Ch 8 _trigonometry Class X

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ch 8 _trigonometry Class X as PDF for free.

More details

  • Words: 1,495
  • Pages: 2
ASSIGNMENT CLASS X

TRIGONOMETRY

Q1. In  ABC, right angled at B, if AB = 12 cm and BC = 5 cm, find (i) sin A and tan A (ii) sin C and cot C. 20 Q2. Given cot θ  find all other trigonometric ratios. 21 Q3. If cos A 

12 35 verify that: sin A(1  tan A)  . 13 156

Q4. (i) If 7 cot   24, prove that

1  cos  1  1  cos  7

Q6. If 21cosec  = 29, find the value of : Q7. If tan  

5sin   3cos  7  . 5sin   2 cos  2 2 cos2   1 (ii) 2 cos   sin 2 

(ii) If 4 cot   5 , show that: (i)

cos2   sin 2  1  2sin 2 

1 1  2; show that: tan 2   2. tan  tan 2 

Q8. Evaluate each of the following : (i) 2 cos2 60 cot 30° + 6 sin2 30° cosec2 60° (iii) 2 (cos2 45° + tan2 60°) – 6 (sin245° – tan230°) Q9. If  = 30°, verify that :

(i) sin 2 

2 tan  1  tan 2 

5sin 2 30  cos 2 45  4 tan 2 30 2sin 30 cos 30  tan 45 tan 2 60  3sec 2 30  4cos 2 45  5cos 2 90 (iv) cosec 30  sec 60  cot 2 30

(ii)

(ii) cos 2 

1  tan 2  1  tan 2 

(iii) tan 2 

2 tan  1  tan 2 

Q10. Given that sin (A + B) = sin A cos B + cos A sin B, find the value of sin 75°. Q11. If sin (A  2B) 

3 and cos (A + 4B) = 0, find the values of angles A and B. 2

Q12. ABCD is a rectangle with AD =12 cm and DC = 20 cm as shown. The line segment DE is drawn making an angle of 30° with AD, intersecting AB in E. Find the lengths of DE and AE. 12 cm

A

E

B

30°

D

20 cm

C

Q13. Evaluate each of the following: cos 2 20  cos 2 70 sin 2 57  sin 2 33

(i)

2

sin 27   cos 63  (ii)      cos 63   sin 27 

2

(iii) cot 12° cot 38° cot 52° cot 60° cot 78°

Q14. Prove that: (i)

sin .cos (90   cos  cos  sin (90  ).sin   1 sin (90  ) cos (90  )

(ii)

cos (90  ) . sec (90  ) . tan  tan (90  )  2 cos ec (90  ) sin (90  ) .cot (90  ) cot 

Q15. Without using trigonometric tables, find the value of each of the following: (i) (ii)

cos (40  )  sin (50  ) 

sec2 10  cot 2 80 

cos 2 40  cos 2 50 sin 2 40  sin 2 50

sin15 cos 75  cos15 sin 75 cos  sin(90  )  sin  . cos (90  )

(iii)

 tan  cot (90  )  sec  cosec (90  )  sin 2 35  sin 2 55 tan10 tan 20 tan 45 tan 70 tan 80

(iv)

 tan 20   cot 20   cosec70    sec 70   2 tan15 tan 37 tan 53 tan 60 tan 75    

(v)

sec39 2  .tan17 tan 38 tan 60 tan 52 tan 73  3(sin 2 31  sin 2 59) cosec 51 3

2

2

Q16. If sec 5 θ = cosec ( θ – 36°), where 5 θ is an acute angle, find the value of θ . Q17. Simplify the following expressions: (i) (1 + cos ) (cosec  – cot )

(ii) cosec  (1+ cos ) (cosec  – cot )

Q18. Prove that following identities: (i) cosec2 + sec2 = cosec2 . sec2 

iii)

1  tan 2   1  tan     1  cot 2   1  cot  



2

(iv) (vi)

(vii)

sin  sin   2 cot   cosec  cot   c osec 

(viii) 1 

1  1  1  1   tan 2 A   cot 2 A  sin 2 A  sin 4 A

cos2  sin 3    1  sin  cos  1  tan  sin   cos 

sin  cos    1  sin  cos  1  cot  cos   sin 

(x)

(xi)

1  cos   sin 2   cot  sin (1  cos )

(xii)

1 1 1 1    cosec A  cot A sin A sin A c osec A  cot A

cos 2 B  cos 2 A sin 2 A  sin 2 B  (xiv) 2 (sin6  + cos6 ) – 3 (sin4  + cos4) + 1 = 0  cos2 B.cos2 A cos 2 A cos 2 B

sin   sin  cos   cos    0 cos   cos  sin   sin 

QIf cos  + sin  =

sin 4 A  cos4 A sin 2 A  cos2 A

sec   1 sec   1   2 cosec  sec   1 sec   1



3

(ix)

(xv)

(iv)

tan  cot    1  tan   cot   1  sec  cosec  1  cot  1  tan 

1  sin A cos A  1  sin A 1  sin A

(xiii) tan 2 A  tan 2 B 

sin 3   cos3  sin   cos 

(ii) 2 sec2  – sec4  – 2 cosec2  + cosec4  = cot4 – tan4

(v)

2

(iii)

(xvi)

2 cos , show that cos – sin  =

cot A  cosec A  1 1  cos A  cot A – cosec A + 1 sin A

2 sin 

Q20. If sin  + cos  = p and sec  + cosec  = q, show that q ( p 2  1)  2 p . Q21. If x = a sec  + b tan  and y = a tan  + b sec , prove that x2 – y2 = a 2 – b 2. Q22.(i) If sec   x 

1 1 , prove that sec  + tan  = 2x or . 4x 2x

(ii) If sec   tan   p, prove that

Q23. If tan  + sin  = m and tan  – sin  = n, prove that m2  n 2  4 mn . Q24. If sin  + sin2 = 1, prove that cos2+ cos4 = 1 Q25. If 3sin   5cos   5, prove that 5sin   3cos   3 . Q26. If x = a sec  + b tan  and y = a tan  + b sec , prove that x2 – y2 = a 2 – b 2. Q27. If a cos  = x and b cot  = y, show that Q28. If

a2 b2   1. x2 y 2

x y x y x2 y 2 cos   sin   m and sin   cos   n, prove that 2  2  m2  n 2 . a b a b a b

ANSWERS 1. (i)

5 5 , 13 12

6. (i) 1

(ii)

(ii) 1

12 5 , 13 12

8. (i)

11. A = 30°, B = 15° 13. (i) 1 16. 21°

(ii) 2

2. sin θ = 34 2

21 20 21 29 29 , cos θ  , tan θ  , cos ecθ  , sec θ  29 29 20 21 20

(ii)

5 (2  3) 6

(iii) 6 (iv) 9

12. DE = 8 3 cm, AE = 4

1 (iii) 3 17. (i) sin 

15. (i) 1 (ii) 1

3 1 2 2

3 cm

(ii) 2

(iii) 1 – sin  cos 

10.

(iii) 2 (iv)

(iv) 1  2 3

(v) 0

p2 1  sin  . p2  1

Related Documents

X Trigonometry
June 2020 0
Class 16 Ch 8
May 2020 4
Trigonometry
June 2020 9
Trigonometry
June 2020 13
Trigonometry Angles Pi 8
November 2019 0