Catalyst Characterization

  • Uploaded by: cebajamundi
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Catalyst Characterization as PDF for free.

More details

  • Words: 738
  • Pages: 15
Catalyst  Characterization CHEMICAL ENGINEERING 126: KINETICS OF HETEROGENEOUS REACTION 12/6/2008 12/6/2008 University of the Philippines

1Chemical Engineering 126 1

Properties to be investigated 1. 2. 3. 4.

Surface area Void Volume Density of solid material in the particle Distribution of void volume according to void size (pore‐volume  distribution)

12/6/2008 12/6/2008 University of the Philippines

2Chemical Engineering 126 2

Properties to be investigated 1. Surface area 2. Void Volume 3. Density of solid material in the  particle 4. Distribution of void volume  according to void size (pore‐ volume distribution)

Schematic representation of a typical catalyst  pellet comprised of small porous particles.

12/6/2008 12/6/2008 University of the Philippines

3Chemical Engineering 126 3

The main terms for describing physical catalyst properties are as  follows: • Morphology: steric conditions and topology of the surface • Porosity: share of the hollow space (pore volume) of a catalyst  pellet • Texture: generally refers to the pore structure of the particles  (pore size, pore size distribution, pore shape)

12/6/2008 12/6/2008 University of the Philippines

4Chemical Engineering 126 4

The BET Surface Area

Adsorption isotherms for various gases  on a 0.606‐g sample of silica gel.

12/6/2008 12/6/2008 University of the Philippines

5Chemical Engineering 126 5

The BET Surface Area

multilayer

V monolayer

VM

“Point B” Type II isotherm submonolayer

BET area of a catalyst or a catalyst  support is one of the first  properties one wants to know in  catalyst development

P/P0 12/6/2008 12/6/2008 University of the Philippines

6Chemical Engineering 126 6

The BET Surface Area volume of a gas (usually N2) that gives monomolecular coverage is measured

Capillary condensation

Typical isotherm for physisorption 12/6/2008 12/6/2008 University of the Philippines

7Chemical Engineering 126 7

The BET Surface Area BET equation, was derived from a model that extended the Langmuir  isotherm and included the following assumptions 1. Each adsorbed molecule in the 1st layer serves as a site for the 2nd layer  (lateral interactions are ignored). 2. The rate of adsorption (condensation) on any layer (x) equals the rate of  desorption (evaporation) from the layer above it (x + 1). 3. The heat of adsorption of the 2nd layer and all those above it equals the  heat of liquefaction of the adsorbate. •

P 1 C −1 P = + ⋅ V ( P0 − p ) Vm C Vm C P0 BET Model 12/6/2008 12/6/2008 University of the Philippines

8Chemical Engineering 126 8

The BET Surface Area

P 1 C −1 P = + ⋅ V ( P0 − p ) Vm C Vm C P0 P × 103 V ( P0 − p )

BET Isotherm

P P0 12/6/2008 12/6/2008 University of the Philippines

9Chemical Engineering 126 9

The BET Surface Area

Specific surface areas of catalysts and support materials

12/6/2008 12/6/2008 University of the Philippines

10 10 Chemical Engineering 126

Pore Volume and Pore Size Distribution

12/6/2008 12/6/2008 University of the Philippines

11 11 Chemical Engineering 126

Pore Volume and Pore Size Distribution • Hg Porosimetry Method – is used to determine pore volumes and the pore size  distribution of larger pores, i.e., those with radii larger than  about 10 nm • N2 Desorption Method – Is used to determine the distribution of pores with  diameters smaller than 20 nm,

12/6/2008 12/6/2008 University of the Philippines

12 12 Chemical Engineering 126

Pore Volume and Pore Size Distribution 0.6

0.2

(

0.4

)

(

−3 CumPen ⋅ cm ⋅ gm

)

−3 Dist ⋅ cm ⋅ gm

0.1

0 100

0.2

1 ×10

3

( )

0 4 1 ×10

−1 a ( P) ⋅ A

12/6/2008 12/6/2008 University of the Philippines

13 13 Chemical Engineering 126

Pore Volume and Pore Size Distribution 2

Cumulative Pore Volume, cm3/g 

1.8 1.6 1.4

(

) − 11.2

(

)

3 −1 Y hi ⋅ cm gm 3 −1 Y lo ⋅ cm gm

−1

1 0.8 0.6 0.4 0.2 0 10

1 ×10

100

3

1 ×10

4

−1 −1 Xhi ⋅ A , X lo ⋅ A

Pore radius a, A 12/6/2008 12/6/2008 University of the Philippines

14 14 Chemical Engineering 126

Pore Volume and Pore Distribution micropores

macropores

4 −1 3 − 1) ( Dist Pore hi ⋅ cm gm

(

Distribution 3 −1 Dist lo ⋅ cm gm

)− 1 2

0 10

100

1 ×10

3

1 ×10

4

1 ×10

5

−1 −1 Xhi ⋅ APore Radius , Xlo ⋅ A

12/6/2008 12/6/2008 University of the Philippines

15 15 Chemical Engineering 126

Related Documents

Catalyst Characterization
December 2019 22
Catalyst
May 2020 21
Characterization
May 2020 19
Characterization
May 2020 17
Cisco Catalyst
April 2020 17

More Documents from ""