Ch03 Image+enhancement+in+the+spatial+domain

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ch03 Image+enhancement+in+the+spatial+domain as PDF for free.

More details

  • Words: 1,615
  • Pages: 42
Digital Image Processing, 2nd ed.

CH 3 Image Enhancement in the Spatial Domain 3.1 Background g ( x, y ) = T [ f ( x, y ) ] f ( x, y ) : the input image g ( x, y ) : the processed image T [ •] : an operator on f , defined over some neighborhood of ( x, y )

1

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Point Processing

1× 1 neighborhood → s = T (r )

2

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.2 Gray Level Transformations

3

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.2.1 Image Negatives

s = L −1− r

4

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.2.2 Log Transformations

s = c log(1 + r )

5

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.2.3 Power-Law Transformation

s = cr

6

γ

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Gamma Correction

7

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Gamma Correction: Example 3.1

8

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Gamma Correction: Example 3.2

9

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.2.4 Piecewise-Linear Transformation Contrast Stretching

10

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Gray-Level Slicing

11

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Bit-Plane Slicing

12

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.3 Histogram Processing What is Histogram?

Histogram h( rk ) = nk

rk : k - th gray level nk : number of pixels in the image having gray level rk for k = 0,1,  , L − 1 Normalized Histogram p( rk ) = nk n

n : total number of pixels in the image rk : k - th gray level nk : number of pixels in the image having gray level rk for k = 0,1,  , L − 1

13

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.3.1 Histogram Equalization Fundamental Assumptions on the Transformation s = T ( r ), 0 ≤ r ≤ 1 Two assumptions on T ( r ) : ( i ) single - valued, monotonically increasing ( ii ) 0 ≤ T ( r ) ≤ 1, for 0 ≤ r ≤ 1 The inverse transformation : r = T −1 ( s ) , 0 ≤ s ≤ 1

14

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Histogram Equalization The Continuous Case

From an elementary probability theory,  dr  ps ( s ) = pr ( r )  ,  ds  Consider a transformation function s = T ( r ) = ∫ pr ( w)dw r

0

ds dT ( r ) d  r  = p (r) ( ) = = p w dw r r  dr dr dr  ∫0 dr 1 ps ( s ) = pr ( r ) = pr ( r ) = 1, 0 ≤ s ≤ 1 ds pr ( r )

15

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Histogram Equalization The Discrete Case

rk , k = 0,1,..., L − 1 n k m n j sk = T ( rk ) = ∑ pr ( rj ) = ∑ , k = 0,1,..., L − 1 j =0 j =0 n pr ( rk ) =

16

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.3.2 Histogram Matching (Specification) Development of Method

17

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Histogram Matching (Specification) Implementation

18

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Chapter 3

19

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Chapter 3

20

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Chapter 3

21

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.3.3 Local Enhancement

22

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.3.4 Use of Histogram Statistics for Image Enhancement r ∈ [ 0, L − 1]

pr ( r j ) : normalized histogram of the ith value of r → Probability of occurrence of r j

The nth moment of r n

L −1

L −1

µ n ( n ) = ∑ ( ri − m ) p ( ri ) , where m = ∑ ri p( ri ) i =0

i =0

Since µ 0 = 1, and µ1 = 0, L −1

µ 2 = ∑ ( ri − m ) p( ri ) = σ 2 → variance of r 2

i =0

Local mean and variance mS xy =

∑) r p( r ) s ,t

( s ,t ∈S xy

σ 2 S xt =

∑ [r

( s ,t )∈S xy

s ,t

s ,t

]

2

− mS xy p ( rs ,t ) 23

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

 E ⋅ f ( x, y ) if mS xy ≤ k0 M 0 and k1 DG ≤ σ S xy ≤ k 2 DG g ( x, y ) =  otherwise  f ( x, y )

24

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.4 Enhancement Using Arithmetic/Logic Operations

25

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.4.1 Image Subtraction

26

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Image Subtraction: Mask Mode Radiography

27

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.4.2 Image Averaging

g ( x, y ) = f ( x, y ) + η ( x, y ) where η is zero - mean, uncorrelated 1 g ( x, y ) = K

{

}

K

∑ g ( x, y ) i =1

i

E g( x, y ) = f ( x, y ) , and σ 2 g ( x , y ) =

σ g ( x, y )

1 2 σ η ( x, y ) K

1 = ση ( x , y ) K

28

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

29

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.5 Basics of Spatial Filtering

R = w( − 1,−1) f ( x − 1, y − 1) + w( − 1,0) f ( x − 1, y ) +  + w( 0,0) f ( x, y ) +  + w(1,0) f ( x + 1, y ) + w(1,1) f ( x + 1, y + 1) g ( x, y ) =

a

b

∑ ∑ w( s, t ) f ( x + s, y + t )

s = −1t = − b

mn

30

R = w1 z1 +  + wmn z mn = ∑ wi zi

중앙대학교 첨단영상대학원 i =1

Digital Image Processing, 2nd ed.

mn

R = w1 z1 +  + wmn z mn = ∑ wi zi i =1

31

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.6 Smoothing Spatial Filters 3.6.1 Smoothing Linear Filters

1 9 R = ∑ zi 9 i =1 a

g ( x, y ) =

b

∑ ∑ w( s, t ) f ( x + s, y + t )

s = − at = − b

a

b

∑ ∑ w( s, t )

s = − at = − b

32

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Averaging Filter: Hubble Image

33

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.6.2 Order Statistics Filters

34

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.7 Sharpening Spatial Filters 3.7.1 Foundation

The 1D, first - order derivative ∂f = f ( x + 1) − f ( x ) ∂x The 1D, second - order derivative ∂2 f = f ( x + 1) − 2 f ( x ) + f ( x − 1) ∂x 2

35

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.7.2 Second Derivatives: Laplacian

The 2D, second - order derivative : Laplacian ∂2 f ∂2 f ∇ f = 2 + 2 ∂x ∂x ∂2 f = f ( x + 1, y ) − 2 f ( x, y ) + f ( x − 1, y ) ∂x 2 ∂2 f = f ( x, y + 1) − 2 f ( x, y ) + f ( x, y − 1) ∂y 2 2

∇ 2 f = [ f ( x + 1, y ) + f ( x − 1, y ) + f ( x, y + 1) + f ( x, y − 1)] − 4 f ( x, y )

36

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Laplacian

 f ( x, y ) − ∇ 2 f ( x, y ) if the center is negative g ( x, y ) =  2  f ( x, y ) + ∇ f ( x, y ) if the center is positive

37

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Laplacian Enhancement: Simplification

g ( x, y ) = f ( x, y ) − ∇ 2 f ( x, y ) 5 f ( x, y ) − [ f ( x + 1, y ) + f ( x − 1, y ) + f ( x, y + 1) + f ( x, y − 1)]

38

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Unsharp Masking and High-Boost Filtering

Unsharp masking f s ( x, y ) = f ( x , y ) − f ( x, y ) High - boost filtering f hb ( x, y ) = Af ( x, y ) − f ( x, y )

39

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.7.3 First Derivatives: The Gradient

40

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

3.8 Combining Spatial Enhancement Methods

41

중앙대학교 첨단영상대학원

Digital Image Processing, 2nd ed.

Homework #2 • Problems in Chapter 3 – 3.2(a), 3.8, 3.22, 3.27

42

중앙대학교 첨단영상대학원

Related Documents

Ch03
November 2019 20
Ch03
April 2020 10
Ch03
November 2019 3
Ch03
November 2019 7
Ch03
November 2019 7
Ch03
April 2020 5