ASSIGNMENT CLASS X
TRIGONOMETRY
Q1. In ABC, right angled at B, if AB = 12 cm and BC = 5 cm, find (i) sin A and tan A (ii) sin C and cot C. 20 Q2. Given cot θ find all other trigonometric ratios. 21 Q3. If cos A
12 35 verify that: sin A(1 tan A) . 13 156
Q4. (i) If 7 cot 24, prove that
1 cos 1 1 cos 7
Q6. If 21cosec = 29, find the value of : Q7. If tan
5sin 3cos 7 . 5sin 2 cos 2 2 cos2 1 (ii) 2 cos sin 2
(ii) If 4 cot 5 , show that: (i)
cos2 sin 2 1 2sin 2
1 1 2; show that: tan 2 2. tan tan 2
Q8. Evaluate each of the following : (i) 2 cos2 60 cot 30° + 6 sin2 30° cosec2 60° (iii) 2 (cos2 45° + tan2 60°) – 6 (sin245° – tan230°) Q9. If = 30°, verify that :
(i) sin 2
2 tan 1 tan 2
5sin 2 30 cos 2 45 4 tan 2 30 2sin 30 cos 30 tan 45 tan 2 60 3sec 2 30 4cos 2 45 5cos 2 90 (iv) cosec 30 sec 60 cot 2 30
(ii)
(ii) cos 2
1 tan 2 1 tan 2
(iii) tan 2
2 tan 1 tan 2
Q10. Given that sin (A + B) = sin A cos B + cos A sin B, find the value of sin 75°. Q11. If sin (A 2B)
3 and cos (A + 4B) = 0, find the values of angles A and B. 2
Q12. ABCD is a rectangle with AD =12 cm and DC = 20 cm as shown. The line segment DE is drawn making an angle of 30° with AD, intersecting AB in E. Find the lengths of DE and AE. 12 cm
A
E
B
30°
D
20 cm
C
Q13. Evaluate each of the following: cos 2 20 cos 2 70 sin 2 57 sin 2 33
(i)
2
sin 27 cos 63 (ii) cos 63 sin 27
2
(iii) cot 12° cot 38° cot 52° cot 60° cot 78°
Q14. Prove that: (i)
sin .cos (90 cos cos sin (90 ).sin 1 sin (90 ) cos (90 )
(ii)
cos (90 ) . sec (90 ) . tan tan (90 ) 2 cos ec (90 ) sin (90 ) .cot (90 ) cot
Q15. Without using trigonometric tables, find the value of each of the following: (i) (ii)
cos (40 ) sin (50 )
sec2 10 cot 2 80
cos 2 40 cos 2 50 sin 2 40 sin 2 50
sin15 cos 75 cos15 sin 75 cos sin(90 ) sin . cos (90 )
(iii)
tan cot (90 ) sec cosec (90 ) sin 2 35 sin 2 55 tan10 tan 20 tan 45 tan 70 tan 80
(iv)
tan 20 cot 20 cosec70 sec 70 2 tan15 tan 37 tan 53 tan 60 tan 75
(v)
sec39 2 .tan17 tan 38 tan 60 tan 52 tan 73 3(sin 2 31 sin 2 59) cosec 51 3
2
2
Q16. If sec 5 θ = cosec ( θ – 36°), where 5 θ is an acute angle, find the value of θ . Q17. Simplify the following expressions: (i) (1 + cos ) (cosec – cot )
(ii) cosec (1+ cos ) (cosec – cot )
Q18. Prove that following identities: (i) cosec2 + sec2 = cosec2 . sec2
iii)
1 tan 2 1 tan 1 cot 2 1 cot
2
(iv) (vi)
(vii)
sin sin 2 cot cosec cot c osec
(viii) 1
1 1 1 1 tan 2 A cot 2 A sin 2 A sin 4 A
cos2 sin 3 1 sin cos 1 tan sin cos
sin cos 1 sin cos 1 cot cos sin
(x)
(xi)
1 cos sin 2 cot sin (1 cos )
(xii)
1 1 1 1 cosec A cot A sin A sin A c osec A cot A
cos 2 B cos 2 A sin 2 A sin 2 B (xiv) 2 (sin6 + cos6 ) – 3 (sin4 + cos4) + 1 = 0 cos2 B.cos2 A cos 2 A cos 2 B
sin sin cos cos 0 cos cos sin sin
QIf cos + sin =
sin 4 A cos4 A sin 2 A cos2 A
sec 1 sec 1 2 cosec sec 1 sec 1
3
(ix)
(xv)
(iv)
tan cot 1 tan cot 1 sec cosec 1 cot 1 tan
1 sin A cos A 1 sin A 1 sin A
(xiii) tan 2 A tan 2 B
sin 3 cos3 sin cos
(ii) 2 sec2 – sec4 – 2 cosec2 + cosec4 = cot4 – tan4
(v)
2
(iii)
(xvi)
2 cos , show that cos – sin =
cot A cosec A 1 1 cos A cot A – cosec A + 1 sin A
2 sin
Q20. If sin + cos = p and sec + cosec = q, show that q ( p 2 1) 2 p . Q21. If x = a sec + b tan and y = a tan + b sec , prove that x2 – y2 = a 2 – b 2. Q22.(i) If sec x
1 1 , prove that sec + tan = 2x or . 4x 2x
(ii) If sec tan p, prove that
Q23. If tan + sin = m and tan – sin = n, prove that m2 n 2 4 mn . Q24. If sin + sin2 = 1, prove that cos2+ cos4 = 1 Q25. If 3sin 5cos 5, prove that 5sin 3cos 3 . Q26. If x = a sec + b tan and y = a tan + b sec , prove that x2 – y2 = a 2 – b 2. Q27. If a cos = x and b cot = y, show that Q28. If
a2 b2 1. x2 y 2
x y x y x2 y 2 cos sin m and sin cos n, prove that 2 2 m2 n 2 . a b a b a b
ANSWERS 1. (i)
5 5 , 13 12
6. (i) 1
(ii)
(ii) 1
12 5 , 13 12
8. (i)
11. A = 30°, B = 15° 13. (i) 1 16. 21°
(ii) 2
2. sin θ = 34 2
21 20 21 29 29 , cos θ , tan θ , cos ecθ , sec θ 29 29 20 21 20
(ii)
5 (2 3) 6
(iii) 6 (iv) 9
12. DE = 8 3 cm, AE = 4
1 (iii) 3 17. (i) sin
15. (i) 1 (ii) 1
3 1 2 2
3 cm
(ii) 2
(iii) 1 – sin cos
10.
(iii) 2 (iv)
(iv) 1 2 3
(v) 0
p2 1 sin . p2 1