Name:
Chapter 7 Pretest Form A
Date:
Evaluate. 1.
2.
5
121
1. ____________________________
− 32
2. ____________________________
3. Use absolute value to evaluate
4. Write
( − 5b )2
m 2 + 8m + 16 .
3. ____________________________
as an absolute value.
4. ____________________________
Write in exponential form. Assume all variables represent positive real numbers. 5.
6.
4
53
5. ____________________________
3a
6. ____________________________
Write in radical form. Assume all variables represent positive real numbers. 7.
( 3x )1 4
7. ____________________________
14
⎛1 ⎞ 8. ⎜ x 3 y ⎟ ⎝2 ⎠
8. ____________________________
Simplify. Assume all variables represent positive real numbers. 9.
5
3 32
10.
3
18x12 y 3
10. ____________________________
80c
11. ____________________________
11.
12.
13.
9. ____________________________
180ab 4
12. ____________________________
5ab 2
98 − 50 − 72
13. ____________________________
259
Chapter 7 Pretest Form A (cont.) 14.
15.
16.
17.
(
)(
2 +1
2 −3
)
14. ____________________________
3
15. ____________________________
3−2
(8 −
Name:
)(
− 1 − 2 + − 16
)
16. ____________________________
− 12
17. ____________________________
7 − −1
Solve. 18. 2 x = 5 x − 16
18. ____________________________
19. 2 + u = 2u + 7
19. ____________________________
20.
x +3= x−3
20. ____________________________
260
Name:
Chapter 7 Pretest Form B
Date:
Evaluate. 1.
2.
3
81
1. ____________________________
−1000
2. ____________________________
(−17)2 .
3. ____________________________
x 2 + 6 x + 9 as an absolute value.
4. ____________________________
3. Use absolute value to evaluate
4. Write
Write in exponential form. Assume all variables represent positive real numbers. 5.
x9
6.
( m) 5
5. ____________________________
4
6. ____________________________
Write in radical form. Assume all variables represent positive real numbers. 7. a1/ 6
7. ____________________________
8. (5m − n)8 / 5
8. ____________________________
Simplify each radical expression by changing the expression to exponential form. Write the answer in radical form.
9.
10.
5
610
9. ____________________________
18
x3
10. ____________________________
Simplify.
11.
45 x10 y 31
11. ____________________________
12.
x5 y 6 12 z
12. ____________________________
261
Chapter 7 Pretest Form B (cont.) 24 − 3 6 + 252
13.
14.
15.
(
6− 2
)(
3− 2
Name:
13. ____________________________
)
14. ____________________________
6
15. ____________________________
6 + 30
16. (5 + 7i) − (4 − 3i)
16. ____________________________
−16
17. ____________________________
18.
7x − 3 = 5
18. ____________________________
19.
x −8 = x − 2
19. ____________________________
17.
Solve.
20. A new bypass is being constructed to relieve congestion at an intersection. The road will run from 45 feet north of the perpendicular intersection to 60 feet east of it. How long is the new road?
262
20. ____________________________
Mini-Lecture 7.1 Roots and Radicals Learning Objectives: 1. 2. 3. 4. 5.
Find square roots. Find cube roots. Understand odd and even roots. Evaluate radicals using absolute value. Key Vocabulary: radical sign, radicand, radical expression, index, square root, principal square root, cube root, even root, odd root
Examples: 1. For the function f ( x) = 4 x + 9 , find each of the following: b) f (−2) c) a) f (10)
f (−5)
2. For the function f ( x) = 3 7 x − 8 , find each of the following: a) g (5) b) g (−5) c) g (19) 3. Indicate whether or not each radical expression is a real number. If the expression is a real number, find its value. a)
4
−625
b) − 4 625
c)
5
−243
d) − 5 −243
4. Use absolute value to evaluate. a)
52
b)
02
c)
(2.6) 2
d)
(−10) 2
e)
(2 x − 5) 2
f)
36 y 2
g)
64x 6
h)
400m 4
i)
n 2 − 20n + 100
Teaching Notes: • Remind students that the result of a square root is always nonnegative and that the result is only rational if the radicand is a perfect square. • Students may need extra practice to remember the difference between expressions like − 5 and −5 . • A quick review of factoring real numbers may be helpful as students begin simplifying radical expressions. • Encourage students to memorize as many perfect squares and perfect cubes as they can. • Stress that calculators only give approximate values for irrational numbers. The radical form is the exact value. • The textbook often assumes variables and radicands represent positive numbers. Remind students to pay attention to this detail in the instructions.
Answers: 1a) 7; 1b) 1; 1c) not a real number; 2a) 3; 2b) −4 ; 2c) 5; 3a) not a real number; 3b) real number, 5; 3c) real number, −3 ; 3d) real number, −3 ; 4a) 5; 4b) 0; 4c) 2.6; 4d) 10; 4e) 2x − 5 ; 4f) 6y or 6 y ; 4g) 8x3 or 8 x 3 ; 4h) 20m2 ; 4i) n − 10
263
Mini-Lecture 7.2 Rational Exponents Learning Objectives: 1. Change a radical expression to an exponential expression. 2. Simplify radical expressions. 3. Apply the rules of exponents to rational and negative exponents. 4. Factor expressions with rational exponents. 5. Key vocabulary: rational exponent, exponential expression, radical expression Examples: 1. Write each expression in exponential form.
a)
b)
13
3
6xy
5
c)
x2
d)
6
2m5 3n
2. Write each expression in radical form. b) (−64)1/ 3
a) 161/ 4
( 5x3 y )
1/ 5
c)
d) 6ab1/ 3
3. Write each expression in exponential form and then simplify.
(4 a)
8
x15
3
a)
b)
c)
5
m10 n15
4. Write each expression in radical form. a) x
3/8
b) (2ab)
2/7
c)
⎛ x⎞ ⎜ ⎟ ⎝7⎠
5. Simplify. a) 93 / 2
b)
6
43
10
c)
m5
d)
3/ 4
(9 a)
6
6. Evaluate. a) 81−3 / 4
b) 16−5 / 4
a) x1/ 4 ⋅ x −2 / 3
b)
⎛4⎞
−1/ 2
⎛ 125 ⎞
−1/ 3
c) ⎜ ⎟ d) ⎜ − ⎟ ⎝9⎠ ⎝ 8 ⎠ 7. Simplify each expression and write the answer without negative exponents.
(
3x 4 y −2
8. Simplify. 18
a)
(13n)6
b)
)
(
−1/ 2
1/ 4
⎛ 9 x −2 z1/ 3 ⎞ −2 / 3 ⎟ ⎝ z ⎠
d) 2.1x1/ 2 (1.6 x1/ 3 + x −1/ 4 )
c) ⎜
)
15
5
xy 3 z 4
c)
3 5
a
9. Factor r 3 / 8 + r −5 / 8 . Teaching Notes: • Demonstrate for students the convenience of using rational exponents to evaluate radical expressions on a calculator. For example, it is convenient to evaluate 161/ 4 for 4 16 .
Answers: 1a) 131/2 ; 1b) (6xy)1/3 ; 1c) x 2/5 ; 1d)
2m5 ; 2a) 3n
3a) x15/3 = x 5 ; 3b) a 8/4 = a 2 ; 3c) m10/5 n15/5 = m2 n3 ; 4a) 3
8
4
16 = 2 ; 2b)
x 3 or
3
(8 x)
3
3
−64 = −4 ; 2c)
; 4b)
7
(2ab)2 or
5
5x 3 y ; 2d) 6a 3 b ;
( 7 2ab )
2
;
⎛ x⎞ 3 1 1 2 or ⎜ 4 ⎟ ; 5a) 27; 5b) 2; 5c) m or m1/2 ; 5d) 3 a 2 or a 2/3 ; 6a) ; 6b) ; 6c) ; 6d) − ; 27 32 5 7 2 ⎝ ⎠ 31/2 z 1/4 1 y r +1 7a) 5/12 ; 7b) 1/2 2 ; 7c) ; 7d) 3.36x5/6 + 2.1x1/4 ; 8a) 3 13n ; 8b) x 3 y 9 z 12 ; 8c) 15 a ; 9) 5/8 1/2 x r 3 x x
4c)
4
⎛ x⎞ ⎜ ⎟ ⎝7 ⎠
264
Mini-Lecture 7.3 Simplifying Radicals Learning Objectives:
1. 2. 3. 4.
Understand perfect powers. Simplify radicals using the product rule for radicals. Simplify radicals using the quotient rule for radicals. Key vocabulary: product rule for radicals, quotient rule for radicals, perfect power, perfect square, perfect cube
Examples:
1. Simplify. Assume all variables represent non-negative real numbers. a)
400
b)
3
c)
1000
4
x 20
d)
x14
3
2. Simplify. Assume all variables and expressions in radicands are non-negative. a) e) i)
3
50
b)
63
c)
3
80
d)
4
162
x18
f)
y5
g)
4
a 35
h)
3
m16
x10 y13
j)
m10 n 21
k)
48a 7b10 c 5
l)
3 125 p14 q10
4
3. Simplify. Assume all variables and expressions in radicands are non-negative. 3
a)
63 7
b)
d)
49 x 4 144
e)
108 x
3
3
c)
4 x4
27 x5 y 64 x 2 y16
f)
3
a −2b11
3
a 4b −4
4
20 xy10 4 x13 y 2
Teaching Notes: • Warn students to be careful to pay attention to the type of root being taken. • Encourage students to memorize as many perfect powers as they can.
Answers: 1a) 20; 1b) 10; 1c) x 5 ; 1d) x 5 ; 2a) 5 2 ; 2b) 3 7 ; 2c) 2 3 10 ; 2d) 3 4 2 ; 2e) x6 ; 2f) y 2 y ; 2g) a 8 4 a 3 ; 2h) m 5 3 m ; 2i) x 5 y 6 y ; 2j) m 2 n 5 4 m 2 n ; 2k) 4a 3b 5 c 2 3ac ; 2l) 5p 4 q 3 3 p 2 q ; 3a) 3; 3b)
3x y2 4 5 3 b5 7x 2 ; 3c) 2 ; 3d) ; 3e) 5 ; 3f) 12 x x3 4y a 265
Mini-Lecture 7.4 Adding, Subtracting, and Multiplying Radicals Learning Objectives:
1. Add and subtract radicals. 2. Multiply radicals. 3. Key vocabulary: like radicals, unlike radicals Examples:
1. Simplify. Assume all variables represent non-negative real numbers. a) 8 + 5 7 − 7 + 6
b) 4 3 x − 6 + 5 3 x + 7 x
c)
d) 10 12 + 3 75
e) 3 63 − 4 28 + 175
f)
3
125 + 3 40 − 9 3 5
m6 − m 4 n + m 2 n
i)
3
a11b − 3 a 5b 7
32 + 12 − 18
g)
h)
18 + 72
2. Multiply and simplify. Assume all variables represent non-negative real numbers. a) c)
4
15 x 5 20 x 4
b)
9ab9 4 36a10b12
d)
e)
(
a + b )( a + b )
g)
( 3 m − 3 6n ) ( 3 m 2 + 3 9n 2 )
3
9 x 3 3x5 7 x ( 14 x + 28 )
f)
(2
10 − 5 )
h)
(5 +
2
7 )( 5 − 7 )
3. If f ( x) = 3 x and g ( x) = 3 x5 + 3 x 4 , find each of the following: a) ( f ⋅ g )( x ) b) ( f ⋅ g )( 3) 4. Simplify. Assume that variables may be any real number. a)
f ( x) = x − 2 x − 2, x ≥ 2
b) g ( x) = 5 x 2 − 30 x + 45
Teaching Notes: • A quick review of the previous discussion of collecting like terms may be helpful. • When adding or subtracting like radicals, students sometimes mistakenly multiply the like radicals.
Answers: 1a) 14 + 4 7 ; 1b) 9 3 x + 7x − 6; 1c) 9 2; 1d) 35 3; 1e) 12 7 ; 1f) 5 − 7 3 5; 1g) 2 3 + 2; 1h) m 3 ; 1i) (a 3 − ab 2 ) 3 a 2b ; 2a) 10x 4 3x ; 2b) 3x 2 ; 2c) 3a 2b5 4 4a 3b; 2d) 7x 2 + 14 x ; 2e) a + b a + ab + b b; 2f) 45 − 10 2; 2g) m + 3 9mn 2 − 3 6m 2 n − 3n 3 2 ; 2h) 18; 3a) x 2 + x 3 x 2 ; 3b) 9 + 3 3 9 ; 4a) f(x) = x − 2; 4b) g(x) = 5 x − 3
266
Mini-Lecture 7.5 Dividing Radicals Learning Objectives: 1. Rationalize denominators. 2. Rationalize a denominator using the conjugate. 3. Understand when a radical is simplified. 4. Use rationalizing the denominator in an addition problem. 5. Divide radical expressions with different indices 6. Key Vocabulary: rationalizing a denominator, conjugate Examples: 1. Simplify. Assume all variables represent non-negative real numbers.
1 11
a) e)
b)
5y 3
x 3 7 3 5
f)
2x2
c) g)
3
15 3x 3
d)
3m 2 4n
h)
4
56m5 3 n 405a 6b9 4c 3
2. Simplify. Assume all variables represent non-negative real numbers. 23 12 x+y b) c) a) 5− 2 7+ 3 x−y 3. Simplify each expression. Assume all variables represent non-negative real numbers. 150m9
a)
1 7
b)
4. Simplify: 2 5 +
1 10
c)
6 − 45 5
5. Simplify. Assume all variables and expressions in radicands are non-negative. a)
6
5
x x
b) 6
( a + b) 4
3
c)
( a + b)3
4
m4n2 m3 n
Teaching Notes: • Remind students that when they form the binomial conjugate, they only change the sign in the middle.
• Point out that, when we multiply by an expression such as
2+ 3 , we are really 2+ 3
multiplying by 1. Answers: 1a)
11 ; 11
1h)
3ab 2 4 20a 2 bc ; 2c
4)
5 ; 5
5a)
6
1b)
x 7 ; 21
1c)
5 3x ; x
1d)
2m 3 7m 2 n 2 ; n
2a) 5+ 2; 2b) 3 7 − 3 3; 2c)
x ; 5b)
20
a + b; 5c)
12
m7 n 5
267
1e)
5y 3 4x ; 2x
x + 2y x + y 2 ; x − y2
1f)
15 ; 5
3
1g)
3a) 5m4 6m; 3b)
6m 2 n 2 ; 2n 7 ; 7
3c)
10 ; 10
Mini-Lecture 7.6 Solving Radical Equations Learning Objectives:
1. 2. 3. 4. 5. 6.
Solve equations containing one radical. Solve equations containing two radicals. Solve equations containing two radical terms and a nonradical term. Solve applications using radical equations. Solve for a variable in a radicand. Key vocabulary: radical equation, isolating a radical, extraneous solutions
Examples:
1. Solve. a)
x =9
b)
x +5 −8 = 0
c)
3
x +9 = 7
d)
x +4=0
e)
2 x + 31 = x − 2
f)
x −4 x −5 = 0
2. Solve. a)
25 x 2 + 15 = 5 x 2 + x − 8
b) 4( x − 3)1/ 3 = (4 x + 48)1/ 3
3. Solve. a)
x −1 + x = 2
b)
5x −1 = 1 + 4x − 3
4. Solve each application. a) Find the length of the diagonal of a rectangle that is 10 feet long and 4 feet wide. b) Find the period of a pendulum if its length is 3 feet. The formula T = 2π
L , where L 32
is the length in feet, and T is the time in seconds. 5. Solve V =
2e for e. m
Teaching Notes:
• Remind students that solving an equation means to isolate the variable of interest and that for radical equations we are first trying to isolate the radical so we can square both sides. • Emphasize the importance of checking solutions in the original equation. • Be sure to explain clearly what an extraneous root is and why they might come about when solving a radical equation. Answers: 1a) 81; 1b) 59; 1c) −8; 1d) no real solution; 1e) 9; 1f) 25; 2a) 3b) 1, 13; 4a) 10.77 feet or 2 20 feet; 4b) ≈ 1.92 seconds; 5) e =
268
v2 m 2
43 ; 5
2b) 4; 3a)
25 ; 16
Mini-Lecture 7.7 Complex Numbers Learning Objectives:
1. 2. 3. 4. 5. 6.
Recognize a complex number. Add and subtract complex numbers. Multiply complex numbers. Divide complex numbers. Find powers of i. Key vocabulary: imaginary numbers, the imaginary unit, complex numbers, conjugate of a complex number
Examples:
1. Write each complex number in the form a + bi . a) 11 − −81 d)
−72
b) 6 + −54
c) 12
e)
f) 3 + 5
99
2. Add or subtract. a) (−5 + 7i ) + (8 − 12i ) + 4
b)
3. Multiply. a) 4i (7 − 3i )
b)
4. Divide. 10 − 3i a) i
(6 −
−20 ) − ( −7 + −45 )
−36 ( −7 + 5 )
b)
c)
(3 −
−54 )( −6 + 4 )
2 + 5i 5 − 3i
5. Evaluate. a) i 46
b) i121
6. Let f ( x) = x 2 . Find each of the following: b) a) f (8i ) 7. Using the formula Z =
f (3 − 4i )
V , find the impedance, Z, when V = 2.1 + 0.4i and I = 0.5i . I
Teaching Notes:
• Remind students that the imaginary unit i is not a variable. Emphasize i = −1 . Answers: 1a) 11 − 9i; 1b) 6 + 3i 6 ; 1c) 12 + 0i; 1d) 0 + 6i 2; 1e) 3 11 + 0i; 1f) ( 3+ 5 ) + 0i; 2a) 7 − 5i; 2b) 13 − 5i 5 ; 3a) 12 + 28i; 3b) −6 7 + 30i; 3c) 30 − 9i 6 ; 4a) −3 − 10i; 4b)
−5 + 31i 34
or −
5 31 + i; 34 34
5a) −1; 5b) i; 6a) −64; 6b) −7 − 24i; 7) 0.8 − 4.2i
269
Name:
Additional Exercises 7.1
Date:
Evaluate the radical expression if it is a real number. If it is not real, indicate so. 1.
144
1. ____________________________
2.
25 81
2. ____________________________
3.
0.36
3. ____________________________
4.
2.25
4. ____________________________
−81
5. ____________________________
5.
4
6. Evaluate:
3
−64
6. ____________________________
Use absolute value to evaluate. 7.
( 29 )2
7. ____________________________
8.
( −0.14 )2
8. ____________________________
Write as an absolute value. 9.
10.
(5x
2
−y
)
2
9. ____________________________
( 4 x + 2 )2
10. ____________________________
Use absolute value to simplify. You may need to factor first. 11.
y16
11. ____________________________
12.
x 2 − 10 x + 25
12. ____________________________
13.
4a 2 − 28ab + 49b 2
13. ____________________________
270
Additional Exercises 7.1 (cont.)
Name:
Find the value of the function. Use your calculator to approximate irrational numbers to the nearest thousandth. 14. If f ( x ) = x + 1 , find f (15 ) .
14. ____________________________
15. If f ( x ) = 25 + 5 x , find f ( −3) .
15. ____________________________
3 16. If f ( x ) = 7 x 2 − 3 , find f ( 2 ) .
16. ____________________________
17. If f ( x ) = 4 4 x 2 − 3x + 9 , find f ( −1) .
17. ____________________________
3
18. Find the domain of
x −5
18. ____________________________
x +1
19. The velocity, v, of an object, in feet per second, after it has fallen a distance, h, in feet, can be found by the formula v = 64.4h . With what velocity will an object hit the ground if it falls from 30 feet? 20. Graph f ( x ) = x − 3 .
19. ____________________________
20.
y
x
271
Name:
Additional Exercises 7.2
Date:
Assume all variables represent positive real numbers. Write in exponential form. 1.
( x)
2.
5
9
4
1. ____________________________
y3
2. ____________________________
Write in radical form. 3.
(12b )
3. ____________________________
4.
1 3−1/ 2
4. ____________________________
5 2/3
Simplify each radical expression by changing the expression to exponential form. Write the answer in radical form, when appropriate. 5.
6.
7.
8.
(x) 3
4
( 5
2
3
5. ____________________________
x 28 3
a 2b
6. ____________________________
)
6
7. ____________________________
x7
8. ____________________________
Evaluate if possible. If the expression is not a real number, so state. 9.
( 25)−1/ 2 + ( 27 )−1/ 3
⎛ 121 ⎞ 10. ⎜ ⎟ ⎝ 4 ⎠
9. ____________________________
−1/ 2
10. ____________________________
Simplify. Write the answer in exponential form without negative exponents. 11. x5 / 4 ⋅ x5 / 2
11. ____________________________
12. x −1/ 2 ⋅ x −1/ 2
12. ____________________________
⎛ 16 x 3/ 5 ⎞ 13. ⎜ 1/ 3 ⎟ ⎝ 2x ⎠
2
13. ____________________________
272
Additional Exercises 7.2 (cont.) (
14. Multiply −4 y −3/ 8 5 y1/ 8 − y 2
15. Use a calculator to evaluate
) 5
Name: 14. ____________________________
209 . Round to the nearest hundredth.
15. ____________________________
Factor. Write the answer without negative exponents. 16. x1/ 2 + x3/ 2
16. ____________________________
17. x −5 + x −6
17. ____________________________
The formula used for carbon dating is P = P0 2−t / 5600 where P0 represents the original amount of carbon 14 ( C14 ) present and P represents the amount of C14 present after t years. 18. If 12 milligrams of C14 is present in a fossil now, how many milligrams will be present in 4000 years?
18. ____________________________
19. If 25 milligrams of C14 is present in a piece of bone now, how much will be present in 7000 years.
19. ____________________________
20. Find the domain of f ( x ) = ( x − 5 )
1/ 2
( x + 3)1/ 2 .
20. ____________________________
273
Name:
Additional Exercises 7.3
Date:
Simplify. Assume all variables represent non-negative, real numbers. 1.
176
1. ____________________________
2.
4
405
2. ____________________________
3.
3
192a 7 b3
3. ____________________________
4.
3
x5 y8
4. ____________________________
216x 2 y 5
5. ____________________________
1215a 6 b8
6. ____________________________
7.
100a100
7. ____________________________
8.
x4 y9
8. ____________________________
9.
1575
9. ____________________________
5. 6.
5
10.
108x 4 y 5
10. ____________________________
11.
3
375x14 y13
11. ____________________________
12.
3
49x8 y 4
12. ____________________________
13.
5
128a13b 23
13. ____________________________
14.
8x6 y 5
14. ____________________________
15.
32 2
15. ____________________________
16.
16 81
16. ____________________________
75 x 2
17.
17. ____________________________
3
18.
28 x 3 y 3 7 x3 y 5
18. ____________________________
19.
3
5 xy 27 x10
19. ____________________________
20.
3
3x6 y 9 48 x 2 y
20. ____________________________
274
Name:
Additional Exercises 7.4
Date:
Simplify. Assume all variables represent positive real numbers. 1. 5 4 9 − 8 4 9
1. ____________________________
2. 19 3 y − 8 3 y − 4 3 y
2. ____________________________
3. 6 x − 17 − 10 x + 24
3. ____________________________
4.
45 − 320
4. ____________________________
5.
63x 2 y + x 28 y
5. ____________________________
6.
3
640 − 3 80
6. ____________________________
7.
3
−8 x − 4 3 x 4 + 9 3 x + 3x 3 x
7. ____________________________
8.
3
64 x − 9 3 x 4 − 6 3 x + 6 x 3 x
8. ____________________________
12 x3 y 3 8 xy 2
9. ____________________________
9.
10.
11.
5
16a 7 b14 5 8a 6 b9
10. ____________________________
(
3
)
11. ____________________________
7 x4 y 2
2
12.
3 ( 75 + 27 )
13.
6y
(
12. ____________________________
12 y − y 3
14.
(
)(
15.
( −6
16.
(
17.
(
3
4−35
18.
(
3
x −2
2 +5
2 −4
x+ y
7 −5
)
)(
)
13. ____________________________
)
14. ____________________________
x +8 y
)
15. ____________________________
2
16. ____________________________
)(
)(
3
3
2 − 3 25
x2 − 7
)
17. ____________________________
)
18. ____________________________
275
Additional Exercises 7.4 (cont.) 19. Find the perimeter and area of the rectangle below. Write both in simplified radical form.
Name: 19. ____________________________
300 48
20. Find the perimeter and area of the triangle below. Write both in simplified radical form. 50
8
98
242
276
19. ____________________________
Name:
Additional Exercises 7.5
Date:
Simplify. Assume all variables represent non-negative, real numbers. h
1.
2.
1. ____________________________
6
5 6
2. ____________________________
3
3.
3 32
3. ____________________________
4.
6 x4 2 x5
4. ____________________________
5.
10
5. ____________________________
10
6.
18 x 3 3x 4
6. ____________________________
7.
2 x4 y5 8z
7. ____________________________
8.
6
r4 9s 20
8. ____________________________
9.
3
16 x 5 y 9 2 x6
9. ____________________________
10.
1 7
+
7 7
10. ____________________________
11.
1 + 72 8
11. ____________________________
12.
5 1 +3 + 45 2 5
12. ____________________________
13.
3
13. ____________________________
5− 6
277
Additional Exercises 7.5 (cont.) x
14.
15.
16.
17.
14. ____________________________
x+ 2 5− 3
15. ____________________________
5+ 3 6− 3
16. ____________________________
6+ 3 3
x
4
x
4
x10 y 6
6
x2 y 4
18.
Name:
17. ____________________________
18. ____________________________
The radius, r, of a sphere with volume v can be found by the formula r =
3
3v . 4π
19. At a state fair, a spherical decoration is to have a volume of 1436 cubic feet. Find the approximate radius of the decoration.
19. ____________________________
20. Find the radius of a ball for a circus act, if the ball must have a volume of 113,040 cubic inches.
20. ____________________________
278
Name:
Additional Exercises 7.6
Date:
Solve and check your solution(s). If the equation has no real solution, so state.
x−5 = 2
1. ____________________________
x − 11 + 2 = 9
2. ____________________________
x−9 = 6
3. ____________________________
4.
x 2 + 5 x − 10 = x
4. ____________________________
5.
x 2 − x − 30 = x + 5
5. ____________________________
6.
4− x +4 = x
6. ____________________________
7.
m+9 +3 = m
7. ____________________________
8. (4a − 9)1/ 4 = (a − 3)1/ 4
8. ____________________________
9.
x + 2 = 4 + 9x
9. ____________________________
10.
x − 11 − x = −1
10. ____________________________
11.
x+4 = x −4
11. ____________________________
1.
3
2. 3.
3
12. 5 + x = 25 + 10 x
12. ____________________________
Given f ( x ) and g ( x ) , find all real values of x where f ( x ) = g ( x ) . 13.
f ( x) = x + 5 , g ( x) = 2x − 3
13. ____________________________
14.
f ( x ) = 3 x 2 − 3 x + 5 , g ( x ) = 3 x 2 + 7 x − 15
14. ____________________________
15.
f ( x ) = ( 20 x − 11) 2 , g ( x ) = 3 ( 4 x − 3) 2
15. ____________________________
1
1
Solve each formula for the variable indicated. 16. u =
HR for H a
16. ____________________________
17. r =
qX for y y
17. ____________________________
The formula for the period of a pendulum on the moon is T = where T is the period in seconds and A is the length in feet.
π 3A , 2
18. Find the period of a pendulum on the moon whose length is 12 feet.
18. ____________________________
19. Solve the formula for the period of a pendulum on the moon for A .
19. ____________________________
20. Find the length of a pendulum that has a period of 5 seconds on the moon.
20. ____________________________
279
Name:
Additional Exercises 7.7
Date:
Write each expression as a complex number in the form a + bi . 1. −7 + −100
1. ____________________________
2. 3i − −64
2. ____________________________
Perform the operations as indicated. 3.
( −6 − 9i ) − (8 + 5i )
3. ____________________________
4.
( −13 + 7i ) − ( −4 − 11i )
4. ____________________________
5.
−108 + −75
5. ____________________________
6.
−98 + −32
6. ____________________________
7.
(14 +
) (
−63 −
49 − −28
)
7. ____________________________
8. −4 ( 3 − 5i )
8. ____________________________
9. 3i (11 − 4i )
9. ____________________________
10.
( 5 + i )( −5 − 6i )
10. ____________________________
11.
(8 + i )( −4 + 9i )
11. ____________________________
12.
(8 −
12. ____________________________
13.
7 4i
13. ____________________________
14.
3 + 8i 2i
14. ____________________________
15.
1 − 4i 9+i
15. ____________________________
16.
)
⎛1 ⎞ −18 ⎜ + −2 ⎟ 4 ⎝ ⎠
2
16. ____________________________
7 − −343
Indicate whether the value is i, –1, –i, or 1. 17. i 203
17. ____________________________
18. i112
18. ____________________________
19. If f ( x ) = x 2 , find f ( 2 − i ) .
19. ____________________________
20. If f ( x ) = x 2 − 5 x , find f ( 3 + i ) .
20. ____________________________
280
Name:
Chapter 7 Test Form A 1. Evaluate: − 3 − 125
1. ____________________________
25 144
2. Evaluate:
Date:
2. ____________________________
4 x 2 − 12 x + 9
3. Write as an absolute value:
(
4. Write in radical form: 7b 2 c
5. Write in exponential form:
)
3. ____________________________
35
4. ____________________________
x3 y 2
5
5. ____________________________
For questions 6 – 17, assume all variables represent positive real numbers. 6. Simplify:
4
7. Simplify:
x12
6. ____________________________
75
7. ____________________________
8. Simplify: − 20x6 y 7 z12
9. Simplify:
4
8. ____________________________
20 x 4 81x − 8
9. ____________________________
8 − 12
10. Simplify:
10. ____________________________
11. Simplify:
(
x+y
)(
x−y
)
11. ____________________________
12. Simplify:
4
3x9 y12
4
54 x 4 y 7
12. ____________________________
13. Simplify:
x
13. ____________________________
13
14. Rationalize the denominator:
15. Rationalize the denominator:
5
14. ____________________________
2 +1
c − 2d
15. ____________________________
c− d
281
Chapter 7 Test Form A 16. Simplify:
17. Divide:
2 50
− 3 50 −
(cont.)
1
Name:
16. ____________________________
8
12 − − 12
17. ____________________________
3 + −5
18. Solve and check solution(s):
z2 + 3 = z + 1
18. ____________________________
19. Solve and check solution(s):
x +1 = 2 − x
19. ____________________________
20. Write the complex number 21 − − 36 in the form a + bi.
282
20. ____________________________
Name:
Chapter 7 Test Form B 1. Evaluate :
3
1 27
1. ____________________________
2. Use absolute value to evaluate
3. Write in radical form:
(7x
2
( 5 x − 8 )2 .
+ 2 y3
)
2. ____________________________
−1 6
3. ____________________________
y6
4. Simplify:
Date:
4. ____________________________
5. Simplify and write the answer in exponential form without
5. ____________________________
14 3 12
⎛ 81z y ⎞ negative exponents: ⎜ ⎟ 14 ⎝ 9z ⎠
(
6. Multiply: − 9z 3 2 z 3 2 − z − 3 2
7. Simplify:
4
)
6. ____________________________
80
7. ____________________________
For questions 8 – 9, assume all variables are positive. Simplify the given expressions. 8.
9.
4
48x11 y 21
8. ____________________________
150a10b11
9. ____________________________
2ab 2
Simplify each expression in questions 10 – 12. 10. 3 5 + 500 − 80
11.
12.
(3
10. ____________________________
a − 7 b )( 3 a + 7 b )
11. ____________________________
3 ( 75 + 15 )
13. Simplify:
12. ____________________________
20 y 4 z 3 3 xy − 2
13. ____________________________
283
Chapter 7 Test Form B
(cont.)
Name:
Rationalize the denominator in problems 14 – 15. 14.
15.
5
14. ____________________________
6+ 5
2
15. ____________________________
x+2 −3
16. Simplify: 2
8 100 −4 3 6
16. ____________________________
Solve and check your solution(s) in questions 17 – 18. 17.
x + 2x = 1
17. ____________________________
18.
y +1 =
18. ____________________________
19. Add:
(
20. Divide:
y+5−2
) (
20 − −12 + 2 5 + − 75
)
19. ____________________________
10 + − 3
20. ____________________________
5 − − 20
284
Name:
Chapter 7 Test Form C 1. Use absolute value to evaluate
( −6 ) 2
.
1. ____________________________
x 2 − 10 x + 25
2. Write as an absolute value.
Date:
2. ____________________________
1/ 3
⎛ 27 x3 ⎞ 3. Simplify ⎜ 9 ⎟ ⎝ −y ⎠
3. ____________________________
4. Graph f ( x ) = x − 2
4.
y
x
5. Write in exponential form:
3
x2 y
5. ____________________________
Simplify. Assume that all variables represent positive real numbers. 6.
24a9 b6
6. ____________________________
7.
14 x 7 xy 2
7. ____________________________
60 x 4
8.
7 3x
9.
10.
8. ____________________________
12 x
9. ____________________________
−2
10. ____________________________
1− 2
8 + 2 32
11.
11. ____________________________
12. 7 64 x − 2 25 x − 4 36 x 13.
( 6 + 2 )( 2 − 2 )
14.
3
3
15.
12. ____________________________ 13. ____________________________
xy 2
14. ____________________________
x4
15. ____________________________
x
285
Chapter 7 Test Form C
(cont.)
Name:
Solve. 16.
17.
3
n−2 = 4
16. ____________________________
13 − x + 1 = x
17. ____________________________
18. Multiply ( 2 + 5i ) ( 4 − 2i )
18. ____________________________
2 + 3i 1 − 2i
19. ____________________________
19. Divide
20. Evaluate x 2 − x + 1 for x = 3 − 2i .
20. ____________________________
286
Name:
Chapter 7 Test Form D 1. Use absolute value to evaluate
( −9 ) 2
.
1. ____________________________
4 x2 − 4 x + 1
2. Write as an absolute value.
Date:
2. ____________________________
3. Simplify x1/ 2 ⋅ x1/ 4 .
3. ____________________________
4. Graph f ( x ) = x + 2
4.
y
x
5. Write in exponential form:
6
xy 5
5. ____________________________
Simplify. Assume that all variables represent positive real numbers. 6.
45x 2 y 3 z 5
6. ____________________________
7.
2 x 18 y 2
7. ____________________________
8.
42a 3b5 14a 2 b
8. ____________________________
9.
6 5
9. ____________________________
10.
3
10. ____________________________
2− 3
81 + 6 3 3 − 3 24
11. ____________________________
12. 2a 27ab5 + 3b2 3a3b
12. ____________________________
11.
13.
3
(
)(
5 −3
)
13. ____________________________
72x6 y 4 z
14.
15.
5 −6
3
x5
4
x3
14. ____________________________
15. ____________________________
287
Chapter 7 Test Form D
(cont.)
Name:
Solve. 16.
7x − 3 = 2
16. ____________________________
17.
2x −1 = x − 2
17. ____________________________
18. Multiply ( 4 + 3i ) ( 6 + i )
18. ____________________________
19. Divide
−4 − 7 i 6i
19. ____________________________
20. Evaluate x 2 + 5 x − 2 for x = 2 − 3i .
20. ____________________________
288
Name:
Chapter 7 Test Form E
Date:
2
1. Use absolute value to evaluate
1. ____________________________
x2 + 2 x + 1
2. Write as an absolute value. ⎛ x −1/ 3 ⎞ 3. Simplify ⎜ 2 ⎟ ⎝ y ⎠
⎛ 1⎞ ⎜− ⎟ . ⎝ 8⎠
2. ____________________________
3
3. ____________________________
4. Graph f ( x ) = − x
4.
y
x
5. Write in exponential form:
10
x9 y 7 z 3
5. ____________________________
Simplify. Assume that all variables represent positive real numbers.
−8x5 y 9
6. ____________________________
7.
27 x3 3xy 2
7. ____________________________
8.
75a 4 b 7 3ab3
8. ____________________________
7 9
9. ____________________________
6.
9.
10.
11.
3
3
4
10. ____________________________
3+ 2
3 2 1 + 2 2
11. ____________________________
12. 3 8 x 2 + 2 18 x 2 − 4 x 2 13.
(
3
14.
15.
7 −2
)(
7 −8
12. ____________________________
)
13. ____________________________
x2 y 4
14. ____________________________
x 4
15. ____________________________
x
289
Chapter 7 Test Form E
(cont.)
Name:
Solve.
4x − 3 = 5
16. ____________________________
2 x + 32 − 4 = x
17. ____________________________
18. Multiply ( 2 + 3i )( 4 + 5i )
18. ____________________________
16.
17.
3
19. Divide
4 − 5i 2i
19. ____________________________
20. Evaluate x 2 − 3 for x = 2 − 5i .
20. ____________________________
290
Name:
Chapter 7 Test Form F
Date:
2
⎛ 4⎞ ⎜− ⎟ . ⎝ 9⎠
1. ____________________________
x 2 − 20 x + 100
2. ____________________________
1. Use absolute value to evaluate
2. Write as an absolute value. 3. Simplify x 2 / 5 ⋅ x 2
3. ____________________________
4. Graph f ( x ) = x + 2
4.
y
x
5. Write in radical form: ( x 3 y 2 )
1/ 5
5. ____________________________
Simplify. Assume that all variables represent positive real numbers. 6.
50x 2 y 6
7.
3
8.
9.
(
6. ____________________________
27 − 3
)
7. ____________________________
48 xy 7 6 y4
3
8. ____________________________
5 3
9. ____________________________
a 2
10.
10. ____________________________
5+2
300 − 12 + 3
11.
11. ____________________________
12. 5 9 x − 3 4 x + 6 16 x 13.
(
6+4
14.
3
x4 y3
15.
)(
6 −4
12. ____________________________
)
13. ____________________________
14. ____________________________
x 3
15. ____________________________
x
291
Chapter 7 Test Form F
(cont.)
Name:
Solve.
3x + 2 = 2
16. ____________________________
2 x + 14 = x + 3
17. ____________________________
18. Multiply ( 3 + 2i )( 5 + 4i )
18. ____________________________
16.
17.
3
19. Divide
−5i 2 − 4i
19. ____________________________
20. Evaluate x 2 + x + 1 for x = 2 − i .
20. ____________________________
292
Name:
Chapter 7 Test Form G 1. Use absolute value to evaluate. (a) –16
x+4
(a)
( −16 )2
(b) 16
2. Write as an absolute value.
Date:
(c) –4
(d) 4
x 2 − 8 x + 16 (b) x − 4
(c)
x 2 − 8 x + 16
(d) x 2 + 8 x + 16
1 x y
(c)
1 xy
(d)
5
(c) x 6 x
3
⎛ x −1/ 3 ⎞ 3. Simplify ⎜ 1/ 3 ⎟ . ⎝ y ⎠
y3 x3
(a)
(b)
3 3
y x
4. Write x 6 / 5 as a simplified radical. 6
(a)
x5
(b)
x6
(d) x 5 x
5. Graph f ( x ) = x − 2 y
(a)
y
(b)
y
(c)
y
(d)
4
4
4
4
2
2
2
2
—4 —2 —2
2
4
x
—4 —2 —2
—4
2
4
x
—4 —2 —2
—4
4
x
—4 —2 —2
—4
—4
Simplify. Assume that all variables represent positive real numbers.
8x3 y 5
6.
(a) 4 xy 2 2 xy 7.
3
(b) 4 3 2a
(c) 4a 3 2
(d) 2a 3 4
(b) 5y
(c) 5 y
(d)
5y
(d)
ab 7 b
8x
7a 2 b
(a) a 7b
10.
(d) 2 xy 3 4 xy 2
40 xy 3
(a) y 5 y
9.
(c) 4 x 2 y 4 2 xy
4a 2 3 8a
(a) 2 3 4a
8.
(b) 2 xy 2 2 xy
(b)
a 7b b
(c)
ab 7
7 2− 3
(a) 14 − 7 3
(b) 14 + 7 3
(c) −14 − 7 3
293
(d) −14 + 7 3
2
4
x
Chapter 7 Test Form G 11.
3
(cont.)
Name:
16 − 2 3 2
(a) 0
(b) 2 3 2
(c) 4 3 2
(d) 8 3 2
(b) 101 5x
(c) −17 5x
(d) 51 5x
(b) 4 + 2 3
(c) 4 + 3
(d) 4 + 6
(b) 4 3 4
(c)
3
2
(d) 4 3 2
(c)
15
x7
(d)
12. 4 20 x + 5 45 x − 10 80 x (a) 33 5x 13.
(
)
3 +1
2
(a) 4 14.
8 3
2 4
(a) 2 3 4 5
15.
x4
3
(a)
x 5
x3
(b)
3
x
15
x3
x−2 −6 = 0
16. Solve. (a) 4
(b) 8
(c) 38
(d) no real solution
(b) 2
(c) 9
(d) no real solution
(b) –1
(c) −1 + 6i
(d) 17 + 6i
x+7 = x−5
17. Solve. (a) 2, 9
18. Multiply ( 2 + 3i )( 4 − 3i ) (a) 8 − 9i 19. Divide (a)
4 5 − 2i
20 − 8i 3
(b)
20 − 8i 29
(c)
20 + 8i 3
(d)
20 + 8i 29
20. Evaluate x 2 − 2 x + 3 for x = 1 − i . (a) 3
(b) 0
(c) 1
294
(d) –1
Name:
Chapter 7 Test Form H 1. Use absolute value to evaluate (a) –6
(a)
( −36 )2
(b) 6
2. Write as an absolute value
x−4
Date:
(c) –36
(d) 36
x 2 − 8 x + 16 (b) x + 4
(c)
(b) x1/10
(c) x 2 / 5
x 2 − 8 x + 16
(d) x 2 + 8 x + 16
3. Simplify x1/ 5 ⋅ x1/ 2 . (a) x 7 /10
(d) x5 / 2
4. Write x 7 / 5 in simplified radical form. (a) x 7 x 2
(b) x 5 x 2
(c)
7
x5
(d)
y
(d)
5
x7
5. Graph f ( x ) = x + 1 y
(a)
y
(b)
(c)
y
4
4
4
4
2
2
2
2
2
4
6
8
x
2
4
6
8
x
2
4
6
8
x
2
—2
—2
—2
—2
—4
—4
—4
—4
(b) 2 xy 8 y 2
(c) 8 xy 4 xy
(d) 4 xy 2 y
(b) 2 x 2 3 2
(c) 4 x 3 2 x
(d) 2 x 3 2 x 2
(b) 5y x
(c) 5x y
(d)
Simplify. Assume that all variables represent positive real numbers.
32x 2 y 3
6.
(a) 8xy 2 xy 7.
3
x 2 3 16 x 4
(a) 2 x 3 2 x
50 x3 y 2 2 xy
8.
(a) 5 xy
9.
3
3 5 3
(a)
10.
5xy
45 5
3
3
(b)
15 5
(c)
75 5
(b)
3−2
(c) − 3 + 2
(d)
33 5 5
−1
3−2
(a)
3+2
295
(d) − 3 − 2
6
8
x
Chapter 7 Test Form H
(cont.)
Name:
11. 3 27 + 5 12 (a) 16 6
(b) 47 3
(c) 19 2
(d) 19 3
(b) 7 3n
(c) −2 3n
(d) −11 3n
(b) −2 + 4 3
(c) 2 − 4 3
(d) 2 + 4 3
(c)
4
x2 y
(d) x y
x
(c)
12
x5
(d)
59 3
(c)
12. 5 27n − 12n − 6 3n (a) 35 3n 13.
(
)(
3 +1
3 −5
)
(a) −2 − 4 3 x2 y
14. (a)
15.
4
x3
3
x2
(a)
3
x2 y
(b) x 4 y
3
x4
(b)
(a) 21
(b)
(a) 6, 3
(b) 6
(
)(
18. Multiply 5 − −2 3 + −2 (a) 17 + 2i 2
i 5
x5
1 3
(d) no real solution
(c) 3
(d) no real solution
(c) 17 − 2i 2
(d) 13 − 2i 2
x−2 = x−4
17. Solve.
(a)
4
3x − 5 = 8
16. Solve.
19. Divide
12
) (b) 13 + 2i 2
4 5i
5i 4
(c) −
(b) –9 – 12i
(c) –9
(b)
4i 5
(d)
4i 5
20. Evaluate x 2 − 4 for x = 2 − 3i . (a) 9
296
(d) 9 – 12i