Chapter 5 • Algebraic Vectors and Applications Solutions for Selected Problems
15. If two unit vectors are the sides of an equilateral
triangle then their sum as well as their difference could be a unit vector.
Exercise 5.1 13. c.
(9, 12) OG 2 (9)2 (12)2 OG
→
→
b
c
81 144 225 OG 5 12 tan . 9 Since G is in the second quadrant ≅ 180 53 ≅ 127. e. OJ
→
a
If a b c where a b 1 and the angle between a and b is 120 then c 1. Also c b a where as above a b c 1.
16. a. a (2, 3, 2)
5 , 5 2
60º
6
a2 4 9 4
2 4 6 OJ 5
a 17 .
5
2
b.
2 OJ
Now
6 tan . 2 Since J is in the fourth quadrant, ≅ 360 51 ≅ 309. 14. a.
c.
If a (12, 4, 6) then a2 144 16 36 196 a 14. 14 22 7 If c , , 27 27 27
1 c 1.
17 17 17 2
2
3
2
2
2
1
1 therefore a is a unit vector. a 17. a.
v 2iˆ 3jˆ 6kˆ (2, 3, 6) v2 4 9 36 49 therefore v 7.
b. A unit vector in the direction of v is
196 484 49 then c 729 2
1 a 2, 3, 2 17 17 17 a
1 v v v 2 3 6 v iˆ jˆ kˆ 7 7 7
2 3 6 v , , . 7 7 7 18. v (3, 4, 12) v2 9 16 144 169 v 13. A unit vector in a direction opposite to 12 3 4 v is , , . 13 13 13
Chapter 5: Algebraic Vectors and Applications
53
19. Let a be a vector in two dimensions making an angle
23.
C c
with the x-axis. Now a in component form is
,b,c)
P (a
a a cos , a sin . A unit vector in the 1 direction of a is a (cos , sin ) therefore any a unit vector in two dimensions can be written as (cos , sin ). 21. a. u (a, b, c)
O b a A
B
In ∆OAB, ∠OAB 90 therefore OB2 OA2 AB2. In ∆OBP, ∠OBP 90 therefore OP2 OB2 BP2. Hence OP2 OA2 OB2 BP2 but OA a, OB b, BP OC c.
z
2 a Therefore OP b 2 c 2.
24. A vector in R4, u (4, 2, 5, 2) might have a
α
y
→
u
a x
a cos α , since α is acute, a is positive. u
Exercise 5.2
b. u (a, b, c)
8. a. Given the points P(15, 10), Q(6, 4), R(12, 8)
z
→
b
magnitude of u2 42 22 (5)2 22 u2 16 4 25 4 u 49, u 7. It is very tempting to think that a geometric interpretation can be given. Mathematically we wish to consider vectors with n elements, n any integer, and a geometric interpretation is not possible for n ≥ 4.
u
(9, 6), PR (27, 18) PQ 3( 9, 6).
3PQ , P, Q, and R are Since PR collinear.
ß y
b. D(33, 5, 20), E(6, 4, 16), F(9, 3, 12)
x
b cos β since β is obtuse, b is negative. u 22. Since the direction angles α, β, and γ are all equal, say
then cos2 cos2 cos2 1
1 cos2 3 11 cos or 3
1 cos 3
≅ 55 ≅ 125 The direction angles are 55 or 125.
54
Chapter 5: Algebraic Vectors and Applications
(27, 9, 36), EF (e, 1, 4) DE 9(3, 1, 4) . 9EF 9EF , D, E, and F are collinear. Since DE
9. b. A(0, 1, 0), B(4, 0, 1), C(5, 1, 2), D(2, 3, 5)
Let P2 (a2, b2) be a vertex of parallelogram AP2CB.
(4, 1, 1), CD (3, 2, 3) AB k CD , k R, AB is not parallel Since AB
BC and (a 5, b 3) (2, 10) Now AP 2 2 2 therefore a2 3, b2 7.
to CD.
P3(a3, b3) is a vertex of parallelogram ABP3C.
AB 16 1 1 18
AC and (a 5, b 2) (12, 11) Now BP 3 3 3 therefore a3 17, b3 9.
32
The possible coordinates of the fourth vertex are P1(7, 9), P2(3, 7) and P3(17, 9).
CD 94 9 22 CD . AB
P
12. C(4, 0, –1)
10. PQRS is a parallelogram. The coordinates are in cyclic
SR . If R has coordinates (a, b) order therefore PQ (10, 1) and SR (a 3, b 4). PQ SR , a 3 10, a 13 Since PQ b 4 1, b 5 The coordinates of S are (13, 5). y
x
R(a, b)
S B(3, 6, 1)
O(0, 0, 0)
R
A(2, 4, –2)
Opposite faces of a parallelepiped are congruent parallelograms. OC OB Now OP (4, 0, 1) (3, 6, 1) OP (7, 6, 0). AR OQ OA RQ
P(4, 2)
Q(–6, 1)
Q
S(–3, –4)
11. Let the three vertices be A(5, 3), B(5, 2), C(7, 8).
There will be 3 possible positions for the fourth vertex. Let one position be P1(a1, b1) for parallelogram ACBP1. BP and (12, 11) (a 5, b 2). CA 1 1 1 Therefore a1 7, b1 9.
OB OC OA (2, 4, 2) (3, 6, 1) (4, 0, 1) (9, 10, 2). OR OA OB (2, 4, 2) (3, 6, 1) OR (5, 10, 1) OA OC OS (2, 4, 2) (4, 0, 1) OS (6, 4, 3) The other 4 coordinates are (7, 6, 0), (9, 10, 2), (5, 10, 1), and (6, 4, 3).
y
A(–5, 3)
B(5, 2) x
C(7, –8)
Chapter 5: Algebraic Vectors and Applications
55
13. Let the midpoint in each case be M and the position
. vector OM
1 2 Expanding and equating components 2x 12 2 0 x 5, 2 3y 1 0
b. 2(x, 1, 4) 3(4, y, 6) (4, 2, z) (0, 0, 0)
a. A(5, 2), B(13, 4)
OB OA OM 2
1 y , 3
(5, 2) (13, 4) 2
1 8 18 z 0 2
(4, 3). OM
z 20.
b. C(3, 0), D(0, 7)
OD OC OM 2 1 (3, 7) 2
3, 7 . OM 2 2 c. E(6, 4, 2), F(2, 8, 2)
OF OE OM 2 1 (4, 12, 0) 2 OM (2, 6, 0).
15. Given points X(7, 4, 2) and Y(1, 2, 1)
(6, 2, 3). XY is XY The magnitude of XY 36 4 9 7. A unit vector in a direction opposite to XY has 6 2 3 ˆ 6, 2, 3 . components , , and , or YX 7 7 7 7 7 7
16. a. A point on the y-axis has coordinates P(0, a, 0).
Since it is equidistant from A(2, 1, 1) and B(0, 1, 3) BP or AP 2 BP 2 AP therefore 4 (a 1)2 1 (a 1)2 9 a2 2a 6 a2 2a 10 4a 4 a 1. The point on the y-axis equidistant from A and B is (0, 1, 0).
d. G(0, 16, 5), H(9, 7, 1)
OG OH OM 2 1 (9, 9, 6) 2
9, 9, 3 . OM 2 2 14. a. 3(x, 1) 2(2, y) (2, 1)
(3x, 3) (4, 2y) (2, 1) (3x 4, 3 2y) (2, 1) Equating components 3x 4 2, 3 2y 1 x2 y 1.
b. The midpoint of AB is the point Q(1, 0, 2) which is
not on the y-axis and is equidistant from A and B. 17. a.
A(2, –3, –4) 2
G
C(1, 3, –7)
M
B(3, –4, 2)
Since AM is a median of ∆ABC, M will be the midpoint of BC. Therefore the coordinates of M
1 5 are 2, , . 2 2
56
Chapter 5: Algebraic Vectors and Applications
d. O(0, 0, 0), I(1, 0, 0), J(0, 1, 0), K(0, 0, 1)
0, 2, 3 Now AM 2
1 (1, 1, 1) OG 4
9 4 4
5 . 2 5 The length of median AM is . 2 and AM
1 1 1 The centroid is , , . 4 4 4 1, 1, 1 . OG 4 4 4
b. Let G be the centroid of ∆ABC.
2 AG 3
5 AM . 3 5 The distance from A to the centroid is . 3
Since AG:GM 2:1
2(0, 0) 3(4, 1) 5(1, 7) 1(11, 9) 2351
19. a. OG (12 5 11, 3 35 9) 11
18. In each case let the centroid be G with position
O OA B OC OG 3 1 (1 4 2, 2 1 2) 3
1, 1 . OG 3
1(1, 4, 1) 3(2, 0, 1) 7(1, 3, 10) b. OG 137
1 (1 6 7, 4 21, 1 3 70) 11
O OI J OK OG 3
1 1 1 The centroid is , , . 3 3 3 c. A1(3, 1), A2(1, 1), A3(7, 0), A4(4, 4)
1 (OA OA OA OA ) OG 1 2 3 4 4 1 (3 1 7 4, 1 1 4) 4
15 , 1 . 4
15 The centroid is , 1 . 4
17 72 2, OG , . 11 11 11
b. I(1, 0, 0), J(0, 1, 0), K(0, 0, 1)
41 8 The centre of mass is , . 11 11
1 The centroid is 1, . 3
1, 1, 1 . OG 3 3 3
41 18, OG . 11 11
. vector OG a. A(1, 2), B(4, 1), C(2, 2)
17 72 2 The centre of mass is , , . 11 11 11
Exercise 5.3 7. b.
c (1, 2, 3), d (4, 2, 1) c · d cd cos c · d 4 4 3 3
c 14 9 14 . d 16 4 1 21 . 3 cos 14 21 cos ≅ 0.1750.
Chapter 5: Algebraic Vectors and Applications
57
10. u 3jˆ 4kˆ (0, 3, 4)
8. c. ˆi (1, 0, 0); iˆ 1
(1, 1, 1); m 3 m 1 ˆi · m ˆi m cos ˆi · m 1 cos 3 ≅ 55 is 55. The angle between vectors ˆi and m d. p (2, 4, 5); p
4 16 25 45 q (0, 2, 3); q 4 9 13 p · q 8 15 7 p · q pq cos
(a, b, c). Let w ⊥ u, w · u 0, and 3b 4c 0 Since w ⊥ u, w · v 0, and 2a 0. w Solving these equations, we have a 0 and if b 4, c 3. is (0, 4, 3). A possible vector w (10, y, z) are 11. Since a (2, 3, 4) and b perpendicular a · b 0. Therefore 20 3y 4z 0 4 20 and y z . 3 3 · v a. LS u
The angle between vectors p and q is 73. (4, y, 14) 9. a (2, 3, 7); b are collinear if a kb, k R a. a and b therefore (2, 3, 7) k (4, y, 14) 3 ky,
(2, 0, 0).
(1, 5, 8), v (1, 3, 2). 12. u
7 cos 45 13 ≅ 73
2 4k, 1 k 2
v 2iˆ
7 14k 1 k 2
1 Since k , y 6, a and b will be collinear. 2 · b 0 b. If the vectors are perpendicular a 8 3y 98 0 3y 106 106 y . 3 106 If y , a and b will be perpendicular. 3
1 15 16 2 RS v · u 1 15 16 2 therefore u · v v · u.
· u b. LS u
1 25 64 90 RS u2 1 25 64 90 therefore u · u u2. LS v · v 194 14 RS v2 194 14 therefore v · v v2.
v) · (u v) c. LS (u
(0, 8, 6) · (2, 2, 10) 16 60 76 RS u2 v 2 90 14 76 therefore (u v ) · (u v ) u2 v 2.
58
Chapter 5: Algebraic Vectors and Applications
d. LS u v · u v
(0, 8, 6) · (0, 8, 6) 64 36 100 RS u2 2 u · v v 2 90 2 (2) 14 90 4 14 100 therefore (u v ) · (u v ) u2 2 u · v v 2.
e.
(2u) · v (2, 10, 16) · (1, 3, 2) 2 30 32 4 u · (2v) (1, 5, 8) · (2, 6, 4) 2 30 32 4 z(u · v ) 2 (2) 4 therefore (u) · v u · (2v) 2(u · v ).
(1, 7, 8) 13. u (2, 2, 1), v (3, 1, 0), w ) LS u · (u w (2, 2, 1) · (4, 6, 8) 8 12 8 12 RS u · v u · w 6 2 2 14 8 12 u · v u · w . therefore u · v w 14. a. (4iˆ ˆj ) · ˆj 4iˆ · ˆj ˆj · ˆj
0 ˆj 2 1. ˆ ) ˆk · ˆj 3kˆ · ˆk b. ˆk · (jˆ 3k 0 3(1) 3.
ˆ ) · (iˆ 4kˆ) ˆi · ˆi 8iˆ · bˆ 16kˆ · ˆk c. (iˆ 4k 1 0 16 17.
15. a. (3a 4b) · (5a 6b)
15a · a 38a · b 24b · b 15a2 38a · b 24b2.
b. (2a b) · (2a b)
4a · a b · b 4a2 b2.
16. a î 3jˆ ˆk,
b 2î 4jˆ 5kˆ (1, 3, 1) (2, 4, 5) 3a b (3, 9, 3) (2, 4, 5) (1, 5, 2) 2b 4a (4, 8, 10) (4, 12, 4) (8, 20, 14) (3a b) · (2b 4a) (1, 5, 2) · (8, 20, 14)
8 100 28 (3a b) · (2b 4a ) 80. 17. Since 2a b is perpendicular to a 3b,
(2a b) · (a 3b) 0
therefore 2a2 5a · b 3b2 0 2a2 5ab cos 3b2 0. But a 2b. Substituting gives 8b2 10b2 cos 3b2 0 10 cos 5 1 cos 2 60. The angle between a and b is 60. 18. Since aˆ and bˆ are unit vectors, aˆ bˆ 1. a. (6aˆ bˆ) · (aˆ 2bˆ) 6aˆ2 11aˆbˆ cos 2bˆ2
6 11 cos 2 4 11 cos . But 60 therefore 4 11 cos 4 11 cos 60 11 4 2 3 2 3 (6aˆ bˆ) · (aˆ 2bˆ) . 2
Chapter 5: Algebraic Vectors and Applications
59
b.
20. a.
aˆ
→
→
→
b
b
b
ˆb
a →+
ˆb ˆa +
ˆb
C
B
180º – O
Let be the angle between the unit vectors aˆ and b. From the cosine law aˆ bˆ2 aˆ2 bˆ2 2aˆbˆ cos(180 ).
A , OB AC b, OC a b. OA Since a is perpendicular to b ∠OAC 90.
Now aˆ bˆ 3 and cos(180 ) cos therefore 3 1 1 2aˆbˆ cos 1 2aˆ · bˆ 1 aˆ · bˆ . 2 Now (2aˆ 5bˆ) · (bˆ 3aˆ) 13aˆ · bˆ 6aˆ2 5bˆ2
2 OA 2 AC 2 In ∆OAC, OC i.e., a b2 a2 b2. The usual name of this result is the Pythagorean Theorem. b.
13 6 5 2 11 (2aˆ 5bˆ ) · (bˆ 3aˆ) . 2 19. a 3iˆ 4jˆ ˆk (3, 4, 1) b 2iˆ 3jˆ 6kˆ (2, 3, 6) a · b 6 12 6
O
→
→
→
A
a
a, OB b From ∆OAB, OA BA c a b and ∠BOA . 2 OA 2 OB 2 2OA OB cos Now BA
c2 a2 b2 2 a b cos . The result here is called the Cosine Law.
Let u and v be the sides of the rhombus.
Add: 2v (5, 1, 7)
→
c=a –b
b
a rhombus.
u v b (2, 3, 6)
B →
0. Since a · b 0, a ⊥ b and the parallelogram will be
u v a (3, 4, 1)
A
→
a
21.
3x – y = 5
a, b y →
b
Subtract: 2u (1, 7, 5) The angle between u and v is the same as the angle
x →
between 2u and 2v. Therefore (2u) · (2v) 2u2v cos 5 7 35 (1 49 25) cos 23 cos 75 ≅ 108. The angles between the sides of the rhombus are 108 and 72. 53 Now 2u 75 53, u 2 53 the lengths of the sides of the rhombus are . 2
60
Chapter 5: Algebraic Vectors and Applications
a →
c
In questions such as this a specific example can illustrate the desired result. Suppose a (3, 1) and b (3, 4) then a · b 5 Now, for c (p, q), if a · c a · b 3p q 5. There is an infinite number of possibilities for c, one of which is b.
However, others such as (1, 2) have c ≠ b. In fact c is any vector having its end point on the line 3x y 5.
b) · (a b) 0, (a b) ⊥ (a b). 25. a. Since (a
a b and a b represent the diagonals of a parallelogram having sides a and b . Since the diagonals are perpendicular to each other, the a b . parallelogram is a rhombus with
22. Given vector a 4iˆ 3jˆ ˆk
(4, 3, 1) A vector parallel to the xy-plane has the form u (p, q, 0). Since a ⊥ u, a · u 0 and 4p 3q 0. Choosing p 3 and q 4 gives vector u (3, 4, 0) which is perpendicular to a.
b. Since u v u v,
u v2 u v2. But (u v) · (u v) u v2 and (u v) · (u v) u v2 therefore (u v) · (u v) (u v) · (u v)
Now u 9 16 5 therefore a unit vector in the 3 4 xy-plane perpendicular to a is u , , 0 . 5 5 23. Given that x y z 0 and x 2, y 3, z 4.
u · u 2u · v v · v u · v 2u · v v · v
4u · v 0 u · v 0. Therefore u ⊥ v.
Now (x y z) · (x y z) o · o 0.
u and v represent the sides of a rectangle whereas a and b were the sides of a rhombus.
Therefore x · x y · y z · z 2x · y 2x · z 2y · z 0
x2 y2 z2 2(x · y x · z y · z) 0 4 9 16 2(x · y x · z y · z) 0 29 and x · y x · z y · z . 2
C(0, 0, 1)
Q(0, 1, 1)
x
Equality holds when cos 1; i.e., a and b are collinear. If a a1, a2 and b b1, b2
then a1b1 a2b2 ≤ a12 a22
b12 b22.
If a a1, a2, a3 and b b1, b2, b3
P(1, 1, 1) O
a · b ≤ a b.
z
24.
· b 26. Since a a b cos and cos ≤ 1
B(0, 1, 0) y
A(1, 0, 0)
(1, 1, 1) and Two body diagonals of the cube are OP AQ (1, 1, 1).
then a1b1 a2b2 a3b3 ≤ a12 a22 a32 b12 b22 b32. For a general solution to the Cauchy-Schwarz inequality refer to Exercise 12.2 question 18.
Exercise 5.4
· AQ OP AQ cos where is an angle Now OP between the body diagonals.
7. ˆi (1, 0, 0), ˆj (0, 1, 0), kˆ (0, 0, 1) a. ˆi ˆj (0, 0, 1) kˆ . b. kˆ ˆj (1, 0, 0) iˆ.
· AQ 1 1 1 1 OP
8. a.
3, OP
3. AQ
1 Therefore cos and ≅ 71 3 The body diagonals of a cube make angles of 71 and 119 to each other.
Let u (u1, u2, u3) v (v1, v2, v3) v (v1, v2, v3) u v (u2v3 v2u3, v1u3 u1v3, u1v2 v1u2) v u (v2u3 u2v3, u1v3 v1u3, v1u2 u1v2) u v.
Chapter 5: Algebraic Vectors and Applications
61
kv. b. If u and v are collinear, u
Let v (a, b, c) then u (ka, kb, kc) u v (kbc bkc, akc kac, kbc bkc) (0, 0, 0) u v 0.
12.
→
→
→
b
→
n=a b
→
a
· 9. (a a)(b · b) (a · b)2 a2 b2 ( ab cos )2 a2 b2 (1 cos2 ) a2 b2 sin2 therefore RS a2b2 sin2 absin . But 0 ≤ ≤ 180 therefore sin ≥ 0 and RS ab sin a b · · b)2. therefore ab (a b · b) (a a)( 10. a (2, 1, 0), b (1, 0, 3), c (4, 1, 1)
b · c (3, 6, 1) · (4, 1, 1) a. a 12 6 1 19. b. b c · a (3, 13, 1) · (2, 1, 0)
19. c. c a · b (1, 2, 6) · (1, 0, 3)
19. b) c (3, 6, 1) (4, 1, 1) d. (a (5, 1, 21). c) e. (b a (3, 13, 1) (2, 1, 0) (1, 2, 23). f. (c a) b (1, 2, 6) (1, 0, 3)
(6, 3, 2). (p, q, r) 11. Let u v (a, b, c) and w
(br qc, pc ar, aq bp) v w ) [b(aq bp) c(pc ar), u (v w c(br qc) a(aq bp), a(pc ar) b(br qc)] (0, 0, 0) u v (0, 0, 0); (u v) w ) ≠ (u v) w . hence u (v w
62
Chapter 5: Algebraic Vectors and Applications
→
→
→
(a b) a
a b is a vector that is perpendicular to both a and b. Let n a b. Now n a is a vector that is perpendicular to both n and a. Therefore n a, n and a are perpendicular to each other; i.e., (a b) a, a b and a are mutually perpendicular. 13. Let u (u1, u2, u3), v (v1, v2, v3), and
(w , w , w ). w 1 2 3
(v w w v , w v v w , Now v w 2 3 2 3 1 3 1 3 v1w2 w1v2) ) u v w u w v u w v u v w u · (v w 1 2 3 1 2 3 2 1 3 2 1 3 u3v1w2 u3w1v2. Also u v (u2v3 v2u3, v1u3 u1v3, u1v2 v1u2) w u v w v u w v u and (u v) · w 1 2 3 1 2 3 2 1 3 w2u1v3 w3u1v2 w3v1u2 ). u · (v w (3, 1, 2), b (1, 14. a. We show this by choosing a
1, 1), and c (p, q, r). Now a b (3, 5, 2) and a c (r 2q, 2p 3r, 3q p). If a b a c then r 2q 3 ➀ 2p 3r 5 ➁ 3q p 2 ➂ Choose q k, from ➀ r 2k 3, from ➂ p 3k 2. These values for r and k satisfy ➁. This shows that there are an infinite number of possibilities for c. For one such value choose k 2. r 1, p 4, q 2, and c (4, 2, 1) a b a c (3, 5, 2) and b ≠ c.
→
b.
Exercise 5.5
b →
→
a b
z
5. a.
→
c
A(1, 1, 1)
→
a
O
(2, 1, 5), v (3, y, z), 15. a. Given a (1, 3, 1), b and a v b. a v (3z y, 3 z, y a) (2, 1, 5) Equating components gives y 4, z 2, and 3z y 6 4 2. Therefore v (3, 4, 2).
b. Let v (a, b, c).
Now a v (3c b, a c, b 3a) (2, 1, 5). Equating components gives 3c b 2 ➀ a c 1 ➁ b 3a 5. ➂ From ➀ and ➁ we have b 2 3c and a 1 c. b 3a 2 3c 3 (1 c) 5 which satisfies ➂. This shows that choosing any value for c in ➀, substituting to find b and a from ➀ and ➁ will satisfy ➂ hence giving another vector v. Let c 2, from ➀ b 8 and from ➁ a 1. Therefore v (1, 8, 2) is another vector so that a v b. c. We see from part b that c is any real number, hence
there will be an infinite number of vectors v.
x
y
B(1, 0, 0)
(1, 1, 1); an edge is OB A body diagonal is OA is ˆi (1, 0, 0). The projection of ˆi onto OA A O A ˆi · O (1, 0, 0) · (1, 1, 1) (1, 1, 1) · · OA OA 3 3 1 (1, 1, 1) 3 1 1 1 (, , ). 3 3 3 b. The projection of a body diagonal onto an edge is
onto ˆi which is ˆi (1, 0, 0). the projection of OA
6. a. a (1, 2, 2)
b (1, 3, 0) The area of the parallelogram is a b. a b (6, 2, 5) therefore a b 36 4 25 65
b. c (6, 4, 12) 2(3, 2, 6)
d (9, 6, 18) 3(3, 2, 6). 2 Since c d, c and d are collinear therefore no 3 parallelogram is formed, hence its “area” is zero.
7. a. A triangle with vertices A(7, 3, 4), B(1, 0, 6) and
C(4, 5, 2). (6, 3, 2) Two sides are defined by AB (3, 2, 6) and AC AC (14, 42, 21) AB 7(2, 6, 3) AC 7 AB 4 36 9 49 1 the area of ∆ABC AB AC 2 49 . 2 Chapter 5: Algebraic Vectors and Applications
63
b. A triangle with vertices P(1, 0, 0), Q(0, 1, 0),
R(0, 0, 1). (1, 1, 0) Now two sides are PQ (1, 0, 1) and PR PR (1, 1, 1), PQ PR 3 PQ .
110 N, d 300 m, 6, W 110 12. Since F 300 cos 6 ≅ 32819. The work done is 32819 J. →
13.
|d| = 3
3 The area of ∆PQR is . 2
78.4 cos 70º 70º
8. Given a parallelepiped defined by a (2, 5, 1)
20º
b (4, 0, 1) c (3, 1, 1). Now b c (1, 7, 4).
8 kg ≅ 78.4 N
W 78.4 3 cos 70 ≅ 80. The work done against gravity is approximately 80 J.
The volume of the parallelepiped is a · (b c) (2, 5, 1) · (1, 7, 4) 2 35 4
14.
F
29.
20º 12º
· d F d cos 9. Work W F a.
W 220 15 cos 49 ≅ 2165 J.
b.
W 4.3 2.6 cos 85 ≅ 1.0 J.
c.
W 14 6 cos 110 ≅ 29 J.
d.
F 4000 kN 4 106 N
d 5 km 5 103 m d cos 90 W F 0 J. must have 10. To overcome friction, the applied force F magnitude greater than 150 N. 0, cos 1. d cos Therefore W > F W > 150 1.5 1 W > 225. The work done is greater than 225 J. 30 9.8 294 N. 11. F d cos W F 294 40 cos 52° ≅ 7240. The work done is 7240 J.
64
F 20º
Chapter 5: Algebraic Vectors and Applications
Consider the “same” force as a force acting at 20 to the direction of motion. The work done dragging the trunk up the ramp is 90(10) cos 20. The work done dragging the trunk horizontally is 90(15) cos 20. Total work done is 900 cos 20 1350 cos 20 ≅ 2114 J. 2iˆ 15. a. F
(2, 0) · d WF W 10.
d 5iˆ 6jˆ (5, 6)
4iˆ ˆj b. F
d 3iˆ 10jˆ (3, 10)
(800, 600) c. F
d (20, 50)
12iˆ 5jˆ 6k ˆ d. F
ˆ d 2iˆ 8jˆ 4k (2, 8, 4)
(4, 1) · d WF 12 12 W 22.
· d WF 16000 30000 W 46000.
(12, 5, 6) · d WF 24 40 24 W 88.
16. A 10 N force acts in the direction of a vector (1, 1).
is A unit vector along F 10 F
2 , 2 therefore 1
1
2 , 2 (52, 52) 1
1
(7, 5). the displacement vector is d PQ W F · d 352 252 602. The work done is 602 N.
F 50 N
r 20 cm
0.2 m
30
T r F T r F sin rF 0.2 50 sin 30
T 5 The torque on the bolt is 5 N.
17.
rF sin , maximum torque can be b. Since T
→
a
achieved when sin is a maximum. This maximum 10 is 1 when 90. Therefore T rF
A(2, 1, 5)
B(3, –1, 2)
The 30 N force acts along a (2, 1, 5)
a 41 25 30 â
10 J. onto v) Proj(v onto u) is a true statement 19. a. Proj(u when
2 , 1, 5 . 30 30 30
and the maximum torque that can be achieved is
i) u v or . ii) u ⊥ v, in which case the projection vector is O
30â The force vector F (230 F , 30 , 530 ) (1, 2 3) The displacement d AB · d Therefore W F 230 230 1530 1930 .
onto v) Proj(v onto u) is a true b. Proj(u statement when i) u ⊥ v in which case the projection has magnitude 0. ii) when u v and the angle between u and v is 45 or 135 iii) when u v or u v.
The work done in moving the object from A to B is 1930 J. 18. a. →
F
30º
Bolt
r→
Chapter 5: Algebraic Vectors and Applications
65
10. u has direction angles α1, β1, γ1. A unit vector along u
Review Exercise
is uˆ (cos α1, cos β1, cos γ1). Similarly a unit vector along v is vˆ (cos α2, cos β2, cos γ2). Since u ⊥ v, uˆ ⊥ ˆv and u · v 0 therefore cos α1 cos α2 cos β1 cos β2 cos γ1 γ2 0.
ˆ, 7. Given a 6iˆ 3jˆ 2k a (6, 3, 2) b 2iˆ pjˆ 4kˆ, b (2, p, 4) 4 and cos , is the angle between a and b. 21
11.
x y2 (x y) · (x y) x · y 2 x · y y · y x2 2 x · y y2
Now a · b ab cos .
2x · y x y2 x2 y2
Therefore 12 3p 8 4 36 9 4 4 p2 16 21
(2, 2, 0). BC · BC 0, AB ⊥ BC , and ∠ABC 90 Since AB therefore ∆ABC is a right-angled triangle.
➀
b. Since ∆ABC has a right angle at B, the area of
1 ∆ABC AB BC . 2
44 p 4 or p . 65 44 We see that p does not satisfy ➀ and 65 p 4 does; therefore the only value for p is 4. Let a ˆi ˆj ˆk (1, 1, 1) b λ2ˆi 2λjˆ ˆk (λ2, 2λ, 1) Since a ⊥ b, a · b 0 therefore λ2 2λ 1 0 (λ 1)2 0 λ1 If a ⊥ b then λ 1.
9. If x 3, y 4 and the angle between x and y is
60 then (4x y) · (2x 3y) 8x2 10 x · y 3 y2 72 10xy cos 60 48 1 24 10(3)(4) 2 (4x y) · (2x 3y) 84.
66
12. Given ∆ABC with vertices A(1, 3, 4), B(3, 1, 1),
(4, 4, 3), AC (6, 2, 3), and a. AB
Squaring both sides: 81p2 216p 144 16p2 320 65p2 216p 176 0 (p 4)(65p 44) 0
8.
and C(5, 1, 1).
4 3p 4 · 7 p2 20 21 9p 12 4 p2 20
1 therefore x · y x x2 x2 y2 . 2
Chapter 5: Algebraic Vectors and Applications
Now AB 16 1 69 41 BC 44 22 1 ∆ABC 41 22 2 82 the area of ∆ABC is 82 . c. AC
36 4 9
7 The perimeter of ∆ABC is AB AC BC 41 7 22 ≅ 16.2. d. Let the fourth vertex to complete the rectangle be
D(a, b, c) BA and (a 5, b 1, c 1) (4, 4, 3) CD equating components, a 1, b 5, c 4, and the coordinates of the fourth vertex are (1, 5, 4).
(17, 3, 8). 13. Given the vector u a. The projection of u onto each of the coordinate
area will be 17iˆ, 3jˆ and 8kˆ. b. The projection of u (17, 3, 8) onto the xy
plane is (17, 3, 0), onto the xz plane is (17, 0, 8), and onto the yz plane is (0, 3, 8).
14. Since the vertices lie in the xy plane, the coordinates
in R3 will be A(7, 3, 0), B(3, 1, 0), and C(2, 6, 0). (10, 2, 0) Now AB (9, 9, 0) AC AC (0, 0, 72). and AB
D will be the foot of the perpendicular from the fourth vertex E to D. Let the coordinates of E be
63 , 12, a. 1 Now OE 1 3 and a 2 1 4 36 24 2 a2 36 3
2 a 3 the fourth vertex has coordinates
1 Area of ∆ABC AB AC 2 1 72 2
or
63 , 12, 36
63 , 12, 36 .
The coordinates of the fourth vertices are
36.
O(0, 0, 0), A(0, 1, 0), B
The area of ∆ABC is 36. 15. a. Consider the base of the tetrahedron as a triangle in
the xy-plane with O(0, 0, 0), A(0, 1, 0). A(0, 1, 0)
O(0, 0, 0)
y
63 12, 0 and
63 , 12, 36 .
E
b. The x-component of the centroid will be
3 3 3 1 0 0 4 2 6 6
D
1 1 1 1 the y-component is 1 4 2 2 2 B( 32 , 12 ,0)
C
6 6 1 the z-component is . 4 3 12
The coordinates of the centroid are
x
Now ∆OBC is a 30, 60, 90 triangle with OB 1 3 1 therefore OC and CB 2 2
3 1 hence the coordinates of B are ,, 0 .
6
2
63 ,12, 0.
The centroid of ∆ABC is D
63 , 12, 126 .
G
c. The distance from each vertex to the centroid will
. be the same, say OG OG
3 1 6 4 36 144 1 1 1 4 12 24 3 8
Chapter 5: Algebraic Vectors and Applications
67
6 . 4 6 The centroid is units from each vertex. 4 is a vector that is perpendicular to all 16. a. a b
vectors in the plane of a and b. Let n a b. Now n c is a vector perpendicular to both n and c.
Since n c is perpendicular to n, as are a and b, n c (a b) c, a and b will be coplanar; i.e., (a b) c lies in the plane of a and b. (b , b , b ), and b. Let a (a1, a2, a3), b 1 2 3 c (c1, c2, c3).
AC is a vector perpendicular to the plane of Since AB ∆ABC, the height of the tetrahedron will be the magnitude on (AB AC ) of the projection of AD · (A AD B A C ) therefore h . AB AC · (A AD 1 1 B A C ) The volume V AB AC 3 2 AB AC 1 V AD · (AB AC ). 6 AC (19, 26, 42), AD (2, 4, 6) Now AB where D is the fourth vertex, D (1, 5, 8) · (AB AC ) 38 104 252 AD 394 1 V 294 6
Now a b (a2b3 a3b2, b1a3 a1b3, a1b2 a2 b1) and LS (a b) c (c3b1a3 c3a1b3 c2a1b2 c2a2b1, c1a1b2 c1b1a2 c3a2b3 c3b2a3, c2a2b3 c2a3b2 c1b1a3 c1a1b3) a · c a1c1 a2c2 a3c3 (a · c)b [(a1c1 a2c2 a3c3)b1, (a1c1 a2c2 a3c3)b2, (a1c1 a2c2 a3c3)b3] and (b · c)a [(b1c1 b2c2 b3c3)a1, (b1c1 b2c2 b3c3)a2, (b1c1 b2c2 b3c3)a3] RS (a · c)b (b · c)a (a2c2b1 a3c3b1 b2c2a1 b3c3a1, a1c1b2 a3c3b2 b1c1a2 b3c3a2, a1c1b3 a2c2b3 b1c1a3 b2c2a3). Since LS RS, (a b) c (a · c)b (b · c)a. 17. The volume of a tetrahedron is given by the formula
1 1 v (area of the base)(height) Ah. 3 3 Consider the base to be the triangle with vertices A(1, 1, 2), B(3, 4, 6), C(7, 0, 1) (2, 5, 4) and AC (8, 1, 3) now AB 1 AC . the area of the base will be A AB 2 68
Chapter 5: Algebraic Vectors and Applications
197 3 197 The volume of the tetrahedron is . 3
Chapter 5 Test 1. a. If u · v 0 then u is perpendicular to v. b. If u · v uv then cos 1, 0 and u and v
will have the same direction, i.e., u kv, k > 0.
c. If u v 0 then u and v are collinear,
i.e., u kv, k > R.
d. If u v uv then sin 1, 90 and
u ⊥ v.
e. If (u v) · u 0, no conclusion can be made about u
and v since u v is perpendicular to both u and v and the dot product of perpendicular vectors is zero.
f. If (u v) u 0 then u v and u are collinear. But
u v is perpendicular to both u and v. This is true only if u v 0 in which case u and v
are collinear.
ˆ (6, 3, 2) 2. Given u 6iˆ 3jˆ 2k
4. a.
v 3iˆ 4jˆ ˆk (3, 4, 1)
C B
a. 4u 3 v (24, 12, 8) (9, 12, 3) (33, 0, 5) ˆ. 33iˆ 5k b.
c.
d.
u · v (6, 3, 2) · (3, 4, 1) 18 12 2 4.
D A
ABCD is a parallelogram with coordinates A(1, 2, 1), B(2, 1, 3), C(p, q, r), D(3, 1, 3). DC Now AB therefore (3, 3, 4) (p 3, q 1, r 3) and p 0, q 2, r 1 and the coordinates of C are (0, 2, 1).
u v (5, 12, 33) 5iˆ 12jˆ 33kˆ.
u v 25 1 44 1089 1258 .
A unit vector perpendicular to both u and v is
b. To determine the angle at A we use the dot product
5 12 , , 33 . 1258 1258 1258
3. a.
· AD AB AD cos A AB AB (3, 3, 4) AB 99 16
z A
34
P(3, –2, 5)
(2, 1, 2) AD AD 41 4 O
B
y
3
x
3 · AD 6 3 8 AB 11 11 cos A 334
is the position vector of point P(3, 2, 5) i) OP
onto the z-axis is ii) the projection of OP
(0, 0, 5) OA onto the xy plane is iii) the projection of OP (3, 2, 0). OB 5 b. OA OB 9 4 13 .
A ≅ 129 The angle at A is approximately 129. AD c. The area of parallelogram ABCD AB AD (10, 2, 9) AB AD AB 100 4 81 185 The area of parallelogram ABCD is 185.
Chapter 5: Algebraic Vectors and Applications
69
→
5.
c.
F
→
F
30º 35º →
d
→
r
acting at a direction of 35 to the horizontal A force F 75 N moves a box a distance has magnitude F d 16 m. The work done is d cos W F
1 Since sin 30 a force applied at an angle of 2 30 will produce half the maximum torque
T rF sin 30
75 16 cos 35.
1 0.18 50 2 →
T 4.5 J.
F 15º
→
20º
d
B
C
→
20º
b
The same force acting at 35 to the horizontal has a 75 N and acts at an angle of 15 magnitude of F
to the line of motion where d 8 m. The work done is W 75 8 cos 15. Total work done is 75 16 cos 35 75 8 cos 15 ≅ 1562.5 J. 6.
7.
→
F
→
T
A
→
D
a
a b Diagonal AC a b. and BD and BD be . Let the angle between AC BD AC BD cos Now AC · BD (a b) · (a b) AC a2 b2
AC a2 b2 BD a2 b2
→
r
a. The force should act at right angles to the wrench
to produce maximum torque. r F b. T
T r F rF sin .
If 90, maximum torque is T 0.18 50 9 J. is perpendicular to the plane The direction of T so that r, F , and r F form a rightof r and F handed system.
70
Chapter 5: Algebraic Vectors and Applications
therefore a2 b2
2 cos a2 b2 a2 b
a2 b2 (a2 b2) cos a2 b2 and cos 2 . a b2 a2 b2 for a2 > b2. For 0 < < 90, cos a2 b2