Central Hidroelectrica.pdf

  • Uploaded by: Cristián Fernández Ñúñez
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Central Hidroelectrica.pdf as PDF for free.

More details

  • Words: 8,495
  • Pages: 58
Hidráulica Aplicada. Alumnos

: Hurtado Adasme, Paula. Recabarren Rodríguez, Natalia. Vega Jorquera, Sebastián.

Profesor : Fernández Barrera, Andrés.

05 de Abril de 2018. E debe

PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARAÍSO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA EN CONSTRUCCIÓN

CENTRAL HIDROELECTRICA “RÍO LIQUIÑE”.

Proyecto Hidráulica Aplicada. Alumnos: Hurtado Adasme, Paula. Recabarren Rodríguez, Natalia. Vega Jorquera, Sebastián.

Profesor: Fernández Barrera, Andrés.

Abril 2018.

INTRODUCCIÓN

INTRODUCCIÓN.

En Chile se encuentran diversos tipos de energías renovables no convencionales y en la actualidad bordea el 17% de la energía total producida en el país. La ventaja de estas ERNC es que son poco contaminantes para el medioambiente lo que implica un desarrollo importante para el país. Algunas de las ERNC que se pueden observar se presenta la energía solar la cual aprovecha la luz propiciada por el sol a través de paneles para transformarla en energía, la energía eólica, la cual se alimenta de la fuerza del viento. Otra es la energía mareomotriz la cual aprovecha la energía entregada por las mareas en la costa. También se tiene la energía hidráulica la cual es la cual proviene de la fuerza motriz del agua. Esta última es en donde se centra el presente proyecto a diseñar. En el presente informe se realiza el diseño completo de una central hidroeléctrica mediante la captación de río por medio de bocatomas y transformándola en energía hidráulica. El objetivo general del presente informe es diseñar un proyecto de central hidroeléctrica relacionándolo con los conocimientos de asignaturas anteriores. Los objetivos específicos son. -

Calcular el caudal de diseño acorde al río seleccionado por medio de la distribución de mejor ajuste.

-

Diseñar acorde a las condiciones del río la bocatoma, su canal de aducción, desarenador, cámara de carga, tubería forzada y la turbina correspondiente.

Se utilizarán diferentes software para acelerar algunos cálculos para determinar diversos parámetros como por ejemplo las distribuciones de mejores ajustes para determinar el caudal de diseño.

1. DESCRIPCIÓN GENERAL DEL PROYECTO.

1. DESCRIPCIÓN GENERAL DEL PROYECTO. Este proyecto se centra en el completo diseño de una central hidroeléctrica, la que tiene por finalidad la captación de agua por medio de un río y así poder transformarla en energía eléctrica para destinarla a un uso en específico. La central hidroeléctrica a diseñar se encuentra ubicada en el río Liquiñe en la localidad de Liquiñe. Dicha localidad se encuentra en la región de los Ríos (XIV) en la zona sur del país. Para la elección de la estación fluviométrica se tomaron como parámetros el caudal que pudiese pasar por el río, la probabilidad de que el río cuente con agua durante todo el año, lo cual se produce mayormente en la zona sur del país y por último que en la prolongación del río se cuente con grandes pendientes, por lo que éste se debe ubicar lo más cerca de la cordillera como sea posible. Es por estos parámetros que se elige el Río Liquiñe, el cual es controlado por la estación fluviometrica de Liquiñe en Liquiñe, que se encuentra ubicada en las coordenadas 36°43’36’’ Latitud S y 71°50’59’’ Longitud W. Próximo a la estación fluviométrica se encuentra el río a estudiar, que es en donde se encontrará ubicada la central hidroeléctrica y la bocatoma, encargada de captar el agua para la producción de energía.

Figura 1.1. Ubicación de la estación Liquiñe en Liquiñe y bosquejo del río. Fuente. Google Earth. Algunos de los datos que se pueden obtener en la estación fluviométrica del río Liquiñe, que vale la pena mencionar, son los siguientes: la altitud máxima que alcanza el río es de 600 [msnm], su área de drenaje es de 334 [km 2], la cuenca del río es el Río Valdivia y su subcuenca es Río Valdivia Alto (hasta desagüe Lago Panguipulli). Aunque los datos mencionados son de

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

1

una gran importancia para conocer el río, los datos que se utilizarán realmente para el diseño de la central, serán el registro de los caudales medios diarios que nos proporciona la estación.

1.2. DESCRIPCIÓN DEL PROYECTO. El proyecto consiste en la realización de una central hidroeléctrica de paso directo, con la finalidad de generar electricidad con el caudal que pueda proveer el río. Este caudal fue calculado con los mínimos caudales que se pudieron registrar en 30 años, eligiendo los mínimos, para no tener problemas de falta de agua. Este proyecto se caracteriza por tener una captación de bocatoma del tipo lateral, la cual deberá abastecer al caudal de diseño el cual será obtenido por los datos fluviométricos de 30 años (como se mencionaba anteriormente), comprendidos entre los años 1986 hasta el 2015. En base a ese parámetro se procederá a dimensionar tanto la estructura de la bocatoma, los canales de conducción, la turbina, el desarenador, entre otras cosas. Todo el diseño será acorde a la búsqueda de información de distintos sitios, utilizando programas, software, hojas de cálculos, entre otras cosas.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

2

2. CAUDAL DE DISEÑO.

2. CAUDAL DE DISEÑO.

El caudal de diseño es un parámetro muy importante al momento de realizar un proyecto hidráulico ya que mide la cantidad de metros cúbicos de agua que traslada por segundo y en base a dicho parámetro se debe dimensionar las estructuras para satisfacer dicho caudal. Para determinar el caudal de diseño del río Liquiñe se recurrió a la información oficial hidrometeorológica de la estación fluviométrica correspondiente que ofrece el MOP. Se centró en la información del año 1986 hasta el año 2015 analizando los caudales de cada día durante los 30 años de análisis. La mayoría de los datos comprendidos en los 30 años estaban registrados en la información que el MOP comparte, pero existen algunos días sin registros. Para dicha problemática se recurre al relleno de datos. El relleno de datos sirve para completar la información de los caudales no registrados en el período de tiempo a analizar. Lo primero es promediar los caudales de cada mes para cada uno de los 30 años y luego promediar el caudal mensual de los 30 años, tal como muestra a continuación. 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 promedios

enero

febrero

marzo

abril

mayo

junio

15,96 19,99 18,4

10,55 10,53 9,8

12,09 11,39

22,19 18,05

28,68 35,58

99,48

84,88 57,73 34,62 37,25 20,25 17,89 25,04 48,52 14,25 7,55 17,99 15,46 29,5 12,47 55,91 13,46 37,12 25,68 16,95 16,02 30,59 39,44 14,89 15,05 31,31 8,75 27,46

75,05 112,01 77,95 98,07 64,84 26,06 30,02 46,27 17,87 20,46 30,55 71,43 54,36 16,82 17,52 70,45 41,4 23,48 61,16 72,73 32,59 30,57 28,04 48,72 55,5 34,59 47,24

85,45 75,38 109,28 84,06 50,94 126,98 69,54 71,21 99,12 36,29 95 31,36 58,77 108,85 93,97 55,74 116,57 81,05 93 97,06 29,39 45,1 34,63 73,05 57,89 143,45

julio 59,39 82,27 46,5 68,1 64,49 63,49 37,35 67,15 99,57 70,77 23,37 102,33 35,9 28,09 69,33 102,37 44,7 56,64 80,31 65,44 104,46 54,15 78,94 53,32 60,66 55,76 54,3

94,64 100,03 79,21

70,19 64,26

22,97 21,34 25,65 23,88 16,85 19,55 17,98 10,56 19,81 37,11 14,27 28,8 17,01 15,12 39,17 23,97 22,85 16,06 36,46 25,63 21,15 27,07 21,69 12,77 21,93

12,49 16,28 29,93 11,74 20,98 27,31 12,43 8,94 30,78 21,72 13,11 21,5 12,39 11,51 19,29 20,16 16,66 34,85 17,18 26,22 19,76 25,24 9,24 18,10

11,5 18,95 28,66 12,18 16,85 8,51 12,32 8,63 23,87 19,75 32,77 16,26 11,3 13,2 21,86 16,14 14,91 10,57 28,81 16,89 28,18 12,67 15,43 7,67 19,66

agosto 71,94 49,27 72,65 65,31 123,69 55,49 32,84 35,18 55,87 47,69 44,75 88,63 50,25 78,53 44,05 49,84 60,09 33,01 37,07 63,94 51,29 27,97 91,65 105,24 61,9 54,66 36,48 54,99 43,2 83,39 59,03

septiembre 40,93 36,22 28,1 35,97 112,92 38,65 65,51 17,35

octubre 36,81 43,86 35,87 36,96 49,72 35,85 74,42 30,84

53,32 31,87 64,44 30,27 66,19 43,41 29,86 49,05 45,79 43,98 38,51 56,25 35,7 59,29 58,69 41,18 72,51 39,74 78,08 61,41 47,01 49,04

44,8 68,18 21,53 35,33 45,57 26,43 99,53 39,41 43,22 33,94 49,52 61,18 34,53 71,86 50,36 51,23 32,95 32,98 46,46 51,75 45,90

noviembre diciembre 41,06 28,57 31,84 20,09 29,83 25,98 37,03 74,65 43,06 45,35 27,43 84,15 52,33 52,74 25,14 92,6 58,12 40,45 23,57 25,37 18,28 62,45 35,69 15,51 12,18 33,19 23,79 35,43 37,76 24,09 18,01 72,72 43,03 39,92 28,64 39,62 23,66 80,53 46,58 43,52 36,35 49,04 31,5 32,44 20,12 67,67 45,51 64,87 36,42 42,18 24,91 21,24 60,13 38,03 17,5 35,43 18,82 28,12 24,43 40,67 36,97

Figura 2.1. Tabla de resumen de caudales promedio mensual. Fuente. Elaboración propia.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

3

Luego de obtener dichos promedios mensuales se procede a rellenar cada dato faltante con el caudal promedio del mes correspondiente, por ejemplo, se debe rellenar todos los datos faltantes del mes de enero con el caudal promedio del mismo mes de enero. Así se rellena y se complementa la información de la estación fluviométrica. Luego de realizar el relleno de datos se procede con el orden de los mismos, de menor a mayor para cada mes y luego determinar el dato menor de cada año, y así se obtienen 30 datos representativos para ingresarlos a la distribución de mejor ajuste. Se entiende que para la obtención del caudal de diseño se toma como referencia el menor caudal registrado para cada año y así llevarlos a la distribución. Se entregaron distintos parámetros como la probabilidad de excedencia la cual es de un 90% con un nivel de significación del 5%. También se obtiene mediante la probabilidad de excedencia el período de retorno del río la cual es de 1,11 años. Luego de obtener los datos necesarios y los parámetros mencionados anteriormente se procede a utilizar el software denominado “HidroEsta” el cual ayuda a analizar las diferentes distribuciones tales como la distribución normal, la logaritmo normal con 2 y 3 parámetros, la de Gumbel, la Gamma con 2 y 3 parámetros, entre otras. Al ingresar los 30 datos se obtiene un delta teórico el cual debe ser menor al tabular para que se adecúe a la distribución. Entre más alejado se encuentre el delta teórico del tabular es más desfavorable para el diseño, por lo que se considera el peor caso posible. A continuación se muestran los resultados de las diferentes distribuciones, obteniendo finalmente el caudal de diseño.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

4

Figura 2.2. Distribución normal. Fuente. HidroEsta.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

5

Figura 2.3. Distribución Gamma de 2 parámetros (mejor ajuste). Fuente. HidroEsta.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

6

Figura 2.4. Distribución Gamma de 3 parámetros. Fuente. HidroEsta.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

7

Figura 2.5. Distribución Gumbel. Fuente. HidroEsta.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

8

Figura 2.6. Distribución log – Gumbel. Fuente. HidroEsta.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

9

Figura 2.7. Distribución Log – normal de 2 parámetros. Fuente. HidroEsta.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

10

Figura 2.8. Distribución Log – normal de 3 parámetros. Fuente. HidroEsta.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

11

Figura 2.9. Distribución Log – Pearson tipo III. Fuente. HidroEsta. Finalmente se determina la distribución de mejor ajuste acorde al delta teórico respecto al tabular. Con todo lo nombrado se identifica que la mejor distribución es la distribución Gamma de 2 parámetros. Con el mismo programa se procede a calcular el caudal en función del período de retorno y se obtiene el resultado. El caudal de diseño obtenido para el proyecto de la central hidroeléctrica del río Liquiñe es de 6,72 [m³/s].

.

Escuela ingeniería en construcción. Proyecto Hidráulica Aplicada

12

3. DISEÑO DE BOCATOMA.

3. DISEÑO DE BOCATOMA.

Una bocatoma se utiliza para desviar parte del caudal de un río, para utilizarlo en el fin que sea conveniente. El caudal a desviar debe estar definido previamente al diseño de la bocatoma, debido a que según el caudal de diseño se puede realizar la estructura, de esta forma definiendo sus dimensiones, tanto de la bocatoma en sí como de sus partes. La bocatoma también tiene más de una función, ya que se encarga de garantizar la captación constante de agua, impedir el paso de la mayor cantidad de sedimentos que sean posibles, los cuales pueden generar un daño al correcto funcionamiento de la central y por otro lado también protege a la central de que no reciba más agua de lo que puede soportar, esto es útil principalmente en épocas de crecidas producto de las lluvias y/o aluviones que se produzcan por la misma razón. Existen distintos tipos de bocatoma, la utilización de estos depende de la geografía en el que se vaya a emplazar y las características que posea el río. Bocatoma directa: son estructuras de bajo costo y que requiere una pendiente inclinada para su correcto funcionamiento. El inconveniente de este tipo de toma es que al ser variable el lecho de un río se puede cortar el suministro de agua. Bocatoma de captación Lateral: es un tipo de captación superficial, que consiste en una especie de bifurcación del río, lo que lo hace un método de captación más bien sencillo. Además este tipo de bocatoma asegura un suministro de agua permanente. Bocatoma con Barrajes: existen de dos tipos, con barrajes fijos y móviles, los cuales son utilizados con mayor frecuencia cuando hay una presa que almacena agua. El primero se utiliza cuando el régimen del río es uniforme cuando la capacidad de captación es menor a lo que el río puede proporcionar. En cambio con el segundo se puede regular el agua que pasa por la presa, se utilizan principalmente en ríos caudalosos con pendientes suaves. 3.1. BOCATOMA DE CAPTACIÓN LATERAL. Como se menciona anteriormente las bocatomas se utilizan principalmente para poder obtener el caudal de diseño para cualquier tipo de propósito, en este caso, para una central hidroeléctrica. Para su diseño se procede a utilizar, una bocatoma de captación lateral debido a que el diseño del río y la geografía en que se encuentra emplazado este, lo permiten. Además uno de los puntos muy importantes de este tipo de bocatoma es que asegura un suministro o flujo constante de agua, lo cual es primordial para el correcto funcionamiento de una hidroeléctrica.

Escuela de Ingeniería en Construcción. Central Hidroeléctrica Hornitos.

4

Este tipo de bocatoma cuenta con una serie de partes que aseguran su correcto funcionamiento, como por ejemplo la rejilla lateral, el desrripiador, un dique en el cauce del río (azud) y un vertedero para poder pasar a la siguiente etapa. En primer lugar se encuentra el azud, el cual se encuentra en el cauce del rio y tiene como función obligar al agua que se encuentra por debajo de su cresta a entrar por la rejilla lateral. De esta forma manteniendo a la bocatoma con un flujo de agua constate. el azud también permite controlar la cantidad de agua que pasa, ya que se el río viene con un gran caudal, el excedente se limita a pasar por sobre la cresta de éste y seguir con su curso normal. La rejilla lateral es por donde entra el caudal de agua a utilizar, sus dimensiones se determinan a través del caudal de diseño y según el tipo de río que sea, ya que el diseño de sus barras depende de que tanto sedimento contenga el río, de tal forma de retener la mayor cantidad de sedimentos posibles, el tamaño de éstos también influye mucho en el diseño de la rejilla, ya que de esto dependerá la separación de sus barrotes y el espesor que estos puedan tener. El desripiador, funciona como una especie de piscina que obliga a decantar los sedimentos de gran tamaño que no fueron retenidos por la rejilla.

3.2. DISEÑO DE BOCATOMA CONVENCIONAL. Para la realización del diseño de la bocatoma lateral se utilizaron las siguientes formulas: 3.2.1.

Fórmulas.

- Caudal del vertedero sumergido. Q=K * S * M * b * H

3⁄ 2

, siendo

Q: Caudal [m3/s]. K: Coeficiente de pérdida por contracciones y barrotes. S: Coeficiente de corrección de sumersión. M: Coeficiente de vertedero. b: Ancho de la captación [m]. H: Altura ventana de captación [m]. - Coeficiente de vertedero de Bazin.

Escuela de Ingeniería en Construcción. Central Hidroeléctrica Hornitos.

5

2 0.0133 𝐻 𝑀 = [1.794 + ] ∗ [1 + 0.55 ( ) ] 𝐻 + 𝑌1 𝐻 + 𝑌1

M: Coeficiente de vertedero de Bazin. H: Altura ventana de captación [m]. Y1: Altura hasta la ventana de captación [m]. - Coeficiente de vertedero de Konovalov. 𝑀 = [0,407 +

2 0.045 ∗ 𝐻 𝐻 ] ∗ [1 + 0,285 ( ) ] √2 ∗ g 𝐻 + 𝑌1 𝐻 + 𝑌1

M: Coeficiente de vertedero de konovalov. H: Altura ventana de captación [m]. Y1: Altura hasta la ventana de captación [m].

- Coeficiente de sumersión de Villemonte. 3 0.385

hn 2 𝑆 = [1+ ( ) ] Y2 S: Coeficiente de sumersión de Villemonte. hn: Altura flujo que pasa sobre muro [m]. Y2: Altura agua que se acumula [m] (igual a Y1). - Coeficiente de sumersión de Bazin. 𝑆 = 1,05 [1- 0,2 (

hn Z ) √( )] Y2 H

S: Coeficiente de sumersión de Bazin. hn: Altura flujo que pasa sobre muro [m]. Y2: Altura agua que se acumula [m]. Z: Perdida de carga en el vertedero [m]. H: Altura ventana de captación [m].

Escuela de Ingeniería en Construcción. Central Hidroeléctrica Hornitos.

6

- Número de barrotes. N=

b -1 b'

b’: Separación entre barrotes [m]. b: Ancho de la captación [m]. - Ancho total de la captación. B=b+N*a' a’: Ancho de barrotes [m]. N: número de barrotes. b: Ancho de la captación [m]. - Ancho del vertedero del desripiador. b2=

Q S*M*H3/2 2

Q: Caudal [m3/s]. S: Coeficiente de corrección de sumersión. M: Coeficiente de vertedero. b2: Ancho del vertedero[m]. H: Carga sobre la cresta del vertedero [m]. - Longitud del desripiador. Ld=

B-b2 2*tg(12.5°)

B: Ancho total de la captación [m]. b2: Ancho del vertedero [m]. - Caudal de compuerta libre de lavado. Q=Kc*e*a*bc*√2g* (Hd+

v2 -e*a) 2g

Q: Caudal a comprobar [m3/s].

Escuela de Ingeniería en Construcción. Central Hidroeléctrica Hornitos.

7

Kc: Coeficiente entre 0.95 - 0.97. a: Apertura de la compuerta [m]. Hd: Altura del nivel de agua en el desripiador [m]. e: coeficiente de la relación a/Hd. bc: Ancho de la compuerta [m]. V: Velocidad del caudal [m/s]. g: Aceleración de gravedad [m/s2]. - Longitud de transición. Lt=

b2 - b3 2*tg(12.5°)

b2: Ancho del vertedero [m]. b3: Ancho del canal de conducción [m]. 3.2.2.

Resultados de diseño.

El diseño de la bocatoma contempla varios elementos que hacen posible captar el agua de un río, es por esto que se debe dimensionar tanto la bocatoma, como el desripiador y su correspondiente compuerta de lavado. Utilizando la fórmula de caudal del vertedero dada anteriormente, se determina el ancho de la bocatoma, con los valores proporcionados a continuación en la tabla 2.1, siendo calculados previamente el coeficiente de vertedero de Bazin y Konovalov y de sumersión de Bazin y Villemonte utilizando alturas dadas por nosotros, las cuales son necesarias para realizar este cálculo. Cabe destacar que para el futuro cálculo del ancho de la captación (b), se eligio el coeficiente de vertedero de Konovalov y el coeficiente de sumersión de Bazin, al ser estos los más desfavorables. Y además se asumió un coeficiente de pérdida por contracciones y barrotes de 0,85. Tabla 3.1. Ventana de captación bocatoma.

Escuela de Ingeniería en Construcción. Central Hidroeléctrica Hornitos.

8

Q [m3/s] K H [m] Z1 [m] hn [m] Y1 [m] Yv [m] S Bazin S Villemonte M Bazin M Konovalov

6,72 0,85 1 0,1 0,9 0,6 0,5 0,634 0,477 2,19 2,142

En la tabla 3.2. se observa el valor obtenido del ancho de la bocatoma (b), además se determinó el número de barrotes y el ancho total de la ventana de captación con las formulas dadas anteriormente, utilizando barrotes de 0,05 [m] de diámetro con 0,15 [m] de separación. Lo que dio un ancho total de ventana de captación (B). Tabla 3.2. Ancho bocatoma.

b [m] 5,8 b' [m] 0,15 n espacios 58 N 57 a' [m] 0,05 B [m] 8,68 ~ 8,70 Para obtener el ancho del vertedero que conecta el desripiador con el canal de angostamiento que llega al canal de conducción, se utiliza nuevamente la fórmula de vertedero, pero esta vez sin el coeficiente de perdida, para calcular los coeficientes del vertedero de Konovalov y de sumersión de Bazin, con las alturas que observan en la tabla 3.3. Tabla 3.3. Vertedero del desripiador.

Q [m3/s] 6,72 S Bazin 0,634 M Konovalov 2,142 H [m] 1 b2 [m] 4,948 ~ 5,0 Con los cálculos hechos anteriormente del ancho de la ventana de captación de la bocatoma y el ancho del vertedero, se puede determinar el largo del desripiador, de esta forma obteniendo los parámetros observados en la tabla 3.4.

Escuela de Ingeniería en Construcción. Central Hidroeléctrica Hornitos.

9

Tabla 3.4. Largo del desripiador.

B [m] b2 [m] tg(12,5°) Ld [m]

8,7 5 0,222 8,35

El desripiador requiere una compuerta de lavado suficientemente grande para que permita la limpieza del ripio acumulado. Debido a eso fue diseñada dando valores de anchos y alturas, para luego comprobar el caudal de lavado, como se puede observar en la tabla 3.5., siendo este similar al de diseño, lo cual significa que cumple con las condiciones óptimas para eliminar el ripio acumulado y el largo es el necesario para que el ripio pueda decantar sin problemas. Tabla 3.5. Compuerta de lavado

Q comprobado [m3/s] a [m] bc [m] V [m/s] K e (a/H) H [m] .

6,726 1,0 2,7 2,0 0,95 0,712 1,2

Finalmente, con los datos obtenidos como el ancho del vertedero del desripiador se procede a calcular la longitud de transición que se necesita entre la bocatoma y el canal de conducción. Se pueden observar los datos en la tabla 3.6 Tabla 3.6. Longitud de transición.

b2 [m] b3 [m] tg(12,5°) Lt [m]

5 3,5 0,22 3,383

Figura 2.1. Dimensiones del bocatoma. Fuente. Elaboración propia.

Escuela de Ingeniería en Construcción. Central Hidroeléctrica Hornitos.

10

3. CANAL DE ADUCCIÓN.

3.

CANAL DE ADUCCIÓN.

3.1. DESCRIPCIÓN DEL CANAL DE ADUCCIÓN. Un canal de aducción es una estructura que permite la conducción del agua captada por la bocatoma hasta las otras estructuras hidráulicas dispuestas en la hidroeléctrica, tales como el desarenador. Estas son generalmente rectangulares y con una pequeña pendiente, esto para garantizar que las perdidas sean mínimas. Para el diseño del canal de aducción primero se debe determinar la longitud que este debe tener y el material con el que estará hecho, para luego determinar su altura y su ancho.

Figura 3.1. Canal de aducción. Fuente.http://guidoriosciaffaroni.blogspot.cl/2015/04/civil-excelplanillas-excel-para_3.html. El agua que fluye por el canal tiene que ir a una velocidad tal que asegure que los sólidos en suspensión presentes no decanten en el fondo, lo cual a largo plazo disminuiría su profundidad, y que podrían erosionar las paredes laterales de este. 3.2. DISEÑO DE CANAL DE ADUCCIÓN. Para el dimensionamiento del canal se debe determinar el tipo de flujo que escurre por este, calculando la altura crítica y normal. Además, se deben establecer algunas características que tendrá, estas son: que el ancho del canal será de 3,5 [m], lo cual fue considerado para

Escuela de Ingeniería en Construcción. Central Hidroeléctrica Hornitos.

11

determinar anteriormente la longitud de transición; el largo de este, que será 20 [m] elegido para efectos de diseño; también la sección y el material del que será construido, siendo rectangular y de hormigón, por lo que se considera un coeficiente de manning de 0,014, sugerido por el manual de carreteras volumen 3. También se considerara una pendiente de 1% para disminuir las pérdidas de carga. Con estos datos se ingresa al programa FlowPro 2.0 y se obtiene la altura normal y critica del flujo, además del tipo de flujo como se puede observar en la figura 3.2. Adicional a esto se muestra el diagrama de flujo en la figura 3.3. Además, se comprobó los resultados obtenidos utilizando las siguientes formulas según el autor López (2015). -

Altura Normal (López, 2015). 5

2 Q*n (Hn *tg(ϑ)+B*Hn)3 = 2 √So 3 2*Hn ( +B) cos(ϑ)

-

Altura Crítica (López, 2015). 2 Q2 (Hc *tg(ϑ)+B*Hc) = (2*Hc*tg(ϑ)+B) g

3

Figura 3.2. Altura normal de flujo, altura crítica de flujo y tipo de flujo. Fuente. FlowPro 2.0.

Escuela de Ingeniería en Construcción. Central Hidroeléctrica Hornitos.

12

Figura 3.3. Diagrama de flujo. Fuente. FlowPro 2.0. Según los cálculos realizados en el programa FlowPro 2.0 se genera un flujo subcrítico, debido a que la altura normal del agua está bajo la altura crítica. Por lo tanto, la altura de diseño que se requiere será la altura critica del agua, agregando un 10% a dicha altura que corresponde a la revancha, utilizada como método de seguridad ante una posible crecida del caudal como se puede ver en la tabla 3.1 Tabla 3.1. Características canal de aducción.

Materialidad Hormigón Sección Rectangular b3 Ancho [m] 3,5 n manning 0,012 Pendiente % 1 Altura normal [m] 0,503 Altura critica [m] 0,72 Profundidad [m] 0,8

Escuela de Ingeniería en Construcción. Central Hidroeléctrica Hornitos.

13

4.

DESARENADOR.

4.

DESARENADOR.

4.1. DESCRIPCIÓN DEL DESARENADOR. Un desarenador es una estructura hidráulica que tiene como función el separar las partículas en suspensión que se encuentran en el flujo de agua. Esto se realiza con un proceso de sedimentación y posterior eliminación de las partículas que no fueron retenidas en la rejilla realizada en el comienzo del proyecto y en el desripiador. El desarenador es fundamental para cualquier obra hidráulica, ya que en este proyecto en particular garantizará que el flujo de agua sea constante por las tuberías forzadas (sin obstrucciones), además asegura la vida útil tanto de la tubería forzada, cámara de carga, turbinas, etc.

Figura 4.1. Esquema básico de un desarenador. Fuente. http://agriculturers.com/diseno-de-un-desarendor-para-el-pre-filtrado-de-agua-de-riego/ 4.2. TIPOS DE DESARENADOR. Existen tres tipos de desarenadores, los cuales se diferencian principalmente en la dirección del flujo de agua que entra. Los tres tipos son: - Desarenador de flujo horizontal: este consiste en un ensanchamiento del canal, para de esta forma poder disminuir la velocidad del flujo y que se facilite la decantación de las partículas. Este tipo de desarenador se utiliza principalmente para instalaciones de poblaciones pequeñas. - Desarenador de flujo vertical: estos se realizan mediante tanques en los que entra el flujo de agua por la parte inferior y mientras el agua sube las partículas no, de esta forma

decantando y quedando en la parte inferior del tanque. Los tanques pueden ser cuadrados, rectangulares o circulares. - Desarenador de flujo inducido: son de tipo rectangulares aireados, el que consiste en la inyección de aire, para poder inducir una corriente en espiral, lo cual facilita la decantación de partículas. Por otro lado, la inyección de aire también facilita la separación de partículas, lo que también influye en el proceso. 4.3. PARTES DEL DESARENADOR. El desarenador, está compuesto por cuatro zonas principalmente: - Zona I: Es la cámara de aquietamiento, la cual producto del ensanchamiento (en el caso del flujo horizontal) disminuye la velocidad con la que llega el flujo, disipa la energía de entrada. - Zona II: Corresponde a la entrada al desarenador, su función es de obligar a las líneas de flujo que desciendan con rapidez para que se produzca la sedimentación del material más grueso. La entrada se ubica entre la cámara de aquietamiento y la cortina. y se ubica entre la cámara de aquietamiento y una cortina. - Zona III: Es la zona de sedimentación, en donde las partículas caen en el fondo del desarenador producto de la gravedad. Es la zona en donde se hacen cumplir todas las ecuaciones de diseño. - Zona IV: Aquí se produce la salida del desarenador. Está construida por una pantalla sumergida que funciona como una especie de vertedero, además de que debe estar completamente cubierta para poder evitar cualquier tipo de contaminación. 4.4. DISEÑO DEL DESARENADOR. Los criterios necesarios para la realización de un desarenador son: el tamaño de las partículas que hay en el lecho del río, el caudal que llega al desarenador y la temperatura que tendrá el agua en el lugar. Unas de las consideraciones que debieron tomar para la realización del proyecto, es que la pendiente mínima del desarenador debe ser entre 4% -8% para que puedan escurrir los lodos y también que la profundidad de lodos debe ser desde 0,75[m] a 1,5[m]. 4.4.1.

Cálculos de Dimensionamiento del desarenador.

- Velocidad de sedimentación.

Como primer paso se procede a calcular la velocidad de sedimentación, para esto se considera que las partículas a sedimentar son de arena y que la temperatura del agua es de 20°C, para poder cumplir con la densidad del agua. En la tabla 4.1. se pueden observar los datos utilizados y el resultado final de la velocidad. La velocidad de sedimentación se calcula por medio de la siguiente fórmula. 2/3

(ρs - ρ) Vs =0,22 x ( g ) ρ

x (

d ) (μ/ρ)1/3

Vs: Velocidad de sedimentación partícula [cm/s]. g: Aceleración de gravedad [cm/s2]. ρs: Densidad relativa de la arena [gr/cm3]. ρ: Densidad del fluido [gr/cm3]. d: Diámetro partícula [cm]. μ : Viscosidad dinámica [gr /cm s]. Tabla 4.1. Velocidad de sedimentación. G

981 [cm/s2]

Ρs

2,65 [gr/cm3]

ρ (agua a 20°C)

1 [gr/cm3]

D

0,02[cm]

μ (agua a 20°C)

0,010105 [gr/cm s]

Vs

2,81 [cm/s]

- Tiempos. Posteriormente se debe calcular el tiempo que las partículas se demorarán en decantar (t), además del tiempo en que tardarán en entrar y salir del tanque 𝜃. La profundidad del estanque se recomienda que sea entre los 1,5 [m] y 4,5 [m], producto de esto se define una profundidad de estanque de 3,5 [m].

t=

H Vs

t: Tiempo que tarda la partícula en decantar [s]. H: Profundidad útil de sedimentación [cm]. Vs: Velocidad de sedimentación de la partícula [cm/s]. θ=3 x t 𝜃: Tiempo que demora la partícula en entrar y salir del tanque [s]. t: Tiempo que tarda la partícula en decantar [s]. Tabla 4.2. Tiempos. H

350 [cm]

Vs

2,81 [cm/s]

t

124,55 [s]

θ

373,65 [s]

- Dimensiones tanque El siguiente paso es determinar las dimensiones del tanque, para esto se debe saber la velocidad con la que llegan las partículas y el tiempo que se demoran en entrar y salir. La relación entre ancho y la longitud que se utilizará es de 4/1, ya que esta se presenta en un rango entre 3/1 y 5/1, los resultados se pueden observar en la tabla 4.3. A continuación, se presentan las fórmulas utilizadas para obtener las dimensiones el estanque. Vol=θ x Q Vol: Volumen del tanque [cm3]. θ: Tiempo que demora la partícula en entrar y salir del tanque [s]. Q: Caudal [cm3/s]. As=

Vol H

As: Área superficial del tanque [cm2]. Vol: Volumen del tanque [cm3]. H: Profundidad útil de sedimentación [cm]. B=√ B: ancho del tanque sedimentador [cm].

As 4

As: Área superficial del tanque [cm2]. L=4 x B L: Longitud tanque sedimentador [cm]. B: ancho del tanque sedimentador [cm]. Tabla 4.3. Dimensiones desarenador. Θ

373,65 [s]

Q

6.720.000 [cm3/s]

Vol

2.510.928 [cm3]

H

350 [cm]

As

7.174.080 [cm2]

B

1.339,22 [cm]

L

5.356,89 [cm]

- Velocidad de la partícula crítica. Ahora se debe verificar que el diseño sea óptimo, para esto se debe calcular la velocidad de sedimentación de la partícula crítica y su velocidad de desplazamiento, ya que esta es la de mayor magnitud que se puede dar. Los datos utilizados y el resultado de las velocidades se muestran en la tabla 4.4. Vo =

Q As

Vo: Velocidad de sedimentación de la partícula crítica Vo [cm/s]. Q: Caudal [cm3/s]. As: Área superficial del tanque [cm2]. Vh =

Vo x L H

Vh: Velocidad horizontal [cm/s]. Vo: Velocidad de sedimentación de la partícula crítica Vo [cm/s]. L: Longitud tanque sedimentador [cm]. H: Profundidad útil de sedimentación [cm]. Vd = √ Vd: Velocidad de desplazamiento [cm/s].

8 x k x g x (ρs-ρ) x d f

k: Factor. g: Aceleración de gravedad [cm/s2]. ρs: Densidad relativa de la arena [gr/cm3]. ρ: Densidad del fluido [gr/cm3]. d: Diámetro partícula [cm]. f: Rugosidad de cámara. Tabla 4.4. Verificación velocidad. Q

6.720.000 [cm3/s]

As

7.174.080 [cm2]

Vo

0,93 [cm/s]

L

5.356,89 [cm]

H

350 [cm]

Vh

14,23 [cm/s]

k (arenas unigranulares no adheribles)

0,04

G

981 [cm/s2]

Ρs

2,65 [gr/cm3]

ρ (agua a 20°C)

1 [gr/cm3]

D

0,02[cm]

F

0,027

Vd

19,59 [cm/s]

Como se observa en la tabla 4.4 la velocidad de desplazamiento es mayor a la velocidad horizontal. 4.4.2. -

Cálculos de Elementos del desarenador.

Vertedero.

Todo desarenador tiene distintos elementos que lo componen, uno de estos es el vertedero de salida. Para su cálculo se deben considerar distintos parámetros ya realizados y obtener como resultado la altura de agua del vertedero, su velocidad y la longitud del vertedero. 2/3

Q Hv = ( ) 1,84 x B Hv: Altura agua en el vertedero [m].

Q: Caudal [m3/s]. B: Ancho del tanque sedimentador [m]. Vv =

Q Hv x B

Vv: Velocidad del agua en el vertedero [m/s]. Q: Caudal [m3/s]. Hv: Altura agua en el vertedero [m]. B: Ancho del tanque sedimentador [m]. Xs = 0,36 x Vv

2⁄ 3 +0,6

x Hv

4⁄ 7

Xs: Distancia [m]. Vv: Velocidad del agua en el vertedero [m/s]. Hv: Altura agua en el vertedero [m]. Lv = Xs + 0,1 Lv: Longitud de vertedero[m]. Xs: Distancia [m]. Tabla 4.5. Vertedero de salida.

-

Q

6.72 [m/s]

B

13.3922 [m]

Hv

0,42 [m]

Vv

1,19 [m/s]

Xs

0,76 [m]

Lv

0,86 [m]

Pantalla de entrada y salida.

Otro de los elementos que se debe considerar para el diseño es la pantalla de salida y, de entrada. La profundidad de estas pantallas se asumirá de 1.5 [m] y la altura del agua será de 3[m]. P=

Hs 2

P: Profundidad [m]. Hs: Altura de agua [m]. Dvs=15 Hv

Dvs: Distancia al vertedero de salida [m]. Hv: Altura agua en el vertedero [m]. - Pantalla de entrada. P=

Hs 2

P: Profundidad [m]. Hs: Altura de agua [m]. Dca = Dca: Distancia a la cámara de aquietamiento [m].

L 4

L: Longitud tanque sedimentador [m]. 𝐿 3 Dsc: Distancia desde el punto de salida a la cámara de aquietamiento [m]. Dsc =

L: Longitud tanque sedimentador [m]. 2L 3 Dpv: Distancia desde el punto de salida al vertedero de salida [m]. Dpv =

L: Longitud tanque sedimentador [m]. Tabla 4.6. Pantalla de salida y de entrada.

-

P

1.5 [m]

Hs

3 [m]

Hv

0,42 [m]

Dvs

6,3 [m]

L

53,56 [m]

Dca

14,13 [m/s]

Pendientes.

Los lodos que se generan en un desarenador, son una parte importante a considerar en el diseño. Este elemento se diseña con las distancias que existen entre los elementos del desarenador y hay que considerar la pendiente que debe tener para que los lodos puedan escurrir con facilidad.

St= St: Pendiente transversal.

Pmax-Pmin B

Pmax: Profundidad máxima adoptada [m]. Pmin: Profundidad mínima adoptada [m]. B: Ancho del tanque sedimentador [m]. Pmax-Pmin Dca

SL/3 = 𝑆𝐿/3 : Pendiente longitudinal en (L/3) [m]. Pmax: Profundidad máxima adoptada [m]. Pmin: Profundidad mínima adoptada [m].

Dca: Distancia desde el punto de salida de lodos a la cámara de aquietamiento [m]. S2L/3 =

Pmax-Pmin Dsc

SL/3 : Pendiente longitudinal en (2L/3) [m]. Pmax: Profundidad máxima adoptada [m]. Pmin: Profundidad mínima adoptada [m]. Dsc: Distancia desde el punto de salida de lodos al vertedero de salida [m]. Tabla 4.7. Almacenamiento de lodos.

-

L

53,56 [m]

Dsc

17,8 [m]

Dpv

35.7 [m]

Pmax

2,3[m]

P min

0,75 [m]

B

13.3922 [m]

St

11,5 %

SL/3

10.9 %

S2L/3

8.7%

Cámara de aquietamiento.

El último elemento del desarenador que se debe calcular es la cámara de aquietamiento, para este se consideraran los valores de la tabla 4.8.

P= P: Profundidad [m].

Hs 3

Hs: Altura de agua [m]. A=

B 3

A: Ancho [m]. B: Ancho del tanque sedimentador [m]. Tabla 4.8. Cámara de aquietamiento. Hs

1 [m]

P

3 [m]

B

13.3922 [m]

A

4,46 [m]

5. CÁMARA DE CARGA.

5.

CÁMARA DE CARGA.

5.1. DESCRIPCIÓN. La cámara de carga es una estructura receptora del agua, la cual proviene del desarenador y es trasladada por medio del canal de aducción. Luego de la cámara, el agua se distribuye a la tubería forzada la cual se caracteriza por tener alta pendiente y llevar el agua a la turbina para general energía eléctrica. Esta estructura hidráulica tiene por objetivo generar una reserva de agua para mantener la presión de caída mediante la tubería forzada y así no genera daños a la estructura. Las funciones que cumple la cámara de carga es entregar una conexión entre el canal de aducción y la tubería forzada (de presión). Por otro lado, es la sedimentación de los elementos o partículas flotantes y la eliminación de los mismos evitando que atraviesen a la tubería forzada. Actúa con el último filtro de la estructura de captación para eliminar de manera total los diferentes sólidos en suspensión. Entre los componentes de la cámara de carga encontramos un tapón, accesorio que ayuda y facilita la limpieza del tanque de sedimentos y regula la cantidad de agua a ingresar. Otro componente importante son las rejillas las cuales son las que evitan que las partículas flotantes atraviesen a la tubería forzada las cuales podrían dañar a la estructura. Estas últimas requieren una mantención o limpieza periódica y desmontarlas si es necesario para su limpieza efectiva.

Figura 5.1. Cámara de carga. Fuente. https://es.slideshare.net/8angel0/camara-de-carga-central-hidroelectrica-de-pasada

5.2. DISEÑO DE CÁMARA DE CARGA. Para diseñar la cámara de carga, se utilizará el parámetro del caudal de diseño el cual es el volumen que entra por segundo al canal de aducción. Además, se utilizará la misma sección del canal de aducción debido a que mediante dicho canal es por donde ingresa el agua a la cámara. A continuación, se especifica la memoria de cálculo destinada al dimensionamiento de la cámara de carga. A continuación, se realizará el diseño utilizando las formulas de la autora Quintero (2009). 5.2.1. Memoria de cálculo. 2

Vt=

0,693 x Q Axixg

Dónde: Vt: Volumen de la cámara de carga [m3]. Q: Caudal [m3/s]. A: Área del canal de aducción [m2]. i: Pendiente del canal de llegada. g: Aceleración de gravedad [m/s2]. Cabe mencionar que el 0,693 es un coeficiente de disminución de volumen el cual sirve para contar con un margen de seguridad. H=

Vt +k 3

Dónde: H: Profundidad de cámara de carga [m]. Vt: Volumen de la cámara de carga [cientos de m3]. K: Constante de capacidad. 𝐵= √ Dónde: B: Ancho de la cámara de carga [m]. Vt: Volumen de la cámara de carga [m3].

𝑉𝑡 𝐻

H: Profundidad de cámara de carga [m]. 5.2.2. Resultados de los cálculos. Lo primero que se determinó es el volumen total que puede almacenar la cámara de carga en función de diferentes parámetros. Algunos de los parámetros de diseño estarían la sección del canal de aducción, el caudal de diseño y la pendiente del canal de aducción. En la siguiente tabla se encuentran los parámetros de cálculo de manera resumida para la obtención del volumen de la cámara. Tabla 5.1. Parámetros de diseño para el volumen de la cámara de carga.

Caudal de diseño [m3/s] Seccion canal de aduccion [m2] Pendiente del canal de aduccion Aceleracion de gravedad [m/s2] Volumen cámara de carga [m3]

6,72 2,8 0,01 9,81 113,93

Una vez calculado el volumen de la cámara se debe proceder a determinar las dimensiones de la cámara de carga, profundidad, ancho y largo. Para determinar la profundidad de la cámara se requiere determinar la constante de capacidad según el volumen total de la cámara de carga. Se determina según la tabla que se muestra a continuación la cual está en función de los cientos de metros cúbicos.

Figura 5.2. Tabla de constante de capacidad. Fuente. http://www.bdigital.unal.edu.co/1287/1/1017128278.pdf En la siguiente tabla de resumen se muestran los datos y el resultado de la altura de la cámara de carga.

Tabla 5.2. Altura de la cámara de carga.

Volumen cámara de carga [cientos de m3] Constante de capacidad (k) Altura de la camara de carga [m]

1,14 2 2,38

Luego se calcula el ancho de la cámara de carga en función del volumen de la cámara y la altura de la misma. Tabla 5.3. Ancho de la cámara de carga.

Volumen cámara de carga [m3] Altura de la camara de carga [m] Ancho de la camara de carga [m]

113,93 2,38 6,92

Finalmente, con los datos obtenidos se puede calcular el largo de la cámara de carga mediante un despeje simple en función del volumen de la cámara y las dimensiones ya conocidas (altura y ancho). Realizando el despeje se obtiene que el largo es igual al ancho lo que implica que es una cámara de carga de sección cuadrada. En la siguiente tabla se muestran las dimensiones de la cámara. Tabla 5.4. Dimensiones de la cámara de carga.

Volumen cámara de carga [m3] Altura de la camara de carga [m] Ancho de la camara de carga [m] Largo de la camara de carga [m]

113,93 2,38 6,92 6,92

6. VERTEDERO DE LA CAMARA DE CARGA.

6. VERTEDERO DE LA CÁMARA DE CARGA.

Los vertederos o aliviaderos son estructuras que pueden cumplir diversas funciones dependiendo de en dónde usadas. En el caso de una presa, el vertedero se utiliza como medio de disipación en épocas de gran afluente, entre otras funciones que tiene. El vertedero que será utilizado para este proyecto es del tipo utilizado en canales, ya que a la salida de la cámara de carga es así como se comportará el flujo de agua. Para el diseño de un vertedero se deben conocer una serie de valores que se encuentran predeterminados como lo son el caudal que pasará por él, que viene de proyecto, el cual sería de 6,72 [m 3/s]. Para esta obra hidráulica se utilizará un vertedero rectangular de pared gruesa, ya que los de este tipo, se utilizan para controlar los niveles de agua, y también se pueden utilizar como medidores de caudal. 6.1. DISEÑO DE VERTEDERO Como se dijo anteriormente se utilizará un vertedero rectangular, el cuál será dimensionado con las fórmulas proporcionadas por el libro de Fernández y López (2014). En primera instancia se deben calcular los coeficientes de Bazin y Villemonte, necesarios para calcular el ancho del vertedero. - Coeficiente de vertedero de Bazin (Fernández y López, 2011). 𝑀 = [1.794 +

2 0.0133 𝐻 ] ∗ [1 + 0.55 ( ) ] ∗ √2 ∗ 𝑔 𝐻 + 𝑌1 𝐻 + 𝑌1

M: Coeficiente de vertedero de Bazin. H: Carga sobre la cresta del vertedero [m]. Y1: Altura ventana [m]. - Coeficiente de sumersión de Villemonte (Fernández y López, 2011). 𝑆 = [1+ (

S: Coeficiente de sumersión de Villemonte. hn: Altura flujo que pasa sobre muro [m].

3 0.385 2

hn ) ] Y2

Y2: Altura agua que se acumula [m]. - Ancho del vertedero. Recopilando los resultados anteriores, se puede proceder a calcular el ancho del vertedero con la fórmula del mismo. En la tabla 6.1 se puede apreciar un resumen de los resultados obtenidos y finalmente el ancho del vertedero. 𝑏=

𝑄 3/2

𝑆 ∗ 𝑀 ∗ 𝐻2

b: Ancho del vertedero[m]. Q: Caudal S: Coeficiente de corrección de sumersión. M: Coeficiente de vertedero. H: Carga sobre la cresta del vertedero [m]. Tabla 6.1. Vertedero. Q [m3/s]

6,72

S Villemonte M Bazin H [m]

0,45

Hn [m]

0,2

Y1 [m]

2

Y2 [M]

2

b vertedero [m] Finalmente el ancho del vertedero construido como medida de seguridad será de [m].

7. TUBERÍA FORZADA.

7. TUBERÍA FORZADA.

7.1.

DESCRIPCIÓN DE LA TUBERÍA FORZADA.

La tubería forzada tiene por objetivo transportar un flujo de agua de una cota de mayor altura a otra de menor altura. Este principio se rige bajo el concepto de la gravedad, en donde esta estructura se caracteriza por tener elevada pendiente o inclinación por lo que provoca un aumento de la energía potencial al momento de llegar a la turbina. La tubería forzada conecta la cámara de carga con la turbina, generando un aumento de la energía para poder ser utilizada para la central hidroeléctrica. A mayor pendiente, implica que generará mayor energía debido a la sobre presión pero se debe tener extremo cuidado que esa misma sobre presión no dañe a la estructura haciéndola colapsar. Este fenómeno se conoce como golpe de ariete. La estructura de la tubería forzada se compone por las juntas de expansión, los anclajes y los apoyos.

Figura 7.1. Esquema tipo de tubería forzada. Fuente. https://es.slideshare.net/8angel0/camara-de-carga-central-hidroelectrica-de-pasada -

Juntas de expansión: Son el elemento de la tubería encargado de absorber los desplazamientos de las tuberías debidos a las dilataciones y contracciones que experimentan como consecuencia de los cambios ambientales existentes en zona en que se emplazara, de igual manera por los cambios de carga del generador. Los cambios de cargas van acompañados de sobrepresiones o supresiones que producen

-

-

movimientos de las partes de las tuberías forzadas. Apoyos: Son las obras de soporte de la tubería que tienen la función de soportar su peso y permite el desplazamiento de la misma producto de la dilatación o contracción por cambios de temperatura o de carga. Anclajes: Es una obra formada por un macizo de concreto reforzado que se construye en todas las secciones en los cuales se presenta un cambio de pendiente de la tubería. La estructura restringe el movimiento axial de la tubería y transfiere cargas de tracción al terreno.

Centrándose en el diseño se debe tener en consideración diversas características de la tubería, tales como el diámetro y el espesor, la materialidad y rugosidad, las diferentes tipos de pérdidas locales con sus respectivas piezas, entre otras cosas. Todos estos parámetros definirán la presión final con la que se llegará a la turbina. Hay que mencionar que para el trazado de la tubería forzada se debe realizar un movimiento de tierra del terreno para poder lograr un descenso del agua de manera efectiva para generar la energía requerida. 7.1. GOLPE DE ARIETE. Debido a los cambios de velocidades que produce la tubería forzada por su pronunciada pendiente produce el fenómeno conocido como golpe de ariete, el cual implica un aumento de la presión o de la energía potencial el cual es clave para poder generar la energía necesaria en la turbina. Hay que tener cuidado debido a que se puede producir una sobrepresión, el cual puede dañar la tubería y colapsar la estructura. 7.1.1.

Fórmula de velocidad de la onda a presión.

𝑉𝑠 =

9900 √48,3 + 𝐾 ∗ 𝐷 𝑒

2

Dónde. Vs = Velocidad de la onda a presión [m/s]. K= Constante del material de la tubería (acero = 0,5). D= Diámetro interior de la tubería forzada [m]. e = Espesor de la tubería forzada (0,05 m) 7.1.2.

Fórmula del período de onda de presión.

En este caso la formula a utilizar será:

𝑡=

2∗ 𝐿 𝑉𝑠

Dónde: L= Largo de la tubería forzada [m]. Vs = Velocidad de la onda de presión [m/s] 7.1.3.

Fórmula de altura equivalente.

Con los datos anteriores se puede ahora proceder a calcular la altura equivalente relacionado al golpe de ariete. 8∗𝐿∗ 𝑄 ℎ𝑠 = 𝜋 ∗ 𝑔 ∗ 𝑡´ ∗ 𝐷2 Dónde: L= Largo de la tubería forzada. Q = Caudal de diseño. D = Diámetro interno de la tubería forzada. 7.1.4.

Resultados.

En la siguiente tabla se muestra un resumen de los parámetros de cálculos y consideraciones para el diseño. Tabla 7.1. Parámetros de diseño de tubería forzada.

Diámetro tubería 1 [m] Espesor de tubería 0,05 [m] Material Acero Caudal de diseño 6,72 [m3/s] Largo tubería 105,21 [m] K 0,5 Tiempo de maniobra 30 [s] Con estos parámetros se pueden obtener los resultados acorde a la onda de presión y la altura equivalente representada por el golpe de ariete. Tabla 7.2. Resultados de diseño del golpe de ariete.

Velocidad onda de presión Período de onda de presión Altura equivalente

1296,58 [m/s] 0,16 [s] 6,08 [m]

7.2. PERDIDAS EN LA TUBERIA FORZADA. Para las pérdidas se reconocen dos tipos. La primera es la pérdida por fricción la cual depende del largo de la tubería, la rugosidad de las paredes, entre otras cosas. Por otro lado, se debe considerar las pérdidas locales las cuales se producen por las diferentes piezas o elementos presentes en la tubería, tales como válvulas, codos, entrada y salida, etc. 7.2.1.

Fórmula de velocidad del fluido. V=Q/A

V = Velocidad del flujo [m/s]. Q= Caudal de diseño [m3/s]. A= Área de la tubería [m2]. 7.2.2.

Fórmula del N° Reynold. 𝑅𝑒 =

V∗𝐷 𝑣

V = Velocidad de flujo [m/s]. D = Diámetro de la tubería [m]. 𝑣 = Viscosidad cinemática [m2/s]. 7.2.3.

Coeficiente de pérdida.

Dicho coeficiente se obtiene mediante los parámetros del número de Reynold, la rugosidad y el diámetro de la tubería, mediante el ábaco de Moody.

Figura 7.2. Ábaco de Moody. Fuente. Libro Luis López 2015. 7.2.4.

Resultados de parámetros.

En la siguiente tabla se adjunta un resumen de los parámetros para el cálculo de las pérdidas. Tabla 7.3. Parámetros para cálculo de pérdidas.

Velocidad de flujo N° Reynold Viscosidad cinematica Rugosidad material Rugosidad relativa Coeficiente de perdida 7.2.5.

4,28 [m/s] 4,25 x 10^6 1,007x10^-6 [m2/s] 0,03 [mm] 0,00003 [mm] 0,015

Pérdidas por fricción.

Mediante la fórmula de Darcy Weisbach se obtiene la pérdida por fricción de la tubería forzada la cual se caracteriza por tener un flujo turbulento.

hf =

λ * V2 * L 2*g*D

hf = Perdidas por fricción. λ = Coeficiente de fricción. V= Velocidad del flujo en la tubería forzada. g = Fuerza de gravedad. D = Diámetro de la tubería forzada. L = Longitud de la tubería forzada. 7.2.6.

Pérdidas locales.

Se utilizará la fórmula general para las pérdidas locales. 𝐻𝐿 = 𝐾 ∗

𝑣2 2∗𝑔

Dónde. K = Coeficiente de perdida local. V = Velocidad media del flujo [m/s]. HL = Perdidas locales. Acorde a la pieza de pérdida a analizar corresponde al valor que tomará ‘’K’’ para efectuar el cálculo de cada pérdida local.

Figura 7.3. Tabla de coeficientes para pérdidas locales según cada pieza. Fuente.https://www.google.cl/search?q=coeficientes+de+perdidas+por+accesorios&tbm=isch&t bo=u&source=univ&sa=X&ved=0ahUKEwix7bTbhYTbAhWEUJAKHdlKBrgQsAQIJg&biw=1366 &bih=662#imgrc=Y2PesrgC9gPy0M: Se considerará una válvula de mariposa abierta para el control del agua. Se realiza esta elección para minimizar las pérdidas de presión. También se considera una entrada cuadrada para la tubería forzada. 7.2.7.

Resultados de pérdidas.

En la siguiente tabla se adjuntan los resultados de las pérdidas, tanto locales como por fricción y la pérdida total de la tubería forzada. Tabla 7.4. Resultados de pérdidas

Perdida Fricción de la tubería Local de entrada Local por válvula de mariposa abierta Perdida total

Coeficiente λ = 0,015 k = 0,5 k = 0,24 -

Resultado 1,473 [m] 1,151 [m] 0,552 [m] 3,177 [m]

Se analiza la presión con la que se llega a la turbina mediante la siguiente expresión. 𝐻 𝑡𝑜𝑡𝑎𝑙 = 𝐻 𝑐𝑎𝑖𝑑𝑎 + 𝐻𝑠 − 𝑝𝑒𝑟𝑑𝑖𝑑𝑎𝑠 Reemplazando en la fórmula. 𝐻 𝑡𝑜𝑡𝑎𝑙 = 32,7 [𝑚] + 6,08[𝑚] − 3,177 [𝑚] 𝐻 𝑡𝑜𝑡𝑎𝑙 = 35,603 [𝑚]

Related Documents

Central
November 2019 64
Central
June 2020 19
Central Hidroelectrica.pdf
October 2019 21
Central 302
November 2019 27
Central Nuclear
May 2020 17
Universidad Central
November 2019 26

More Documents from ""