‬‬ ‫' ‪a 'b‬‬

‫‪− AZ‬‬

‫" ‪a "b‬‬

‫‪O2‬‬

‫‪k " = AZ‬‬

‫‪b m = arbitary‬‬ ‫‪= bm‬‬

‫ﻣﻌﺎیﺐ ایﻦ روش ؟‬ ‫‪ -١‬اﺑﻌﺎد ﺑﺰرگ ﻣﺎﺗﺮیﺲ ﻧﺮﻣﺎل‬ ‫‪ -٢‬ﺑﺪﺱﺖ ﺁوردن ﻣﻘﺎدیﺮ ﺗﻘﺮیﺒﻲ)اوﻝﻴﻪ( ﻧﻴﺎز اﺱﺖ‬

‫?‪H‬‬

‫”‪y‬‬ ‫”‪x‬‬

‫’‪x‬‬ ‫”‪a‬‬

‫’‪y‬‬ ‫’‪a‬‬

‫‪Z‬‬

‫‪A‬‬

‫‪33‬‬

‫در ﺵﺮط هﻢ ﺧﻄﻲ ﻓﺮض ﻣﺎ ﺑﺮ ایﻦ ﺑﻮد آﻪ ﭘﺎﻻیﺶ ﻋﻜﺴﻲ و ﺗﻮﺟﻴﻪ داﺧﻠﻲ اﻧﺠﺎم ﮔﺮﻓﺘﻪ اﺱﺖ‪.‬‬ ‫اﻣﺎ ﭼﻨﺎﻧﭽﻪ از دورﺑﻴﻨﻬﺎي ﻏﻴﺮ ﻣﺘﺮیﻚ دیﺠﻴﺘﺎﻝﻲ)در ﻓﺘﻮﮔﺮاﻣﺘﺮي ﺑﺮد آﻮﺗﺎﻩ( اﺱﺘﻔﺎدﻩ ﻧﻤﺎﺋﻴﻢ‪ ،‬ﺑﺎیﺴﺘﻲ‬ ‫ﭘﺎراﻣﺘﺮهﺎي ﺗﻮﺟﻴﻪ داﺧﻠﻲ و ﻧﻴﺰ اﻋﻮﺟﺎﺟﺎت ﺵﻌﺎﻋﻲ و ﻣﻤﺎﺱﻲ ﻝﻨﺰ را ﻧﻴﺰ ﺑﻪ ﻋﻨﻮان ﻣﺠﻬﻮﻻت در ﻧﻈﺮ‬ ‫ﺑﮕﻴﺮیﻢ‪.‬‬ ‫ﺵﺮط هﻢ ﺧﻄﻲ ﺑﺎ ﭘﺎراﻣﺘﺮهﺎي اﺽﺎﻓﻲ‬

‫آﺎﻝﻴﺒﺮاﺱﻴﻮن دورﺑﻴﻨﻬﺎي ﻣﺘﺮیﻚ ‪:‬‬ ‫‪ -١‬ﻓﺎﺻﻠﻪ آﺎﻧﻮﻧﻲ )اﺻﻠﻲ(‬ ‫‪ -٢‬ﻣﻮﻗﻌﻴﺖ ﻧﻘﻄﻪ اﺻﻠﻲ ﻧﺴﺒﺖ ﺑﻪ ﻓﻴﺪوﺵﺎل ﻣﺎرآﻬﺎ‬ ‫‪ -٣‬ﻣﺨﺘﺼﺎت ﻓﻴﺪوﺵﺎل ﻣﺎرآﻬﺎ‬ ‫‪ -۴‬ﻣﺸﺨﺼﺎت اﻋﻮﺟﺎﺟﺎت)ﺵﻌﺎﻋﻲ و ﻣﻤﺎﺱﻲ( ﻝﻨﺰهﺎ‬

‫ﺗﻌﺪاد ﭘﺎراﻣﺘﺮهﺎي ﻣﺠﻬﻮل ؟ ‪6+3+6 = 15‬‬

‫‪36‬‬

‫‪= H‬‬

‫"‬ ‫‪0‬‬

‫" ‪p = x '− x‬‬ ‫' ‪b .x‬‬ ‫‪X = m‬‬ ‫‪P‬‬ ‫'‪b .y‬‬ ‫‪Y = m‬‬ ‫‪P‬‬ ‫‪b .f‬‬ ‫‪Z = H − m‬‬ ‫‪p‬‬

‫ﻣﺰیﺖ ایﻦ روش ؟‬ ‫ﻣﺨﺘﺼﺎت ﻣﺪل هﻤﺰﻣﺎن ﺑﺎ ﺣﻞ ﻣﺠﻬﻮﻻت ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ﻣﺤﺎﺱﺒﻪ ﻣﻲ ﮔﺮدﻧﺪ‪.‬‬

‫‪34‬‬

‫"‬ ‫‪0‬‬

‫‪X‬‬

‫‪Y 0" = 0 ,...‬‬

‫‪bm‬‬

‫‪O1‬‬

‫‪M1 X‬‬ ‫‪M3X‬‬

‫ﻣﻘﺪﻣﻪ اي ﺑﺮ‬ ‫‪Self Calibration‬‬

‫‪x − x0 + δx = −c‬‬

‫‪M X‬‬ ‫‪y − y0 + δy = −c 2‬‬ ‫‪M3X‬‬ ‫) ‪δx = F (c, x0 , y0 , k1 , k 2 , k3 , p1 , p2 , p3‬‬ ‫) ‪δy = G (c, x0 , y0 , k1 , k 2 , k3 , p1 , p2 , p3‬‬

‫‪35‬‬

‫)‪mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007‬‬

‫‪9‬‬

‫ﺷﺮط هﻢ ﺹﻔﺤﻪ ای‬

‫‪ D.L.T‬ﺑﺎ ﭘﺎراﻣﺘﺮهﺎي اﺽﺎﻓﻲ‬

‫‪Collinearity Condition‬‬

‫هﻨﺪﺱﻪ ‪Epipolar‬‬ ‫„‬ ‫„‬ ‫„‬

‫‪Epipolar plane‬‬ ‫‪Epipolar lines‬‬ ‫‪Conjugated points‬‬

‫‪a1 X + a 2Y + a 3 Z + a 4‬‬ ‫‪c1 X + c 2Y + c 3 Z + 1‬‬

‫= ‪x + δx‬‬

‫‪b1 X + b 2 Y + b 3 Z + b 4‬‬ ‫‪c1 X + c 2 Y + c 3 Z + 1‬‬

‫= ‪y + δy‬‬

‫) ‪δx = F (k1 , k 2 , k3 , p1 , p2 , p3‬‬ ‫) ‪δy = G (k1 , k 2 , k3 , p1 , p2 , p3‬‬

‫ﺻﻔﺤﻪ ﮔﺬرﻧﺪﻩ از ﻣﺮاآﺰ ﺗﺼﻮیﺮ و ﻧﻘﺎط‬ ‫ﻧﻈﻴﺮ ﻋﻜﺴﻲ در یﻚ ‪stereopair‬‬ ‫ﻣﺤﻞ ﺗﻼﻗﻲ ﺻﻔﺤﻪ اﭘﻲ ﭘﻮﻻر ﺑﺎ ﻋﻜﺲ هﺎ‬

‫ﺗﻌﺪاد ﭘﺎراﻣﺘﺮهﺎي ﻣﺠﻬﻮل ؟ ‪11+6 = 17‬‬

‫ﺱﻴﺴﺘﻢ ﻣﺨﺘﺼﺎت ﻣﺪل‬ ‫‪37‬‬

‫‪38‬‬

‫ﻣﻌﺎدﻻت هﻢ ﺻﻔﺤﻪ اي‬ ‫راﻩ ﺣﻞ اول ‪:‬‬

‫ﺷﺮط هﻢ ﺹﻔﺤﻪ ای‬

‫‪aX 0' + bY0' + cZ 0' + d = 0‬‬ ‫‪aX 0" + bY0" + cZ 0" + d = 0‬‬

‫‪Y‬‬

‫‪ax + by + cz + d = 0‬‬ ‫'‬

‫'‬

‫ﭼﻨﺪ ﺻﻔﺤﻪ اﭘﻲ ﭘﻮﻻر داریﻢ ؟‬

‫'‬

‫‪ax " + by " + cz " + d = 0‬‬

‫‪b‬‬

‫‪pc2‬‬

‫‪X‬‬

‫ﺑﺮاي ﻧﺸﺎن دادن یﻚ ﺻﻔﺤﻪ ‪ ٣ ،‬ﻧﻘﻄﻪ آﺎﻓﻴﺴﺖ‪ .‬ﭘﺲ یﻜﻲ‬ ‫از ﻣﻌﺎدﻻت اﺽﺎﻓﻲ اﺱﺖ یﺎ ﻣﺴﺘﻘﻞ ﻧﻴﺴﺖ‬

‫”‪y‬‬ ‫”‪x‬‬

‫‪a ( X − X 0' ) + b(Y0" − Y0' ) + c ( Z 0" − Z 0' ) = 0‬‬ ‫"‬ ‫‪0‬‬

‫‪ax ' + by ' + cz ' + d = 0‬‬

‫’‪x‬‬ ‫”‪a‬‬

‫‪pc1‬‬

‫’‪y‬‬

‫ﺑﻴﻨﻬﺎیﺖ‬

‫در ﭼﻪ ﺻﻮرت ﺻﻔﺤﻪ اﭘﻲ ﭘﻮﻻر ایﺠﺎد ﺧﻮاهﺪ ﺵﺪ؟ اﻧﺠﺎم ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ‬ ‫ﭘﺲ ﺵﺮط هﻢ ﺻﻔﺤﻪ اي دﻗﻴﻘﺎ ﻣﺨﻼف ﺵﺮط هﻢ ﺧﻄﻲ اﺱﺖ!‬

‫’‪a‬‬

‫‪ax" + by " + cz " + d = 0‬‬

‫‪Z‬‬

‫ﺑﻲ ﻧﻬﺎیﺖ ﺻﻔﺤﻪ اﭘﻲ ﭘﻮﻻر داریﻢ‪ .‬ﭘﺲ‬ ‫دﺗﺮﻣﻴﻨﺎن ﺽﺮایﺐ ﻣﻌﺎدﻻت ﺑﺎیﺴﺘﻲ ﺻﻔﺮ ﺑﺎﺵﺪ‬ ‫‪bz‬‬ ‫‪b = bx2 + by2 + bz2‬‬

‫‪٤٠‬‬

‫‪by‬‬

‫‪∆Z‬‬

‫‪bx‬‬

‫‪x' y ' z ' = 0‬‬ ‫"‪x" y" z‬‬

‫‪or‬‬

‫‪z' = 0‬‬ ‫"‪z‬‬

‫‪∆Y‬‬

‫‪∆X‬‬

‫'‪y‬‬ ‫"‪y‬‬

‫'‪x‬‬ ‫"‪x‬‬

‫‪A‬‬

‫ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺻﻔﺤﻪ اي‬ ‫‪39‬‬

‫)‪mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007‬‬

‫‪10‬‬

‫ﻣﻌﺎدﻻت هﻢ ﺻﻔﺤﻪ اي‬

‫راﻩ ﺣﻞ ﺱﻮم ‪:‬‬

‫ﻣﻌﺎدﻻت هﻢ ﺻﻔﺤﻪ اي‬

‫راﻩ ﺣﻞ دوم ‪:‬‬

‫→‬

‫→‬

‫→‬

‫‪b − R1 + R2 = 0‬‬

‫→‬

‫→‬

‫→‬

‫‪pc2‬‬

‫‪b .( R1× R 2 ) = 0‬‬ ‫‪by‬‬

‫‪bx‬‬

‫‪z1 = 0‬‬

‫‪y1‬‬

‫‪x1‬‬

‫‪bz‬‬ ‫‪z2‬‬

‫‪y2‬‬

‫‪x2‬‬

‫‪b‬‬

‫”‪y‬‬ ‫”‪x‬‬

‫ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺻﻔﺤﻪ اي‬

‫’‪x‬‬ ‫”‪a‬‬

‫’‪a‬‬

‫‪R2‬‬

‫‪R1‬‬

‫ﭘﺎراﻣﺘﺮهﺎي ﻣﺠﻬﻮل )در ﺗﻘﺎﻃﻊ ﻓﻀﺎیﻲ(؟‬

‫→‬

‫‪ x2 ‬‬ ‫‪ x"− x0 ‬‬ ‫→‬ ‫‪b1 =  y2  M 2T  y"− y0 ‬‬ ‫‪ z 2 ‬‬ ‫‪ − f ‬‬

‫→‬

‫‪R2 = λ2 a2‬‬

‫"‬ ‫'‬ ‫‪bx   X 0 − X 0 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪b = by  =  Y0" − Y0' ‬‬ ‫"‬ ‫'‬ ‫‪bz   Z 0 − Z 0 ‬‬

‫‪ x1 ‬‬ ‫‪ x'− x0 ‬‬ ‫→‬ ‫‪a1 =  y1  = M 1T  y '− y0 ‬‬ ‫‪ z1 ‬‬ ‫‪ − f ‬‬

‫→‬

‫‪bx ‬‬ ‫‪ x1 ‬‬ ‫‪ x2 ‬‬ ‫‪b  − λ M T  y  + λ M T  y  = 0‬‬ ‫‪ y  1 1  1 2 2  2 ‬‬ ‫‪bz ‬‬ ‫‪ z1 ‬‬ ‫‪ z 2 ‬‬

‫‪A‬‬

‫‪ ١٢‬ﺗﺎ‬ ‫‪٤١‬‬

‫‪bz‬‬

‫ﺧﻄﻲ ﺱﺎزي ﻣﻌﺎدﻻت هﻢ ﺻﻔﺤﻪ اي‬

‫‪bx‬‬

‫‪x' y ' z ' = 0‬‬ ‫"‪x" y" z‬‬

‫‪c5(1)  dbY ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪c5( 2 )   dbZ ‬‬ ‫‪.   dw ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪.   dϕ ‬‬ ‫‪( n)  ‬‬ ‫‪‬‬ ‫‪dk‬‬ ‫‪c5  ‬‬ ‫اﺑﻌﺎد ﻣﺎﺗﺮیﺲ ﻧﺮﻣﺎل ؟‬ ‫‪5*5‬‬

‫( ‪F = F0 +‬‬

‫‪c1bY + c2bZ + c3 dw + c4 dϕ + c5 dk + c6 = 0‬‬

‫)‪c4(1‬‬ ‫)‪c4( 2‬‬

‫”‪a‬‬

‫’‪a‬‬

‫‪R2‬‬

‫‪R1‬‬

‫‪bz‬‬ ‫‪z1 = 0‬‬ ‫‪z2‬‬

‫‪by‬‬ ‫‪y1‬‬ ‫‪y2‬‬

‫‪bx‬‬ ‫‪x1‬‬ ‫‪x2‬‬

‫‪A‬‬

‫ﻣﺘﺪ ‪ :‬ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ یﻚ ﻃﺮﻓﻪ‬

‫‪F‬‬

‫)‪c3(1‬‬ ‫) ‪c3( 2‬‬

‫”‪x‬‬

‫’‪x‬‬

‫’‪y‬‬

‫ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ﺑﺎ ﻣﻌﺎدﻻت هﻢ ﺻﻔﺤﻪ اي‬

‫‪∂F‬‬ ‫‪∂F‬‬ ‫‪∂F‬‬ ‫‪∂F‬‬ ‫‪∂F‬‬ ‫( ‪) 0 dbY +‬‬ ‫"‪) 0 dbZ + ( ) 0 dx"+( ) 0 dy"+( ) 0 dz = 0‬‬ ‫"‪∂z‬‬ ‫"‪∂y‬‬ ‫"‪∂x‬‬ ‫‪∂∆Z‬‬ ‫‪∂∆Y‬‬

‫یﻚ ﻣﻌﺎدﻝﻪ ﺑﺮاي ‪ ٢‬ﻧﻘﻄﻪ ﻧﻈﻴﺮ ﻋﻜﺴﻲ‬

‫→‬

‫”‪y‬‬

‫→‬

‫‪b − λ1 a1 + λ2 a2 = 0‬‬

‫ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺻﻔﺤﻪ اي‬

‫‪by‬‬

‫‪pc2‬‬

‫‪ ٣‬ﻣﻌﺎدﻝﻪ داریﻢ ﺑﺎ دو ﻣﺠﻬﻮل‬ ‫یﻜﻲ را ﺣﺬف ﻣﻲ آﻨﻴﻢ‪ .‬ﺗﻨﻬﺎ یﻚ ﻣﻌﺎدﻝﻪ ﺑﺎﻗﻲ ﻣﻲ ﻣﺎﻧﺪ‪ .‬ﺁﻧﺮا ﺑﻪ ﺻﻮرت دﺗﺮﻣﻴﻨﺎﻧﻲ ﻣﻲ ﻧﻮیﺴﺴﻢ‬

‫‪٤٢‬‬

‫‪٤٤‬‬

‫‪R1 = λ1 a1‬‬

‫‪b‬‬

‫‪pc1‬‬

‫‪λ1 , λ2‬‬

‫‪ ١٢‬ﭘﺎراﻣﺘﺮﺗﻮﺟﻴﻪ ﺧﺎرﺟﻲ )اﻝﻤﺎﻧﻬﺎي وﺽﻌﻴﺖ و ﻣﻮﻗﻌﻴﺖ دو ﻣﺮآﺰ ﺗﺼﻮیﺮ(‬ ‫ﺣﺪاﻗﻞ ﺗﻌﺪاد ﻧﻘﻄﻪ آﻨﺘﺮل ؟‬

‫→‬

‫‪pc1‬‬

‫’‪y‬‬

‫→‬

‫)‪ c6(1)   c1(1‬‬ ‫)‪ ( 2 )   ( 2‬‬ ‫‪c6  c1‬‬ ‫‪ . = .‬‬ ‫‪  ‬‬ ‫‪ .   .‬‬ ‫) ‪c ( n )  c ( n‬‬ ‫‪ 6  1‬‬

‫)‪c2(1‬‬ ‫) ‪c2( 2‬‬

‫‪.‬‬

‫‪.‬‬

‫‪.‬‬

‫‪.‬‬

‫‪.‬‬

‫‪.‬‬

‫) ‪c4( n‬‬

‫) ‪c3( n‬‬

‫) ‪c2( n‬‬

‫ﻓﺮض ﻣﻲ آﻨﻴﻢ ﺽﺮیﺐ ﻣﻘﻴﺎس دو ﻋﻜﺲ )ﺑﺮاي ﺗﻤﺎم ﻧﻘﺎط دو ﻋﻜﺲ( ﺑﺮاﺑﺮ و یﻜﻲ ﺑﺎﺵﺪ‬ ‫ﻋﻜﺲ ﺱﻤﺖ ﭼﭗ را ﺙﺎﺑﺖ ﻣﻲ آﻨﻴﻢ‬ ‫ﭘﺎراﻣﺘﺮهﺎي ﻣﺠﻬﻮل ؟ ‪ ۵‬ﺗﺎ‬

‫"‪w" , ϕ " , k " , by" , bz‬‬

‫ﺣﺪاﻗﻞ ﺗﻌﺪاد ﻧﻘﺎط آﻨﺘﺮل ﻣﻮرد ﻧﻴﺎز ؟ ‪ ۵‬ﺗﺎ‬

‫ﻣﺮﺣﻠﻪ ﺑﻌﺪ ‪ :‬ﺗﻘﺎﻃﻊ ﻓﻀﺎیﻲ‬

‫∧‬

‫‪δ X = ( A T . A) −1 A.T δL‬‬ ‫‪43‬‬

‫)‪mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007‬‬

‫‪11‬‬

‫ﺷﺮط هﻢ ﺹﻔﺤﻪ اي ﺗﻘﺮﻳﺒﻲ‬

‫ﻣﻘﺎدیﺮ اوﻝﻴﻪ ؟‬

‫ﻓﺮض اول ‪z’=z”=f :‬‬ ‫ﻓﺮض دوم ‪ :‬ﻧﻘﺎط اﺱﺘﺎﻧﺪارد ﻣﺪل )‪ ۶‬ﻧﻘﻄﻪ( ﺑﻪ ﺻﻮرت ﻗﺮیﻨﻪ ﺑﺎﺵﻨﺪ‬ ‫‪4‬‬ ‫ﻓﺮض ﺱﻮم ‪bY = bZ = 0 :‬‬

‫‪3‬‬

‫‪w =ϕ = 0‬‬ ‫' ‪k = AZ a"b" − AZ a 'b‬‬

‫‪2‬‬

‫‪1‬‬

‫‪bY = bZ = 0‬‬

‫‪6‬‬

‫‪5‬‬

‫‪b‬‬ ‫‪d‬‬

‫‪b‬‬ ‫‪ dby ‬‬ ‫‪0 ‬‬ ‫‪dbz ‬‬ ‫‪b ‬‬ ‫‪  dw ‬‬ ‫‪0 ‬‬ ‫‪‬‬ ‫‪dϕ ‬‬ ‫‪b ‬‬ ‫‪  dk ‬‬ ‫‪0‬‬

‫‪0‬‬ ‫‪0‬‬ ‫‪bd‬‬

‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪bd 1 + d 2‬‬

‫‪0‬‬ ‫‪bd‬‬ ‫‪0‬‬

‫‪bd 1 + d 2‬‬ ‫‪bd 1 + d 2‬‬ ‫‪bd 1 + d 2‬‬

‫‪ py1  − b‬‬ ‫‪ py  − b‬‬ ‫‪ 2 ‬‬ ‫‪ py3  − b‬‬ ‫‪=‬‬ ‫‪‬‬ ‫‪ py4  − b‬‬ ‫‪ py5  − b‬‬ ‫‪ ‬‬ ‫‪‬‬ ‫‪ py6  − b‬‬

‫‪1‬‬ ‫]) ‪[( p2 + p4 + p6 ) − ( p1 + p3 + p5‬‬ ‫‪3‬‬ ‫‪1‬‬ ‫]) ‪dw = 2 [2( p1 + p2 ) − ( p3 + p4 + p5 + p6‬‬ ‫‪4d‬‬ ‫‪1‬‬ ‫= ‪dϕ‬‬ ‫]) ‪[( p4 − p6 ) − ( p3 − p5‬‬ ‫‪2bd‬‬ ‫‪1‬‬ ‫= ‪dby‬‬ ‫) ‪dw(3 + 2d 2 ) + ( p2 + p4 + p6‬‬ ‫‪3b‬‬ ‫‪1‬‬ ‫= ‪dbz‬‬ ‫) ‪( p6 − p4‬‬ ‫‪2bd‬‬

‫ﻣﺰیﺖ ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺧﻄﻲ ﺑﺮ ﺵﺮط هﻢ ﺻﻔﺤﻪ اي در ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ؟‬ ‫ﭘﺲ از ﺱﺮﺵﻜﻨﻲ ﻣﺪل‪ ،‬ﻣﺪل ﺱﻪ ﺑﻌﺪي ﻣﻌﻠﻮم اﺱﺖ‪ .‬ﭘﺲ اﺣﺘﻴﺎﺟﻲ ﺑﻪ ﺗﻘﺎﻃﻊ ﻓﻀﺎیﻲ ﻧﻴﺴﺖ‪.‬‬

‫= ‪dk‬‬

‫]‬

‫‪46‬‬

‫∧‬

‫ﻣﺰیﺖ ﻣﻌﺎدﻻت ﺵﺮط هﻢ ﺻﻔﺤﻪ اي ﺑﺮ ﺵﺮط هﻢ ﺧﻄﻲ در ﺗﻮﺟﻴﻪ ﻧﺴﺒﻲ ؟‬ ‫ﻧﻴﺎزي ﺑﻪ ﻣﺤﺎﺱﺒﺎت ﭘﻴﭽﻴﺪﻩ ﻣﻘﺎدیﺮ اوﻝﻴﻪ ﺑﺮاي ﭘﺎراﻣﺘﺮهﺎي ﻣﺠﻬﻮل ﻧﻴﺴﺖ‪.‬‬ ‫ﺵﺮط هﻢ ﺧﻄﻲ ﺑﺎ ﻓﻀﺎي ﺗﺼﻮیﺮ و ﻣﺪل ﺱﺮوآﺎر دارد‪ ،‬در ﺣﺎﻝﻴﻜﻪ ﺵﺮط هﻢ ﺻﻔﺤﻪ اي ﺗﻨﻬﺎ ﺑﺎ ﻓﻀﺎي ﺗﺼﻮیﺮ ﺱﺮوآﺎر دارد‪.‬‬ ‫اﺑﻌﺎد آﻮﭼﻚ ﻣﺎﺗﺮیﺲ ﻧﺮﻣﺎل‪ .‬ﺑﺎ اﻓﺰایﺶ ﻧﻘﺎط‪ ،‬و ﻣﺎﺗﺮیﺲ ﻧﺮﻣﺎل ﺑﺰرگ ﻧﻤﻲ ﺵﻮد‬

‫‪X = ( AT . A) −1 A.T L‬‬

‫[‬

‫‪45‬‬

‫)‪mathematical equations under photogrammetric conditions .... Safa Khazaei (winter, 2007‬‬

‫‪12‬‬

Related Documents

Ch5
June 2020 13
Ch5
October 2019 24
Ch5
November 2019 21
Ch5
November 2019 19
Ch5
October 2019 25
Ch5
June 2020 8