I
Series SSO
65/1
Code N~.
I
ep)g ;:r.
Roll No.
Candidates
must
~-;:f.
the title page of the answer-book. 3m-~~cPl
-cRTaw-TI ep)g 051
~ ~fffiY
write the Code on
~
~-%
I
•
Please check that this question paper contains 12 printed pages.
•
Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
•
Please check that this question paper contains 29 questions.
•
Please write down the Serial Number of the question before attempting it.
•
15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the student will read the question paper only and will not write any answer on the answer script during this period.
•
~
•
~-lBf
•
~
~
•
~
~
•
~
~
C/1{ ~
#~
~-lBf
10.15 qit ~
fcf;
m2T ctr 3ffi
C/1{ ~ CfIT
fcf;
it; ~
cfit ~ fcf;
~
31cff~ it; GRR
fG:Q:
~-lBf
~
k1"S-t1
~
#~
~-lBf
~
I
if ~-~
~
~
12 ~
irn- ~
~
# 29 ~ ~
it
cfit ~
~
~
CfIT
~
1flfT
10.15 qit ~ 10.30 qit ~ lR
cnT{
~
it; ~-~
~-~
lR ~
I
~t
15 f1:Rz Cf)f ~
I
~
~
~
M
~
I ~
~
~
~
#
-lBf Cf)f fcrcwr ~ ~-lBf
cfit ~
3:fk
Marks:
100
I
MATHEMATICS
Time allowed : 3 hours
Maximum
a:rr~
6511
1
3:fcn :
100
p.T.a.
General Instructions: (i)
All questions are compulsory.
(ii)
The question paper consists of 29 questions divided into three sections A, Band C. Section A comprises of 10 questions of one mark each, Section B comprises of 12 questions of four marks each and Section C comprises of 7 questions of six marks each.
(iii)
All questions
(iv)
There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
(v)
Use of calculators is not permitted.
'R7TT'Pl
in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
f.IW :
(i)
~
(ii)
ff1 >IN 31
>IN J1Rqrlf ~. I
it
q;r
10
iT ~
it 29 ~
~ ~ rft;:r ~
FiRit it ~
~
~.
rm
3fq;
CfiT
~
(
~ "(ffUg
it ~ 3fq;
"fT
CfiT
~ : ~
it 7 >IN
I
3{,
"(ffUg G[
t FiRit it
7i{ (f2lT
"fT
I
"@V5
it 12 >IN ~. fJRif JTFitcn fJT 3fq;
CfiT
~ I
(iii)
"(ffUg 31¥ff(
(i v)
31
it
~
it
q;r
a:fqif
2 ~
fc!q:;fq CfiRT ~
(v)
65/1
;}Wlq;c1c<
t
\57T ~
q-uf >IN '" r:rrft
m it ~
"fTsft
it
fc!q:;fq
~ ~
31~
ctt 3WH4C/?r1f
~
I
~
~. (
fiR
it
3TFfffi:q)
fcrcfic;rr
ctt
31J1fFrr
;rtt. ~
I
m
Tl,Cfi qrq:zr
2
~
W qr( 3fqif (
#1 ~
4
~
m if
it
r:rrft
it 3fJT1Ch1
rr:qr
f!!E
E9?
tt
SECTION A ~31
Questions number JTR
1 it 10
#?§ZlT
1 to ffCfi
10 carry
~
1 mark
JTR 1 aicn
CfiT
each. ~
I
1. / Find the value of x, if
l__
2y - x [3X+Y
?~
x Cf)f liR ~
-x +Y
2y [3X
/2. ~ ! )
~
51
3 2J.
- 3YJ = [ - 5 1
3 2J.
3 -YJ
= [-
?:1ft:
/Let * be a binary operation on N given by a * b = RCF (a, b), a, b E N. Write the value of 22 * 4. l1RT
*, N
a, b
E
en: ~
fu31TmU ~
N ~ I 22 * 4
CfiT 11R
~ ~
it
a * b = RCF (a, b) &m ~~,
~
I
\ ~ate: 1/12
J o
65/1
3
p.T.a.
5. ~rite /
the principal
cos-1 (cos 7;)
6. /Write
I
<:fiT lj&i liB ~
the value of the following determinant: la-b b-c c-a
~
b-c
c-a
a-b
c-a
a-b
b-c
Rq ~I\fU Ien
<:fiT liB
-B
ft1furQ:
:
a-b
b-c
c-a
b-c
c-a
a-b
2
Rq
value of cos-1 (cos 7;).
2x
x <:fiT liB ~ x 4
~:
::0 2
8 ,-
~
.
/' Find
/
2x
the value of p if
(2
i
1\
1\
1\
1\
1\
~
1\
1\
1\
1\
1\
~
+ 6 j + 27 k) x (i + 3 j + p k)::
0.
p<:fiTllR~~~ 1\
(2 i + 6 j + 27 k) x (i + 3 j + p k) = 0 .
~,
9 ••
~
coordinate 'lie the axes. direction
~ ~ ~~ ~ 10.
If
P
cosines
~
it
of a line equally
is a unit vector and (~
~ Ii ~ lIDfCfi~
~
w:rr (~
p) . (~
-
+
p) . (~
~~I
65/1
'R ~
(fRT rrj~~licj) ~
4
inclined cfiTuT
p) :: 80, +
p) :: 80
to the three ~
m
then find
I
I~ I.
~, m I}( I <:fiT liB
SECTION B "{§US.
Cif
Questions number 11 to 22 carry 4 marks each. >IN til§lrT 11
~:gth ~ ....
"#
22
(fCJi
J:r:'R"~ 4 3iq;
~
!
I
x of a rectangle is decreasing at the rate of 5 em/minute
and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rate of change of (a) the perimeter, (b) the area of the rectangle.
OR Find the intervals in which the function f given by f(x) = sin x + cos x, o:s; x :s; 2n, is strictly increasing or strictly decreasing.
~ G:\
:jWffi cn1 ~
wr
-B ~
(q) ~
5 -wIT/fir;rG cn1 ~
x,
* I \ifiilx
~
YKqJrj
=8
cn1 ~
WTI
~
-B ere Wt w ~
y =6
~
W:ft
y,
~
*, ~ ~
4 -wIT/fiRz cn1
~
(31)~,
I
~
~
~
~
~
qm ~ f.1tR 12.
~ f-,1+lYlrj
f(x) = sin x + cos x,
*
O:s;
x
:s; 2n
mT ~
T.:fim
f, f.1tR
I
If sin y = x sin (a + y), prove that
_ sin2 (a+y) sIn a dx
dy
OR dy dx
(cos x)Y = (sin y)X, find
7.1fc::
7.1fc::
65/1
sin
y
= x sin (a + y)
(cos x)Y = (sin y)X
*,
W,
'ill
'ill
ft:r.& ~
fcn
dy = sin2 (a + y) dx SIn a
dy dx
5
p.T.a.
1
-----
-----
n 2'
if n is even
Find whether the function f is bijective.
fen)
==
n+l 2 ' n 2'
&FJl@:~~~f:N~N~
~
~
%
cp.:rr
\ ~
f~
~
(bijective) ~
OR Evaluate:
r//
J
x sin-1 x dx
1iH~~: J
dx
=
J5 - 4x - 2x2
3l~ 1iH~~: J x sin-1 x dx
6 65/1
_
V :
15.
If
,
/'sin -1 x
y =
/1 _ x2
d2y dx2
2
(1 - x ) -
..,..,& '111."
Y
=
soh w that dy - 3x - y = 0 dx
sin -1 x -=== ~1- x2
2 d2y dy (1 - x ) - 3x - y = 0 . dx2 dx
L/// 16.
On a multiple choice examination with three possible answers (out of which only one is correct) for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing ? ~
~-fqctl01l~
~
~
if -qfq ~
~
~) I ~
CflTT
~ ~
it
~
J.l!f~ctlc11~ fen ~
~
cfR ~~ ~
~
~ ~
~ (ftRif 'iffi
it ~ "lIT
31f~
~it~~~?
'-.'
(I7'.>USin~
of determinants, prove the foUowing: 11+
p
2
3 + 2p
1 + 3p + 2q
3
6 + 3p
1 + 6p + 3q
r ". it ~
q)f
11+
18.
m~,
Rkf ~
p
1 + 3p + 2q
3
6 + 3p
1 + 6p + 3q
Solve the following differential
1
:
I
equation
1
=
:
= y _ x tan (y) x~. ~41ctl~UI cit ~
dx x dy
=
1 + p + q
3 + 2p
Rkf ~
I
~
2
x dy dx
65/1
1 + p + q
=
~
:
y _ x tan ( yx )
7
p.T.a.
Solve the following differential equation :
19.
dy
2
cos x -
dx
f.:r8 ~
+ y = tan x
~
o/;-il1lch-lUI
2
QC1~
:
dy
cos x - + y = tan x dx ~Find
the shortest distance between the following two lines : -7 !\ !\ !\ r = (1 + A) i + (2 - A) j + (A + 1) k;
!\!\!\
-7
= (2 i -
r
j -
!\!\!\
k) + !l (2 i +
j
+ 2 k).
-7 !\ !\ !\ r = (1 + A) i + (2 - A) j + (A + 1) k ; -7 !\!\!\ r = (2 j
i-
~:"
-
k) + !l (2
!\!\!\
i
+
j
+ 2 k).
Prove the following: ,~
/"" cot
~=== ~1 - sin x J -ll/ ~1 + sin x -+ -J1OR
2, = x
Solve for x : 2 tan-1 (cos x) = tan-1 (2 cosec x) f.:r8~~~:
2. ~1 + sin x - ~1 - sin x J = x, cot-1 (_~=l=+=s=in=x=-+_.~-=l=-=s=in=x 3l$!fCfT
x~
fu"Q:
QC1~
:
2 tan-1 (cos x) = tan-1 (2 cosec x)
65/1
8
X E
4 (0, n)
22.
1\
1\
i +
j
+ k with the unit vector along
5 k and
Ai + 2 j + 3 k is equal to one.
The scalar product of the vector 1\
1\
the sum of vectors 2 i + 4 j Find the value of A. 1\
~
1\
1\
2i + 4j - 5k 1\
1\
i +j
it ~
1\
1\
~
1\ 1\
1\
1\
1\
1\
Ai + 2j + 3k
~
<.jljl\.h~
if ~
cn1 ~
~
1\
+ k
q;r ~
1 ~ I
~UI"\.h~
A q;r +rR ~ ~
q,~ll.--t/
SECTION C
~ ,If-
ll'
Questions number 23 to 29 carry six marks each. J1H if&rT 23 it 29
2~
rfcfi
JRitq;
J1H it 6 ~
~ I
A (3, -1, 2),
the equation of the plane determined by the points B (5, 2, 4)
and
C (-1, -1, 6). Also
find
the
distance
of the point
P (6, 5, 9) from the plane.
~an ~
A (3, -1, 2), B (5, 2, 4) ~
~
J-~
P (6, 5, 9) ctr ~
C (-1, -1, 6) ID\TRmft; w:rm1 q;r ...:1 w:rm1 it ~
~ ~
~
.....
i
I
\
~~area --/ the line
25~~aluate
65/1
of the region included between the parabola;
= x and
x + y = 2.
:
9
p.T.a.
~g
matrices, solve the following system of equations: x+y+z=6 x + 2z = 7 3x + y + z = 12
ofmatrix OR elementary 4-01 01 Inverse the the usmg following 33
AObtain = 12 0
~
'"
cnr
m '8:, R8 ~~Iq,{UI~
it ~ ~
x+y+z=6 x + 2z = 7
3x + y + z = 12 3l~
~
~3TI
ih
3 A =
~oloured table:
12
o
m
IDU
R8 ~
0
-1
3
o
4
1
cnr
~
~
~
balls are distributed in three bags as shown in the following . 24531 124RedColour of the ball White Black
Bag
A bag is selected at random and then two balls are randomly drawn from the selected bag. They happen to be black and red. What is the probability that they came from bag ?
I
6511
10
m
53124 24 ~
~
~CfiTtrT
'Cfil"ffi
~
~
m
<11~~<11 ~
'IT{
I
~
541fl1ctldl
it
(f~ ~
'1flIT
q:<TI ~
fcl)
~.
?J 7R
~I~~~I
(D ~
~
if
~
~
~
-B ~
~
?
~
am
~
2~aler wishes to purchase a number of fans and s.ewi~K machines. He has only ~ 5,760 to invest and has a space' for at most 20 itl:l_t,Il.8. A fan costs hi!!?-Rs. 3QO and a se'Ying_mac.hine_Rs.240. His expectation is that he can sell a fan at a prQf1t {)J_~._~2 and a sewing machine at a profit_ of Rs. 18. Assuming that he can sell all the items that he can buy, how should he invest his money in order to )llaximise the profit? Formulate this as a linear programming problem and solve it graphically. ~
~
"¥9
W~ ~
5,760 ~. ~ (f~ ~ if (f~ ~
~
22~;
C1fl1 1R
~
~
~m? 29.
~ '"
~
~ fc;rQ:
{9~~III) ~
~ ~)
~
if ~
~
I ~
~
20 ~
3if~
240~.
(f~ ~
{9~C\rjl
~
fc;rQ:
"3it
I
1R ~
urn ~
>rcfiR
311Rr
m
W
31RTT ~
mfR
Lfrn f.:rffi ~ ~
WIT
I ~ fcfi ~ I ~
f.:rffi ~
~OOcn~W1BIT~~w:FiIDU~~
ch9r ~ ~
fcfi
~
360~. W fcl)
c.nT o;Q
"3it 3if~
I
If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is ~
3
/
\/ ;/
A manufacturer
OR
can sell x items at a 100 pnce of Rs. (5 - ~)
The cost price of x items is Rs. (x \5 + 500). items he should sell to earn maximum profit. 65/1
11
Find
the
each.
number
of
p.T.a.
~
~
(~
~~itft;m:~~
65/1
+
500)~. ~ I ~
cn1 ~
I
12
~
~
~
~
dB 31f~
(1N