CASO DE APLICACIÓN ESTADÍSTICA EN EL LLENADO DE LATAS DE CERVEZA 2 En una fábrica de cerveza en envase tipo lata se tiene un proceso controlado estadísticamente, obteniendo una muestra representativa del proceso de 100 latas al azar a las que se le mide cuantitativamente su contenido y con cuyos resultados se elaboró el Histograma del anexo; éste Histograma esta elaborado de acuerdo a la metodología del curso. Las especificaciones del llenado son de 355 ± 10 mililitros (ml) A su vez, se revisaron cualitativamente la apariencia de mil latas escogidas al azar y se hizo el Pareto que también se muestra en el anexo. Con los datos mostrados en el anexo que son representativos del proceso y asumiendo que la distribución del llenado de las latas obedece a una Distribución Normal, obtenga lo siguiente: 1° El porcentaje de latas que cualitativamente sale con defectos del proceso (valor 7 puntos). 2° La probabilidad de que en cien latas escogidas al azar en el proceso existan menos de 3 con defectos
(valor
15 puntos).
3° La probabilidad de que en cien latas escogidas al azar en el proceso se encuentren exactamente tres con defectos (valor 12 puntos). 4° La media del llenado de las latas del proceso (valor 12 puntos). 5° La mediana del llenado de las latas para el proceso (valor 8 puntos). 6° La desviación estándar del proceso (valor 8 puntos). 7° El porcentaje de latas del proceso cuyo llenado está fuera de especificaciones (valor 12 puntos). 8° La probabilidad de que una lata escogida al azar en el proceso tenga más de 345 ml (valor 8 puntos). 9° La probabilidad de que el promedio de un “six paq” de seis latas escogidas al azar en el proceso sea menor a 345 ml (valor 9 puntos). 10° El error en mililitros que de acuerdo al tamaño de la muestra y a un Nivel de Confiabilidad del 95% se tiene en la media calculada para el proceso (valor 9 puntos).
HISTOG 100 95 90
C A N .
T
85 80 75 70 65 60 55 50