CMPE 150: Introduction to Computing
Functions
Functions • A function groups a set of related statements under a single title. • You can "call" the function using its name. • You may also provide parameters to the function during the call. • A function performs the actions defined by its statements and returns a result.
Spring 2008
CMPE 150 – Introduction to Computing
2
Motivation 1. Programming-in-the-large is feasible using functions: Divide and conquer. – Easier to develop – Easier to read and understand – Easier to maintain – Easier to reuse – Provides abstraction
2. You can call a function several times (instead of repeating the same group of statements over and over). 3. You may also provide different parameters to the function during each call. Spring 2008
CMPE 150 – Introduction to Computing
3
Functions • Syntax: return_type function_name (parameter_list) { local_variable_definitions statement(s) }
• Functions operate on their parameters and produce results.
–The result is returned via the return value.
• The parameters may or may not be altered by the function. • If return_type is missing, it means int. Spring 2008
CMPE 150 – Introduction to Computing
4
Example Consider the polynomial P(x)=8x5+5x4+6x3+3x2+4x+2 Read a value for x and display the result.
Spring 2008
CMPE 150 – Introduction to Computing
5
Example: Solution without functions #include <stdio.h> int main() { float P_x, x, t; int i; P_x=0; scanf("%f", &x); /* Calculate term x^5 */ for (t=1, i=0; i<5; i++) t *= x; P_x += 8*t; /* Calculate term x^4 */ for (t=1, i=0; i<4; i++) t *= x; P_x += 5*t; /* Calculate term x^3 */ for (t=1, i=0; i<3; i++) t *= x; P_x += 6*t; /* Calculate term x^2 */ for (t=1, i=0; i<2; i++) t *= x; P_x += 3*t; /* Calculate term x^1 and x^0 */ P_x += 4*x+2; printf("Result=%f\n", P_x); return 0; }
Spring 2008
CMPE 150 – Introduction to Computing
6
Example: Solution with functions #include <stdio.h> /* Calculate a^b */ float power(float a, int b) { float result=1; for (; b>0; b--) result *= a; return result;
We will visit this example again.
} int main() { float P_x, x; scanf("%f", &x); P_x = 8 * power(x,5) + 5 * power(x,4) + 6 * power(x,3) + 3 * power(x,2) + 4 * x + 2; printf("Result=%f\n", P_x); return 0; }
Spring 2008
CMPE 150 – Introduction to Computing
7
Functions • A function that is being called is named callee. • The function from which the call is made is named caller. • In the previous slide, main() is the caller, power() is the callee.
Spring 2008
CMPE 150 – Introduction to Computing
8
Functions • We will cover functions in the following order: – – – – –
Void functions Functions without parameters Functions with parameters Functions that return a value Functions that alter their parameters
Spring 2008
CMPE 150 – Introduction to Computing
9
Void functions • A function that is not supposed to return a value has a return type of void. – Note that skipping the return type makes it an integer function, not a void function.
• If callee has nothing to send back to the caller, make callee a void function.
Spring 2008
CMPE 150 – Introduction to Computing
10
Example: Void functions #include <stdio.h> void isosceles_triangle() { int line, i, j;
}
scanf("%d", &line); for (i = 1; i<=line; i++) { for (j = 0; j
int main() { int i, n;
}
Note that isosceles_triangle() makes I/O, but it does not take any parameters or return any value.
scanf("%d", &n); for (i=0; i
Spring 2008
CMPE 150 – Introduction to Computing
11
Functions with parameters • You can direct how a function operates "within the program" if you use parameters.
Spring 2008
CMPE 150 – Introduction to Computing
12
Example: power() function without parameters float power() { float result=1, a ; int b; scanf("%f %d",&a,&b); for (; b>0; b--) result *= a; return result; }
• power() finds result based on the values read from the input. You cannot specify a and b from the main() function.
Spring 2008
CMPE 150 – Introduction to Computing
13
Example: power() function with parameters float power(float a, int b) { float result=1; for (; b>0; b--) result *= a; return result; }
• Now, power() finds result based on the parameters specified by the caller. So, you can direct it within the program Spring 2008
CMPE 150 – Introduction to Computing
14
Changes in parameters are not reflected • Note that in the previous example, the changes made on the parameters are not reflected to the caller. • This rule applies as long as you use value parameters.
Changes in parameters are not reflected #include <stdio.h> void f(int a) { a+=5; printf("in function f(): a=%d\n", a); } int main() { int a=10; printf("in main(), before calling f(): a=%d\n",a); f(a); printf("in main(), after calling f(): a=%d\n",a); } OUTPUT in main(), before calling f(): a=10 in function f(): a=15 in main(), after calling f(): a=10
f()
a 10 15
main( )
a 10 Stack
Return value • A function performs a task and finds a result. • The result replaces the function call. • Eg: For the function call below y = 3*power(2,5)+4; the function power() calculates 25 and the function call is replaced by 32. So the statement becomes
y = 3*32+4; Spring 2008
CMPE 150 – Introduction to Computing
17
Return value • Note that the return value has got nothing to do with input/output. • Eg: int func() { int i=10; printf("%d", i); return i/2; }
• func() outputs 10, but returns 5. Spring 2008
CMPE 150 – Introduction to Computing
18
Example: Functions with return type and parameters #include <stdio.h> /* Calculate a^b */ float power(float a, int b) { float result=1; for (; b>0; b--) result *= a; return result; } int main() { float P_x, x; scanf("%f", &x); P_x = 8 * power(x,5) + 5 * power(x,4) + 6 * power(x,3) + 3 * power(x,2) + 4 * x + 2; printf("Result=%f\n", P_x); return 0; }
Spring 2008
CMPE 150 – Introduction to Computing
19
Example: Functions with return type and parameters
• What is the output of the following program? #include <stdio.h> float half(int a) { return a/2; } int main() { float r; r=half(10)/3; printf("Result=%f", r); }
Global vs. local variables #include <stdio.h> #define PI 3.14 int count; int func() { int i, j; scanf("%d %d", &i, &j); count += i+j; return 0; } int main() { int i; func(); for (i=0; i
Spring 2008
CMPE 150 – Introduction to Computing
21
Scope of variables • A local variable can be used only in the function where it is defined – i.e., the scope of a local variable is the current function.
• A global variable can be used in all functions below its definition – i.e., the scope of a global variable is the range from the variable definition to the end of the file.
Lifetime of variables • The lifetime of a variable depends on its scope. • A local variable is alive as long as the function where it is defined is active. – When the function terminates, all of the local variables (and their values) are lost. – When the function is called again, all variables start from scratch; they don’t continue with their values from the previous call (except for local static variables which are not discussed).
• The lifetime of a global variable is equivalent to the lifetime of the program.
Scope and lifetime of variables #include <stdio.h> #define PI 3.14 int count; int func() { int i, j; scanf("%d %d", &i, &j); count += i+j; return 0; } int main() { int i; func(); for (i=0; i
Spring 2008
CMPE 150 – Introduction to Computing
24
Global vs. local variables Global variables
Local variables
Visible in all functions
Visible only within the function they are defined
Zero by default
Uninitialized
A change made by a function is visible Any changes made on the value are everywhere in the program lost when the function terminates (since the variable is also removed) Scope extends till the end of the file
Scope covers only the function
Lifetime spans the lifetime of the program
Lifetime ends with the function
Spring 2008
CMPE 150 – Introduction to Computing
25
Changing local variables • Any change made on local variables is lost after the function terminates. void f() { int a=10; a++; printf("in f(): a=%d\n",a); } int main() { int a=5; f(); printf("After first call to f(): a=%d\n",a); f(); printf("After second call to f(): a=%d\n",a); } Spring 2008
CMPE 150 – Introduction to Computing
26
Changing global variables • Any change made on global variables remains after the function terminates. int b; void f() { b++; printf("in f(): b=%d\n",b); } int main() { f(); printf("After first call to f(): b=%d\n",b); f(); printf("After second call to f(): b=%d\n",b); }
This is called side effect. Avoid side effects. Spring 2008
CMPE 150 – Introduction to Computing
27
Changing value parameters • Any change made on value parameters is lost after the function terminates. void f(int c) { c++; printf("in f(): c=%d\n",c); } int main() { int c=5; f(c); printf("After f(): a=%d\n",c); } Spring 2008
CMPE 150 – Introduction to Computing
28
Local definition veils global definition • A local variable with the same name as the global variable veils the global definition. int d=10; void f() { d++; printf("in f(): d=%d\n",d); } int main() { int d=30; f(); printf("After first call to f(): d=%d\n",d); f(); printf("After second call to f(): d=%d\n",d); } Spring 2008
CMPE 150 – Introduction to Computing
29
Parameter definition veils global definition • Similar to local variables, parameter definition with the same name as the global variable also veils the global definition. int e=10; void f(int e) { e++; printf("in f(): d=%d\n",e); } int main() { int g=30; f(g); printf("After first call to f(): g=%d\n",g); } Spring 2008
CMPE 150 – Introduction to Computing
30
Example • Write a function that calculates the factorial of its parameter. n! = n(n-1)(n-2)...1 long factorial(int n) { int i; long res = 1; if (n == 0) return 1; for (i = 1; i <= n; i++) res *= i; return res; }
Spring 2008
CMPE 150 – Introduction to Computing
31
Example • Write a function that calculates the permutation P(n, k) = n!/(n−k)! long perm(int n, int k) { long result; if ((n<0)||(k<0)||(n
CMPE 150 – Introduction to Computing
32
Example • Write a function that calculates the combination C(n, k) = n!/[(n − k)! ∙ k!] long comb(int n, int k) { long result; if (n < 0 || k < 0 || n < k) return 0; else return(factorial(n)/(factorial(n-k)*factorial(k))); }
Spring 2008
CMPE 150 – Introduction to Computing
33
Macro Substitution • Remember #define PI 3.14
• It is also possible to write macros with parameters. #define square(x) x*x
– The name of the macro is square. – Its parameter is x. – It is replaced with x*x (with paramater x substituted.) Spring 2008
CMPE 150 – Introduction to Computing
34
Macro Substitution • Note that when the macro is called as square(a+1) the substituted form will be a+1*a+1 which is not correct. • The macro should have been defined as #define square(x) (x)*(x) so that its substituted form would be (a+1)*(a+1) Spring 2008
CMPE 150 – Introduction to Computing
35
Macro Substitution • A macro is NOT a function. – A macro is implemented as a substitution. The code segment that implements the macro substitutes the macro call. + Code executes faster. - Code becomes larger. + It is possible to do things that you cannot do with functions. - Limited syntax check (Remember the "square(a+1)" example).
Macro Substitution – A function is implemented by performing a jump to a code segment. Stack operations are performed for function call. - Code executes slower. - Code is smaller. + More structured programming. + Better syntax check.
Example: Macro substitution • Define a macro for finding the maximum of two values. #define max(A,B) (((A)>(B))?(A):(B))
Spring 2008
CMPE 150 – Introduction to Computing
38
Example: Macro substitution • Define a macro for finding the absolute value. #define abs(A) ((A)>0)?(A):-(A))
Spring 2008
CMPE 150 – Introduction to Computing
39
Variable Parameters
Value parameters • We used "value parameters" up to now. • We did not pass the variable in the argument; we passed the value of the expression in the argument. – That is why the changes made on the parameter were not reflected to the variable in the function call.
Variable parameters • Sometimes, the caller may want to see the changes made on the parameters by the callee. – E.g.:
int main() { int num; scanf("%d", &num); }
– You expect scanf() to "put" the input in the variable num, but this is not possible with value parameters. (It is possible to return a single value using the return type; so it is not practical enough. Also, you should use the same variable both as an argument and for the return value.)
Variable parameters • Converting a value parameter to a variable parameter is easy. Define the parameter as pointer
void func(int * num) { *num = 5; Use '*' before the } parameter name so that you access the value at int main() the mentioned address { int count=10; func(& count); } Send the address of the argument
Call by reference • The idea is very simple actually:
– When a function terminates everything inside the stack entry for that function is erased. – Therefore, if you want the changes to remain after the function call, you should make the change outside the function's stack entry. – Here is what you do: • At the caller instead of sending the value, send the reference (address), i.e. a pointer. • At the callee, receive the address (i.e., define the parameter as a pointer). • Inside the callee, use a de-referencer ('*') with the parameter name since the parameter contains the address, not the value.
Call by reference • This is why: – "using value parameters" is also called "call by value" – "using variable parameters" is also called "call by reference"
Variable parameters #include <stdio.h> void f(int *a) { *a+=5; printf("in function f(): a=%d\n", *a); } int main() { int a=10; printf("in main(), before calling f(): a=%d\n",a); f(&a); printf("in main(), after calling f(): a=%d\n",a); } OUTPUT in main(), before calling f(): a=10 in function f(): a=15 in main(), after calling f(): a=15
f()
main( )
a
a 10 15 Stack
Example • Write a function that exchanges its parameters. • Solution 1: void swap(int a, int b) { a=b; b=a; } WRONG!
Example • Solution 2: void swap(int *a, int *b) { *a=*b; *b=*a; } STILL WRONG!
Example • Solution 3: void swap(int *a, int *b) { int temp; temp = *a; *a=*b; *b=temp; }
Example •
Write a program that finds the real roots of a given quadratic equation.
#include <stdio.h> #include <math.h> #define small 0.000001 #define equal(a,b) ((a)-(b)<=small)&&((b)-(a)<=small)
int main() { float r1, r2; float a, b, c;
float delta (float a, float b, float c) { return (b * b - 4 * a * c); } int solve(float a, float b, float c, float *root1, float *root2) { float d; if (equal(a,0.0)) return -1; d = delta(a,b,c); if (equal(d,0.0)) { *root1 = -b / (2 * a); return 1; } if (d < 0) return 0; *root1 = (-b + sqrt(d)) / (2 * a); *root2 = (-b - sqrt(d)) / (2 * a); return 2; }
printf("Enter equation coefficients: "); scanf("%f%f%f",&a,&b,&c); switch (solve(a,b,c,&r1,&r2)) { case -1: printf("Not quadratic equation\n"); break; case 0: printf("No real roots\n"); break; case 1: printf("One real root\n"); printf("Root1 = Root2 = %f\n",r1); break; case 2: printf("Two real roots\n"); printf("Root1 = %f\n",r1); printf("Root2 = %f\n",r2); break; } return 0; }
Example •
Write a program that finds the real roots of a given quadratic equation.
#include <stdio.h> #include <math.h> #define small 0.000001 #define equal(a,b) ((a)-(b)<=small)&&((b)-(a)<=small)
int main() { float r1, r2; float a, b, c;
float delta (float a, float b, float c) { return (b * b - 4 * a * c); } int solve(float a, float b, float c, float *root1, float *root2) { float d; if (equal(a,0.0)) return -1; d = delta(a,b,c); if (equal(d,0.0)) { *root1 = -b / (2 * a); return 1; } if (d < 0) return 0; *root1 = (-b + sqrt(d)) / (2 * a); *root2 = (-b - sqrt(d)) / (2 * a); return 2; }
printf("Enter equation coefficients: "); scanf("%f%f%f",&a,&b,&c); switch (solve(a,b,c,&r1,&r2)) { case -1: printf("Not quadratic equation\n"); break; case 0: printf("No real roots\n"); break; case 1: printf("One real root\n"); printf("Root1 = Root2 = %f\n",r1); break; case 2: printf("Two real roots\n"); printf("Root1 = %f\n",r1); printf("Root2 = %f\n",r2); break; } return 0; }
Example •
What is the output? #include <stdio.h> int i=10, j=20, k=30, m=40; float func(int i, int *j) { int k=25; i++; (*j)++; k++; m++; printf("in func: i=%d return k/5; }
j=%d
k=%d
m=%d \n", i, *j, k, m);
j=%d
k=%d
m=%d
int main() { float n; n=func(j,&m)/3; printf("in main: i=%d return 0; }
n=%f \n", i, j, k, m, n);
Example •
What is the output of this one?
#include <stdio.h> int f(int x, int y) { printf("in f(): x=%d return x+y; } int g(int x, int y) { printf("in g(): x=%d return y-x; } int h(int x, int y) { printf("in h(): x=%d return x/y; }
y=%d \n", x, y);
y=%d \n", x, y);
y=%d \n", x, y);
int main() { int a=10, b=20, c=30, d=40; printf("in main(): %d\n", h(f(a,b),g(c,d))); return 0; }
Order of evaluation of arguments • Read last paragraph of Section A7.3.2 of Kernighan & Ritchie: "Order of evaluation of arguments is unspecified; take note that various compilers differ."
Recursive functions •
Just a simple example of recursive functions. #include <stdio.h> long factorial(int n) { if (n>0) return n*factorial(n-1); else if (n==0) return 1; return 0; }
•
int main() { int n; printf("Enter an integer: "); scanf("%d", &n); printf("%d! = %ld\n", n, factorial(n)); return 0; }
As we said before, avoid recursive functions.