Name:
Chapter 1 Pretest Form A
Date:
Name the property illustrated in problems 1 and 2. 1. 4 ( x + y + 2 ) = 4 x + 4 y + 8
1. ____________________________
2. 8 + (−8) = 0
2. ____________________________
Insert either < or > between the two numbers to make a true statement. 3. 0
−8
4. −6
3. ____________________________
−2
4. ____________________________
List each set in roster form. 5. A = { x | − 1 < x < 1 and x ∈ I }
5. ____________________________
6. K = {x|x is a whole number between 3 and 4}
6. ____________________________
⎧ ⎩
1 5 2 9
Consider the set of numbers ⎨−3, 4, , , 0, 2, 8, −1.23,
99 ⎫ ⎬ . List the 100 ⎭
elements of the set that are: 7. whole numbers
7. ____________________________
8. integers
8. ____________________________
9. Let set A = {1, 2,3} and B = {4,5, 6} . Find A ∪ B and A ∩ B .
9. ____________________________
3 5
10. Evaluate: − −
5 9
10. ____________________________
⎛ 3⎞
11. Simplify: ⎜ − ⎟ ÷ − 8 ⎝ 4⎠
11. ____________________________
12. Convert 242,000,000 to scientific notation.
12. ____________________________
13. Simplify
3.12 × 106 and write the answer without exponents. 1.2 × 10− 2 ⎧
5 2
6 5
⎫
13. ____________________________
14. Illustrate the set x ⎨ x − < x < and x ∈ I ⎬ on the number line.
14.
15. Illustrate the set {x|x ≥ 5} on the number line.
15.
⎩
⎭
Evaluate the following expressions. 16. 32 − 6 ⋅ 9 + 4 ÷ 22 − 3 17.
16. ____________________________
8+ 4 ÷ 2⋅3+ 4 52 − 32 ⋅ 2 − 7
17. ____________________________
1
Chapter 1 Pretest Form A (cont.) 18. Simplify and write the answer without negative exponents: −1
6 x y
Name:
18. ____________________________
−1
19. Evaluate: (2 ⋅ 5) −1 + (3 ⋅ 4) −1
19. ____________________________
20. Simplify and write the answer without negative exponents.
20. ____________________________
⎛ − 3x y ⎞ ⎜ −1 5 ⎟ ⎝ x y ⎠ 3
−2
−3
2
Name:
Chapter 1 Pretest Form B 1. List A = {x | x is a whole number less than 6} in roster form.
Date:
1. ____________________________
Indicate whether each statement is true or false. 2. Every integer is a whole number.
2. ____________________________
3. The intersection of the set of rational numbers and the set of irrational numbers is the empty set.
3. ____________________________
4 ⎧ ⎫ Consider the set of numbers ⎨3, − 8, 0, 5, , − 1.6, 12 ⎬ . List the elements 7 ⎩ ⎭ of the set that are
4. rational numbers
4. ____________________________
5. whole numbers
5. ____________________________
Let A = {1, 3, 5, 7, 9} and B = {4, 5, 6, 7, 8} 6. Find A ∪ B .
6. ____________________________
7. Find A ∩ B .
7. ____________________________
8. Indicate the set on the number line. { x −3 < x ≤ 1}
8.
9. List from smallest to largest: 2, −4 , − 7 , −5, −5.4
9. ____________________________
Name each property illustrated. 10. 9( x + y ) = 9( y + x)
10. ____________________________
11. 7( xy ) = (7 x) y
11. ____________________________
Evaluate each expression. 12. 15 – (5 – 2)
12. ____________________________
13. 8 + 20 ÷ 4
13. ____________________________
14. 7 2 − 5(10 − 2)
14. ____________________________
15. Evaluate 7 xy − y 2 when x = –1 and y = –4.
15. ____________________________
3
Chapter 1 Pretest Form B (cont.)
Name:
Simplify each expression and write the answer without negative exponents. 16. 9−2 ⎛ 6 ⎞ 17. ⎜ −3 ⎟ ⎝y ⎠
18.
16. ____________________________ 2
17. ____________________________
3x4 y 2 21x −1 y 5
18. ____________________________
19. Convert 78,000,000 to scientific notation.
19. ____________________________
20. Simplify (5.1× 105 )(1.7 × 102 ) and write the number without exponents.
20. ____________________________
4
Mini-Lecture 1.1 Study Skills for Success in Mathematics, and Using a Calculator Learning Objectives: 1. 2. 3. 4. 5.
Have a positive attitude. Prepare for and attend class. Prepare for and take examinations. Find help. Learn to use a calculator.
Examples: 1. Maintain a Positive Attitude a) To succeed in this course, students must give it a fair chance. b) Mathematics must be worked at. c) Maturity and desire to learn have an effect on one’s ability to succeed in mathematics. d) In order to succeed, students must believe they can succeed. 2. Prepare for and Attend Class a) Preview the material b) Read the textbook c) Complete homework assignments d) Attend and participate in class e) Find a proper place to study f) Be organized to avoid wasting time 3. Prepare for and Take Exams a) Review previous homework, class notes, quizzes, etc. b) Study relevant formulas, definitions, and procedures. c) Read the Avoiding Common Errors boxes and Helpful Hint boxes. d) Complete the Chapter Review, Mid-Chapter Test and Chapter Practice Test. f) When taking the exam, read the directions and problems carefully. g) Pace yourself and use all available time. Attempt every problem. 4. Find Help a) Seek help right away when needed. Do not wait! b) Utilize the supplements that come with this textbook 5. Learn to Use a Calculator Teaching Notes: • Many developmental students have math anxiety and hesitate to ask questions. • Discuss any resources that are available on your campus where students can get help with mathematics (such as a math lab or a tutoring center). • Point out the student supplements that are available for this textbook. • Recommending a specific model of calculator to the students will help to insure that students have one that is appropriate.
5
Mini-Lecture 1.2 Sets and Other Basic Concepts Learning Objectives: 1. 2. 3. 4. 5. 6.
Identify sets Identify and use inequalities. Use set builder notation. Find the union and intersection of sets. Identify important sets of numbers Key vocabulary: variable, constant, algebraic expression, set, elements, roster form, empty set (or null set), set builder notation, union, intersection, real numbers, natural numbers (or counting numbers), whole numbers, integers, rational numbers, irrational numbers, subset
Examples: 1. Using roster form, write the set of numbers consisting of the natural numbers that are less than or equal to 6. 2. Insert either < or > between the two numbers to make a true statement. a) 2 5 b) 3 −7 c) −8
−3
3. a) List A = {x | x is a natural number greater than 4} in roster form. b) Write B = {1, 2, 3, 4, 5} using set builder notation. 4. For A = {0, 4, 8, 12} and B = {0, 2, 4, 6}, find each of the following: b) A ∩ B a) A ∪ B 5. Consider the set of numbers ⎧⎨−34, 7, − 9 , −8.5, −6, 4 5 , 0, 6, π , 25,127 ⎫⎬ . List the elements of 16
⎩
the set that are: a) natural numbers d) rational numbers
8
b) whole numbers e) irrational numbers
⎭
c) integers f) real numbers
Teaching Notes:
• Contrast the difference between expressions and equations. • Point out that {∅} is not the empty set. • Students often confuse the inequality symbols. Point out that the inequality symbol should always point towards the smaller number. • Emphasize to students that for a number to be classified as a counting number, whole number, integer, etc., it only needs to be able to be written in the proper form, but it does not have to be in that form. For example,
10 is a whole number because it can be written as 5. 2
• Point out to students that if a rational number is written in decimal form, it will either terminate or repeat. If an irrational number is written in decimal form, it will neither terminate nor repeat. Answers: 1) {1,2,3,4,5,6}; 2a) <; 2b) >; 2c) <; 3a) {5,6,7,…}; 3b) {x | x < 6 and x ∈ N} ;
{
} { } { 9 5 25,127 ⎫⎬ ; 5e) { 7 , π } ; 5f) ⎧⎨−34, 7 ,− ,−8.5,−6,4 ,0,6, π , 16 8 ⎭ ⎩
}
4a) {0,2,4,6,8,12}; 4b) {0,4}; 5a) 6, 25 ,127 ; 5b) 0,6, 25 ,127 ; 5c) −34, −6,0,6, 25 ,127 ; 5d) ⎧⎨−34,− ⎩
9 5 , − 8.5,−6,4 ,0,6, 16 8
6
25 ,127 ⎫⎬ ⎭
Mini-Lecture 1.3 Properties of and Operations with Real Numbers Learning Objectives: 1. 2. 3. 4. 5. 6. 7.
Evaluate absolute values. Add real numbers. Subtract real numbers. Multiply real numbers. Divide real numbers. Use the properties of real numbers. Key vocabulary: additive inverse (or opposites), double negative property, absolute value, like signs, unlike signs, multiplicative property of zero, commutative properties, associative properties, identity properties, additive identity element, multiplicative identity element, inverse properties, multiplicative inverse (or reciprocal), distributive property.
Examples: 1. Evaluate each absolute value expression. b) − −24 c) a) −12
d)
0
0.64
Insert <, >, or = between the pair of numbers to make a true statement. e)
−5
5
f) − −7
−3 g) −
1 4
h) −(−6)
0
− −6
For Examples 2 – 5, evaluate. 5 6
2. a) −4 + (−7)
b) 5 + (−8)
c) − +
3. a) 8 − 15
b) −10 − (−2)
c)
4. a) (−9)(−6)
b) −0.8 ( 0.9 )
c)
5. a)
−48 4
b)
−35 −7
⎛ 7⎞ ⎛ 9⎞ ⎜ − ⎟ ⋅⎜ − ⎟ = 1 ⎝ 9⎠ ⎝ 7⎠
d) −3.15 + (−6.34)
7 ⎛ 2⎞ −⎜− ⎟ 10 ⎝ 15 ⎠ ⎛ 5 ⎞⎛ 4 ⎞ ⎜− ⎟⎜ − ⎟ ⎝ 8 ⎠ ⎝ 15 ⎠ ⎛ 5 ⎞ ⎛ −10 ⎞ ⎜ ⎟ ÷⎜ ⎟ ⎝6⎠ ⎝ 9 ⎠
c)
6. Name the property illustrated. b) 6 ⋅ 7 = 7 ⋅ 6 a) ( x + 8) + 5 = x + (8 + 5) d) 3( x + 8) = 3x + 3 ⋅ 8 e) −4m + 4m = 0 g) 6 + 10 = 10 + 6 h) (−10) ⋅1 = −10 j)
8 15
k) −(−6) = 6
d) −3.7 − 8.6 d) (−3)(−5)(−6) d) 22.96 ÷ ( −2.8 ) c) 3 ⋅ (10 ⋅ 5) = (3 ⋅10) ⋅ 5 f) −9 + 0 = −9 i) 0 ⋅ (−9) = 0 l)
2 ⎛1 1 2 1 2 1 ⋅ ⎜ x − ⎞⎟ = ⋅ ⎛⎜ x ⎞⎟ − ⋅ ⎛⎜ ⎞⎟ 3 ⎝2 4⎠ 3 ⎝2 ⎠ 3 ⎝4⎠
Teaching Notes:
• Remind students that absolute value can be thought of as the number of units the number is from 0 on the number line. The absolute value cannot be negative because it is a distance. • Remind students to always change subtraction to addition by “adding the opposite.”
Answers: 1a) 12; 1b) −24; 1c) 0; 1d) 0.64; 1e) =; 1f) <; 1g) >; 1h) >; 2a) −11 ; 2b) −3 ; 2c) − 2d) −9.49; 3a) −7; 3b) −8; 3c)
5 6
; 3d) −12.3; 4a) 54; 4b) −0.72; 4c)
1 6
3 ; 10
; 4d) −90; 5a) −12 ;
5b) −5 ; 5c) −8.2 ; 6a) assoc. prop. of add.; 6b) comm. prop. of mult.; 6c) assoc. prop. of mult.; 6d) dist. prop.; 6e) inv. prop. of add.; 6f) id. prop. of add.; 6g) comm. prop. of add.; 6h) id. prop. of mult.; 6i) mult. prop. of zero; 6j) inv. prop. of mult.; 6k) dbl. neg. prop.; 6l) dist. prop. 7
Mini-Lecture 1.4 The Order of Operations Learning Objectives: 1. Evaluate exponential expressions. 2. Evaluate square and higher roots. 3. Evaluate expressions using the order of operations. 4. Evaluate expressions containing variables. 5. Evaluate expressions on a graphing calculator. 6. Key vocabulary: factors, exponential expression, base, exponent, radical sign, radicand, principle square root, index, order of operations, grouping symbols Examples: 1. Evaluate. a) (−8) 2
e) (−10)3
b) −82
c) (−5) 4
f) −103
1 g) ⎛⎜ − ⎞⎟ 2
d) −54
3
⎝
h) −32 + (−3) 2 − 23 + (−2)3
⎠
Evaluate i) x 2 , j) − x 2 , and k) (− x) 2 for x = −6 . 2. Evaluate. a)
100
b)
9 64
c)
16
g) k)
e)
3
64
f)
4
i)
3
1 1000
j)
− 3 0.027
0.25
d) − 81
5
243
h)
3
4
16 81
l)
5−
3. Evaluate.
(
1 32
)
b) −9 + 3 ⎡ −5 + 36 ÷ 22 ⎤ ⎣ ⎦
a) 9 + 3 ⋅ 23 − 15 c)
−8
4 + 5(5 − 2) 2 −12 + 54 ÷ 2 − 8
1 4
8÷ +6 4−7
d)
5 + (2 − 17) ÷ 3
4. Evaluate each expression for the given value of the variable or variables. a) 3 x 2 − 4 x + 8 when x =
1 3
b) x 2 − 5 xy + 6 y 2 when x = −2 and y = −3
5. Use a graphing calculator to evaluate each expression for the given value of the variable(s). b) 0.23x 2 − 5.4 xy + 6.1y 2 when x = 4 and y = 5 a) 0.35 x 2 − 2.6 x + 12 when x = 10 Teaching Notes:
• The acronym PEMDAS may mislead some students to believe that multiplication must always be completed before division and that addition must always completed before subtraction. Emphasize that this is incorrect. 1 8
Answers: 1a) 64; 1b) −64 ; 1c) 625; 1d) −625 ; 1e) −1000 ; 1f) −1000 ; 1g) − ;1h) −16 ; 1i) 36; 1i) −36 ; 1k) 36; 2a) 10; 2b) 2k)
2 3
3 8
; 2c) 0.5; 2d) −9 ; 2e) 4; 2f) 2; 2g) 3; 2h) −2 ; 2i)
1 2
1 ; 2j) 0.3; 10
; 2l) − ; 3a) 18; 3b) 3; 3c) 7; 3d) undefined; 4a) 7; 4b) 28; 5a) 21; 5b) 48.18
8
Mini-Lecture 1.5 Exponents Learning Objectives:
1. 2. 3. 4. 5. 6. 7.
Use the product rule for exponents. Use the quotient rule for exponents. Use the negative exponent rule. Use the zero exponent rule. Use the rule for raising a power to a power. Use the rule for raising a product to a power. Use the rule for raising a quotient to a power.
Examples:
1. Simplify. a) 34 ⋅ 37
b) x5 ⋅ x 2
c) a ⋅ a 3
2. Simplify. a)
48
n9
b)
45
c)
n3
y5 y9
3. Simplify. (Write each answer without negative exponents.) 5
8a 4 c 7
a) 5−2
b) 4 x −3
c)
e) 3−4 x 2 y −5
f) −2−4 m3n −8
g) 2−1 − 3−1
h) 3 ⋅ 2−3 + 5 ⋅ 3−2
b) 12 x 0
c) −80
d) −(2 x − 5)0
4. Simplify. a) 500
d)
y −6
b −2
5. Simplify (assume that the base is not 0). a)
( 32 )3
b)
( x3 )−5
c)
( 2−4 )2
b)
( 4x −3 y5 )
c)
⎛ 28m3 n −2 ⎞ ⎜ ⎟ ⎝ 14m −1n ⎠
d)
( x −5 )−4
6. Simplify. a)
( −3x6 )4
−2
7. Simplify. a)
⎛ 6 ⎞ ⎜ 7⎟ ⎝x ⎠
2
b)
⎛ −3a −7 ⎞ ⎜ 6 ⎟ ⎝ b ⎠
−4
5
−3
( 4 x −6 y5 ) d) −5 ( 2 x −4 y 7 )
Teaching Notes:
• Students often have difficulty mastering the rules for exponents. Stress to them the importance of neatly working one step at a time. Answers: 1a) 311 ; 1b) x7 ; 1c) a 4 ; 2a) 4 3 = 64 ; 2b) n6 ; 2c) y −4 ; 3a) 3d) 8a 4 b 2 c7 ; 3e) 5b)
1 x15
; 5c)
x2 81y 5
; 3f) −
m3 16n8
; 3g)
1 6
; 3h)
67 72
1 25
; 3b)
4 x
3
; 3c) 5y6 ;
; 4a) 1; 4b) 12; 4c) −1 ; 4d) −1 ; 5a) 729;
y 20 1 x6 36 a 28 b 24 32m 20 ; 5d) x 20 ; 6a) 81x 24 ; 6b) ; 7a) ; 7b) ; 7c) ; 7d) 256 81 16y10 x14 2 x2 n15
9
Mini-Lecture 1.6 Scientific Notation Learning Objectives:
1. 2. 3. 4.
Write numbers in scientific notation. Change numbers in scientific notation to decimal form. Use scientific notation in problem solving. Key vocabulary: scientific notation
Examples:
1. Express each number in scientific notation. a) 834,000 b) 0.000000923 c) 7,208,000,000 d) 0.000009804 2. Express each number without exponents. a) 5.6 ×108 b) 7.39 ×10−4 c) 2.07 × 104
d) 3.24 ×10−7
3. Perform the indicated operation. Express each result both in scientific notation and without exponents. b) (1.2 × 10−3 )( 9 × 10−1 ) a) (1.5 × 104 )( 3.4 × 102 ) c)
9.0 × 108 3.6 × 103
d)
5 × 10−9 8 ×10−3
Use scientific notation to solve each problem. e) A group of 50 coworkers pool their money to buy lottery tickets. The jackpot is $215,000,000. If they win, what will be each worker’s share of the jackpot? f) Light travels at a rate of 186,000 miles per second. How far does light travel in one hour (3600 seconds)? g) The diameter of a circular virus is 1×10−7 meters. Find the radius of the virus. h) The diameter of a circular virus is 1×10−7 meters. Find the circumference of the virus.
Teaching Notes:
• Be sure to point out to students that the results of computations involving scientific notation may not initially be in scientific notation.
Answers: 1a) 8.34 × 10 5 ; 1b) 9.23 × 10 −7 ; 1c) 7.208 × 10 9 ; 1d) 9.804 × 10 −6 ; 2a) 560,000,000; 2b) 0.000739; 2c) 20,700; 2d) 0.000000324; 3a) 5.1 × 106 or 5,100,000; 3b) 1.08 × 10 −3 or 0.00108; 3c) 2.5 × 10 5 or 25,000; 3d) 6.25 × 10 −7 or 0.000000625; 3e) $4,300,000 or $4.3 × 106 ; 3f) 669,600,000 miles or 6.696 × 10 8 miles; 3g) 5 × 10 −8 meters or 0.00000005 meters; 3h) 3.14 × 10 −7 meters or 0.000000314 meters
10
Name:
Additional Exercises 1.1
Date:
Instructor Information:
Name: ________________________________________________________________________________________ Office location: ________________________________________________________________________________ Office hours: __________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ Phone number: _________________________________________________________________________________ Email: _______________________________________________________________________________________
Classmate Information:
Obtain the names of at least two classmates whom you can contact for information or study questions. 1.
Name: ____________________________________________________________________________________ Phone number: _____________________________________________________________________________ Email address: _____________________________________________________________________________
2.
Name: ____________________________________________________________________________________ Phone number: _____________________________________________________________________________ Email address: _____________________________________________________________________________
Math Lab:
Location: _____________________________________________________________________________________ Hours: _______________________________________________________________________________________ Phone number: _________________________________________________________________________________
Tutoring Services:
Location: _____________________________________________________________________________________ Hours: _______________________________________________________________________________________ Phone number: _________________________________________________________________________________
Recommended Supplements:
_______________________________________________________________________________________________ _______________________________________________________________________________________________ _______________________________________________________________________________________________ _______________________________________________________________________________________________
11
Name:
Additional Exercises 1.2
Date:
1. Describe {integers greater than 13} using the roster method.
1. ____________________________
2. Use braces to list the elements of the set of even natural numbers less than 8.
2. ____________________________
3. Use braces to list the elements of the set of even natural numbers less than 12.
3. ____________________________
4. Use set-builder notation to name the following set: the set of all real numbers less than or equal to 65
4. ____________________________
For Exercises 5 – 10, insert either < or > to make a true statement. 5. −10 6. 12
−7
5. ____________________________
−15
6. ____________________________
7. −2.5
3.6
7. ____________________________
8. −23
19
8. ____________________________
9. −
1 2
−
5 19
9. ____________________________
10. −
5 7
−
10 13
10. ____________________________
For Exercises 11 – 12, list each set in roster form. 11. {x | x is a counting number between 1 and 9}
11. ____________________________
12. {x | x is a natural number greater than 5}
12. ____________________________
For Exercises 13 – 14, write each set using set-builder notation. 13. {0, 1, 2, 3, …}
13. ____________________________
14. {2, 4, 6, 8, …}
14. ____________________________
For Exercises 15 – 18, find both A ∪ B and A ∩ B . Be sure to identify which is which. 15. A = {7, 8, 9, 10, 17} and B = {3, 7, 10, 12}
15. ____________________________
16. A = {7, 9, 11, 13, …} and B = {9, 11, 13, 15}
16. ____________________________
17. A = {e, h, i, k , m} and B = {e, i, m, o}
17. ____________________________
18. A = {6, 8, 9, 10, 17} and B = {4, 6, 10, 14}
18. ____________________________ ⎧ ⎩
For exercises 19 – 20, consider the set of numbers ⎨−20, −
12 ⎫ , −0.51, 0,1.75, π , 23,10⎬ . 7 ⎭
19. List the elements that are whole numbers.
19. ____________________________
20. List the elements that are rational numbers.
20. ____________________________
12
Name:
Additional Exercises 1.3
Date:
1. Evaluate: − −24 .
1. ____________________________
2. Insert <, >, or = between the pair of number to make a true statement. −(−32) −32
2. ____________________________
3. List from smallest to largest: −5 , −16 , 1, 10 .
3. ____________________________
4. List from largest to smallest: 6 , − 7 , − 5, 7 .
4. ____________________________
For Exercises 5 – 18, evaluate. 5. 5 + ( −10 )
5. ____________________________
6. 90 + ( −49 )
6. ____________________________
7. Subtract: −8 − ( −5 )
7. ____________________________
8. Evaluate the expression: 14 − 17 − 3
8. ____________________________
9. Find the difference: 10 − ( −1)
9. ____________________________
10. Simplify: −31 − ( −8 )
10. ____________________________
11. (−12)(−5)
11. ____________________________
12. Find the product: ( −5 )( 2 )( 7 )
12. ____________________________
⎛ −2 ⎞⎛ −3 ⎞ 13. Find the product: ⎜ ⎟⎜ ⎟ ⎝ 5 ⎠⎝ 5 ⎠
13. ____________________________
14. Multiply: 5.99 × 1.2
14. ____________________________
15. Find the quotient:
−152 −2
15. ____________________________
16. Find the quotient:
216 −6
16. ____________________________
17. Divide:
9 4 ÷ 4 5
17. ____________________________
⎛ 5 ⎞ ⎛ −10 ⎞ 18. Divide: ⎜ ⎟ ÷ ⎜ ⎟ ⎝8⎠ ⎝ 7 ⎠
18. ____________________________
For Exercises 19 – 20, name the property illustrated. 19. 3( x + 5) = 3 ⋅ x + 3 ⋅ 5
19. ____________________________
20. 8 + (2 + 4) = (8 + 2) + 4
20. ____________________________
13
Name:
Additional Exercises 1.4
Date:
For Exercises 1 – 15, evaluate each expression. 1. −32
1. ____________________________
( −5 )3
2. ____________________________
3. −5 + 9 ⋅ 42
3. ____________________________
4. −2 + 3 ⋅ 22
4. ____________________________
5.
169
5. ____________________________
6.
16 121
6. ____________________________
2.
7.
3
−27
7. ____________________________
8.
5
−243
8. ____________________________
⎡ 5 + ( −7 ) ⎤ ⎡12 + ( −4 ) ⎤ 9. ⎢ ⎥⎢ ⎥ ⎣ −6 − 2 ⎦ ⎣ 5 − 3 ⎦
9. ____________________________
10. 42 + 28 ÷ 7 − 2 ⋅ 3 11. − ⎡⎣9 − ( −3 − 2 ) ⎤⎦ 12.
10. ____________________________
2
11. ____________________________
−2 6 − 27 ÷ 3 + 3
12. ____________________________
4 + 64 ÷ 42 2 3
8 ÷ + 4 8 − 10
13.
13. ____________________________
5 + 3( 7 − 4)
14. −7 ⎡⎣ 2 + ( 3 − 45 ÷ 5 ) ⎤⎦
2
14. ____________________________
15. Evaluate: (−4) 2 − 32 + 36 + (−4)3
15. ____________________________
16. Evaluate: − x 2 when x = −12 .
16. ____________________________
17. Evaluate ( 4c + 3d ) when c = −1 and d = 4 .
17. ____________________________
18. Evaluate − x 2 + 5 xy + y 2 when x = 2 and y = 3.
18. ____________________________
19. Evaluate 2 y 2 ( x + y ) when x = 6 and y = 5.
19. ____________________________
20. Evaluate ( x − 5 ) + 7 xy 2 − 5 when x = 4 and y = −4 .
20. ____________________________
2
2
14
Name:
Additional Exercises 1.5
Date:
For Exercises 1 – 20, simplify. Leave no negative or zero exponents in the answer. Assume no variable base is zero. 1.
( 9 x4 ) (8x )
1. ____________________________
2. 77 ⋅ 75 3.
4.
5.
6.
7.
8.
9.
10.
11.
2. ____________________________
( 6 x3 y3 )( 6 x 2 y 4 )
3. ____________________________
6 x6 y3
4. ____________________________
−2 x 2 y 7
6 x6
5. ____________________________
2 x3 a10
6. ____________________________
a4 p 2 q5 r 4 − pqr
7. ____________________________
10 x3
8. ____________________________
5 x7 3 x 2 y −2
9. ____________________________
z2 f −2 g −6
10. ____________________________
h −1 u −2 x − 5
11. ____________________________
y −4
12. 8 x 0 − 3 y 0
12. ____________________________
13. 4−1 + 6−1
13. ____________________________
⎛ −7 a 2 b 2 c 0 14. ⎜⎜ 4 6 8 ⎝ 3a b c
⎞ ⎟⎟ ⎠
⎛ −3a 2 b 2 c 0 15. ⎜⎜ 4 5 8 ⎝ 5a b c
⎞ ⎟⎟ ⎠
16.
( 2cd )
2 3
−5
14. ____________________________
−5
15. ____________________________
( cd )3
16. ____________________________
15
Additional Exercises 1.5 (cont.) ⎛ 5x4 y 17. ⎜⎜ 4 ⎝ 20 xy
⎞ ⎟⎟ ⎠
3
17. ____________________________
18.
( −3u
19.
(4 x y ) (4 x y )
2
Name:
p 4t 3
)
3
18. ____________________________
3 −3 2 −3
19. ____________________________
4 3 5 −4
⎛ 3x 2 y 4 20. ⎜⎜ 4 ⎝ −2 x
⎞ ⎟⎟ ⎠
2
20. ____________________________
16
Name:
Additional Exercises 1.6
Date:
For Exercises 1 – 7, express each number in scientific notation. 1. 8,400,000
1. ____________________________
2. 0.00048
2. ____________________________
3. 7900
3. ____________________________
4. 0.000051
4. ____________________________
5. 204,000,000,000
5. ____________________________
6. 17,200,000
6. ____________________________
7. 0.00921
7. ____________________________
For Exercises 8 – 14, express each number without exponents. 8. 7.94 × 108
8. ____________________________
9. 6.2 × 10−4
9. ____________________________
10. 3.14 × 10−2
10. ____________________________
11. 2.60 × 109
11. ____________________________
12. 8.54 × 108
12. ____________________________
13. 1.07 × 101
13. ____________________________
14. 8.09 × 10−5
14. ____________________________
For Exercises 15 – 18, perform the indicated operation. Express result both in scientific notation and without exponent. 15.
(3.2 ×10 )( 9.0 ×10 )
15. ____________________________
16.
( 2.9 ×10 )( 4.5 ×10 )
16. ____________________________
17.
18.
3
19
−5
−4
8 × 10−5
17. ____________________________
4 × 10−9 1.44 × 106
18. ____________________________
3.2 × 108
19. Divide by first converting each number to scientific notation form. 4900 Write the answer in scientific notation form. 0.07
19. ____________________________
20. Subtract: 9.67 × 1015 − 2.25 × 1014
20. ____________________________
17
Name:
Chapter 1 Test Form A
Date:
For problems 1 – 2, answer true or false. 1. Every natural number is a whole number.
1. ____________________________
2. The set of natural numbers is a finite set.
2. ____________________________
For problems 3 – 4, insert <, >, or = to make a true statement. 3. −21 4. − −6
−25
3. ____________________________
−(−3)
4. ____________________________
For problems 5 – 6, list each set in roster form. 5. A = {x | x is a whole number less than 5}
5. ____________________________
6. B = {x | x is an integer greater than or equal to −2 }
6. ____________________________
⎧ ⎩
⎫ ⎭
1 4
For problems 7 – 8, consider the set ⎨−4.2, −3, 0, , 5, π , 6, 7.1⎬ .
7. List the elements of the set that are irrational numbers.
7. ____________________________
8. List the elements of the set that are integers.
8. ____________________________
For problems 9 – 10, find A ∪ B and A ∩ B . 9. A = {2, 4, 6} , B = {2, 4, 6,8,11}
9. ____________________________
10. A = {0, 2, 4, 6,8} , B = {0,3, 6,9}
10. ____________________________
For problems 11 – 16, evaluate.
11.
−5 −1 ÷ 6 2
11. ____________________________
1 ⎛ 1⎞ 12. − + ⎜ − ⎟ 8 ⎝ 16 ⎠
12. ____________________________
13. (–2.1)(–7.8)(–9.1)
13. ____________________________
18
Chapter 1 Test Form A (cont.) ⎛3⎞ 14. − ⎜ ⎟ ⎝5⎠
Name:
4
14. ____________________________
4 − ( 2 + 3) − 8 2
15.
15. ____________________________
4 ( 3 − 2 ) − 32
2 1 16. − ⎡⎣8 − − 6 ÷ 3 − 4 ⎤⎦ 4
17. Evaluate
16. ____________________________
− b + b 2 − 4ac when a = 6 , b = −11 , and c = 3 . 2a
17. ____________________________
For problems 18 – 21, simplify. Leave no negative or zero exponents in the answer. Assume no variable base is zero. 18.
(2x
−3
)(
y− 4 6x− 4 y7
)
18. ____________________________
19. 5−1 + 2−1 ⎛ 4b ⎞ 20. ⎜ ⎟ ⎝ 3 ⎠
19. ____________________________
−2
⎛ 6 x2 y ⎞ 21. ⎜ ⎟ ⎝ 3 xz ⎠
20. ____________________________
−3
21. ____________________________
22. Express 0.031 in scientific notation.
23. Express
22. ____________________________
6.75 × 10− 3 without using exponents. 2.5 × 102
23. ____________________________
For problems 24 – 25, simplify and express each answer in scientific notation. 24. (0.03)(0.0005)
24. ____________________________
560, 000 0.0008
25. ____________________________
25.
19
Name:
Chapter 1 Test Form B
Date:
For problems 1 – 2, answer true or false. 1. Every whole number is a natural number.
1. ____________________________
2. The set of integers between π and 4 is the null set.
2. ____________________________
For problems 3 – 4, insert <, >, or = to make a true statement. 3. −19
4.
−22
−17
3. ____________________________
−(−25)
4. ____________________________
For problems 5 – 6, list each set in roster form. 5. H = { l | l is a whole number multiple of 7}
5. ____________________________
6. B = {x | x is a natural number less than 8}
6. ____________________________
⎧ ⎩
⎫ ⎭
1 4
For problems 7 – 8, consider the set ⎨−4.2, −3, 0, , 5, π , 6, 7.1⎬ .
7. List the elements of the set that are rational numbers.
7. ____________________________
8. List the elements of the set that are whole numbers.
8. ____________________________
For problems 9 – 10, find A ∪ B and A ∩ B . 9. A = {−1, 0,1, e, i, π } , B = {−1, 0,1}
9. ____________________________
10. Let A = {1, 2, 4,8,16} , B = {2, 4, 6,8,10}
10. ____________________________
For problems 11 – 16, evaluate.
11.
−
1 −3 ⋅ 2 4
11. ____________________________
⎛ 2 ⎞⎛ 5 ⎞ 12. 3 ⎜ − ⎟ ⎜ − ⎟ ⎝ 3 ⎠⎝ 2 ⎠
12. ____________________________
⎛ 1⎞ 13. − 4 ÷ ⎜ − ⎟ ⎝ 4⎠
13. ____________________________
20
Chapter 1 Test Form B (cont.) 14. (0.3) 2
15.
16.
Name: 14. ____________________________
8 − ⎡⎣ 4 − (3 − 1) 2 ⎤⎦
15. ____________________________
5 − (−3) 2 + 4 ÷ 2 2 2 ⎡3 27 − − 9 + 5 − 32 ⎤⎦ ⎣ 5
− b − b 2 − 4ac
17. Evaluate
2a
16. ____________________________
when a = 2, b = 1, and c = −10.
17. ____________________________
For problems 18 – 21, simplify. Leave no negative or zero exponents in the answer. Assume no variable base is zero. 18.
( − 3 p )( − p ) −2
3
18. ____________________________
19. 4− 2 + 8−1
19. ____________________________
20.
( 4x 2 y 3 )
20. ____________________________
21.
( 3x− 4 y 2 ) 3 ( 2 x3 y 5 )
−3
3
21. ____________________________
22. Express 0.000000718 in scientific notation.
22. ____________________________
23. Express ( 6.7 × 10− 3 )( 4.1 × 105 ) without using exponents.
23. ____________________________
For problems 24 – 25, simplify and express each answer in scientific notation. 24. (2500)(7000)
24. ____________________________
0.00046 23, 000
25. ____________________________
25.
21
Name:
Chapter 1 Test Form C
Date:
For problems 1 – 2, answer true or false. 1. Every real number is a rational number.
1. ____________________________
2. Every integer is a rational number.
2. ____________________________
For problems 3 – 4, insert <, >, or = to make a true statement. 3. −
4.
5 8
−4
2 3
3. ____________________________
−(−6)
4. ____________________________
−
For problems 5 – 6, list each set in roster form. 5. A = { x x is an odd integer between –3 and 5}
5. ____________________________
6. B = { x −2 < x < 7 and x ∈ W }
6. ____________________________
1 4⎫ ⎧ For problems 7 – 8, consider the set ⎨−3.76, − 2, 0, , 71, − 8, − ⎬ . 2 5⎭ ⎩
7. List the elements of the set that are real numbers.
7. ____________________________
8. List the elements of the set that are natural numbers.
8. ____________________________
For questions 9 – 10, find A ∪ B and A ∩ B . 9. A = {−3, − 1, 1, 3, 5} , B = {1, 3, 5, 7, 9}
9. ____________________________
10. A = {2, 4, 6, 8, …} , B = {… , − 3, − 2, − 1, 0, 1, 2, 3, …}
10. ____________________________
11. Indicate on the number line: { x −2.14 ≤ x < 3}
11.
12. List from smallest to largest: −0.9 , − 0.7 , − 0.6 .
12. ____________________________
For problems 13 – 14, name the property illustrated. 13. a + b = b + a
13. ____________________________
14. a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c
14. ____________________________
22
Chapter 1 Test Form C (cont.)
Name:
For problems 15 – 19, evaluate.
15.
8 2 ÷− 3 15
15. ____________________________
16. − ( 2 − −7 ) + ( −5 ⋅ −8 )
17.
18.
19.
( −1)
0
+ ( −2 ) − ( 3 ) 3
16. ____________________________
2
17. ____________________________
3 ( 42 ) + 2 16
18. ____________________________
− 81 + 10 ÷ 2 3 − 8 + 4(3 − 8) 4−6÷
19. ____________________________
2 3
For problems 20 – 21, simplify. Leave no negative or zero exponents in the answer. Assume no variable base is zero.
20.
(−x ) ( x ) 2 3
−3 3
⎛ 2 xy 3 ⎞ 21. ⎜ −2 2 ⎟ ⎝ 3x y ⎠
20. ____________________________
2
21. ____________________________
22. Convert 613,000 to scientific notation.
(
)(
22. ____________________________
)
23. Simplify 1.2 × 10−3 2 × 10−7 and express the answer without
23. ____________________________
using exponents. 2 24. Evaluate − x 2 + 7 when x = 6. 3
24. ____________________________
25. Evaluate 2 x 2 − 3 xy − y 2 when x = −4 and y = 2.
25. ____________________________
23
Name:
Chapter 1 Test Form D
Date:
For problems 1 – 2, answer true or false. 1. The union of the set of whole numbers and {0} is the set of natural numbers.
1. ____________________________
2. Every integer is a whole number.
2. ____________________________
For problems 3 – 4, insert <, >, or = to make a true statement. 3. −258
−256
3. ____________________________
4. − −9
−9
4. ____________________________
For problems 5 – 6, list each set in roster form. 5. C = { x x is an integer between − 2.3 and 4.1}
5. ____________________________
6. D = { x x is a natural number between 1 and 2}
6. ____________________________
{
}
For problems 7 – 8, consider the set −4.24,8.37, 7, −4, 0, 6, − 13 . 7. List the elements of the set that are integers.
7. ____________________________
8. List the elements of the set that are irrational numbers.
8. ____________________________
For problems 9 – 10, find A ∪ B and A ∩ B . 9. A = {3, 4, 6, 9} , B = {1, 4, 5, 8}
9. ____________________________
10. A = {0, 1, 2, 3, 4} , B = {3, 4, 5, 6, 7}
10. ____________________________
⎧ 36 ⎫ 11. Indicate on the number line: ⎨ x x < and x ∈ W ⎬ 5 ⎩ ⎭
11.
12. List from smallest to largest: −5.24 , − 5.27, − −5.31 .
12. ____________________________
For problems 13 – 14, name the property illustrated. 13. ab = ba
13. ____________________________
14. a + (b + c) = (a + b) + c
14. ____________________________
24
Chapter 1 Test Form D (cont.)
Name:
For problems 15 – 19, evaluate. 15.
( −7 )( −4 )( 2 )( −1)
15. ____________________________
16.
( −11 + −5 ) − ( 7 ⋅ −8 )
16. ____________________________
3
⎛1⎞ ⎛ 1⎞ 17. ⎜ ⎟ − ⎜ − ⎟ ⎝ 2⎠ ⎝ 3⎠
18.
19.
0
17. ____________________________
−4 25 + 23 ( 5 )
18. ____________________________
−3 ( −5 ) ÷ 9
11 − 12 + 3 ( 4 − 7 )
19. ____________________________
2(−2) − (−4)
For problems 20 – 21, simplify. Leave no negative or zero exponents in the answer. Assume no variable base is zero.
20.
( xx x ) 2 3
4
⎛ 2 x −2 y ⎞ 21. ⎜ −3 ⎟ ⎝ xy ⎠
20. ____________________________
3
21. ____________________________
22. Convert 0.0000053 to scientific notation.
22. ____________________________
23. Simplify
7.2 × 106 and express the answer without using exponents. 1.2 × 104
23. ____________________________
24. Evaluate
3 2 x − 10 when x = 8. 4
24. ____________________________
25. Evaluate 3x 2 + 7 xy + y 2 when x = 4 and y = −2.
25. ____________________________
25
Name:
Chapter 1 Test Form E
Date:
For problems 1 – 2, answer true or false. 1. Every irrational number is a real number.
1. ____________________________
2. The intersection of the set of integers and the set of irrational numbers 2. ____________________________ is the set of rational numbers.
For problems 3 – 4, insert <, >, or = to make a true statement. 3. −27
4.
−12
−25
3. ____________________________
−(−12)
4. ____________________________
For problems 5 – 6, list each set in roster form. 5. E = { x x is an odd integer greater than –7 and less than or equal to 0}
5. ____________________________
6. F = { x −2.3 < x < 5.2 and x ∈ W }
6. ____________________________
⎧2 1 ⎫ For problems 7 – 8, consider the set ⎨ , , 0, − 8, 12, − 5, 3, 2.15⎬ . ⎩7 5 ⎭
7. List the elements of the set that are rational numbers.
7. ____________________________
8. List the elements of the set that are whole numbers.
8. ____________________________
For problems 9 – 10, find A ∪ B and A ∩ B . 9. A = {0, 2, 4, 6,...} , B = {1, 3, 5, 7,...}
9. ____________________________
10. A = { –7, – 4, – 1, 2, 5} , B = { –7, − 5, − 3, − 1, 1, 3, 5, 7}
10. ____________________________
⎧ 16 ⎫ 11. Indicate on the number line: ⎨ x x ≤ and x ∈ N ⎬ 3 ⎩ ⎭
11.
12. List from smallest to largest: 4.6, − 4.2 , − −4.7 .
12. ____________________________
For problems 13 – 14, name the property illustrated. 13.
( ab ) c = a ( bc )
13. ____________________________
14. a ⋅1 = 1 ⋅ a = a
14. ____________________________
26
Chapter 1 Test Form E (cont.)
Name:
For problems 15 – 19, evaluate. 8 −4 15. − ÷ 3 15
15. ____________________________
16.
( −8 ⋅ 2 ) − ( 3 − 6 )
17.
( −2 ) + ( −3)
18.
19.
3
2
+ ( −4 )
16. ____________________________ 0
17. ____________________________
4 ( −3) + 5.2 − 32
18. ____________________________
−3 ⋅ ( −3) − 92 3
−2(3)2 + 7(−2) 5−6÷
19. ____________________________
2 3
For problems 20 – 21, simplify. Leave no negative or zero exponents in the answer. Assume no variable base is zero.
20.
(−x ) ( x ) 2
3
⎛ x10 x −8 ⎞ 21. ⎜ 5 −2 ⎟ ⎝x x ⎠
−2
3
20. ____________________________
−1
21. ____________________________
22. Convert 8,630,000 to scientific notation.
(
)(
23. Simplify −1.5 × 10−3 2 × 10−5
)
22. ____________________________
and express the answer without
23. ____________________________
using exponents. A laser printer is purchased in 2007 for $750, and its value depreciates each year after its purchase. The value of the printer, in dollars, can be approximated by using Value = 750 − 125x . Substitute 1 for x to find the value of the printer in 2008, substitute 2 for x to find the value in 2009, and so on. 24. Find the approximate value of the laser printer in 2010.
24. ____________________________
25. Find the approximate value of the laser printer in 2013.
25. ____________________________
27
Name:
Chapter 1 Test Form F
Date:
For problems 1 – 2, answer true or false. 1. Every integer is a rational number.
1. ____________________________
2. The intersection of the set of rational numbers and the set of irrational numbers is the empty set.
2. ____________________________
For problems 3 – 4, insert <, >, or = to make a true statement. 3. −127 4. − −16
−129
3. ____________________________
−(−16)
4. ____________________________
For problems 5 – 6, list each set in roster form. 5. A = {x | x is an even integer between –5 and 7}
5. ____________________________
6. B = { x x < 5 and x ∈ W }
6. ____________________________
−4 5 ⎧ ⎫ For problems 7 – 8, consider the set ⎨3.147, − 2, , 0, , 2, − 3, 8⎬ . 5 3 ⎩ ⎭
7. List the elements of the set that are rational numbers.
7. ____________________________
8. List the elements of the set that are natural numbers.
8. ____________________________
For problems 9 – 10, find A ∪ B and A ∩ B . 9. A = {0, 2, 4, 6, 8} , B = {1, 3, 5, 7, 9}
9. ____________________________
10. A = { –3, –2, –1, 0, 1} , B = {0, 1, 2, 3}
10. ____________________________
20 ⎧ ⎫ and x ∈ N ⎬ 11. Indicate on the number line: ⎨ x x < 3 ⎩ ⎭
11.
12. List from smallest to largest: −6.14, − 6.08 , − −6.37 .
12. ____________________________
For problems 13 – 14, name the property illustrated. 13. a(b + c) = ab + ac
13. ____________________________
14. a + 0 = 0 + a = a
14. ____________________________
28
Chapter 1 Test Form F (cont.)
Name:
For problems 15 – 19, evaluate. 15. (−4)(7)(−3)
15. ____________________________
[ −7 + (−5)] ÷ (2 − 4)
16. ____________________________
17. (−2)3 − (5) 2 + (−9) 2
17. ____________________________
16.
18.
19.
52 − 3(4) − 7 2
18. ____________________________
2(−7) + 121 8 + (−3) − 2 ( 9 + −3 ) 2(3) 2 + 1
19. ____________________________
For problems 20 – 21, simplify. Leave no negative or zero exponents in the answer. Assume no variable base is zero.
20.
( x3 )2 ( x 4 )−2
20. ____________________________
21.
( 2 x −3 y −1 ) 2 ( 4 xy −2 )
21. ____________________________
5
22. Convert 0.0000074 to scientific notation.
23. Simplify
22. ____________________________
8.1× 109 and express the answer without using exponents. 3 × 105
23. ____________________________
An automobile purchased in 2006 for $25,000 depreciates in value every year. The approximate resale value of the vehicle, in dollars, can be found using Resale value = 25, 000 − 2100x . Substitute 1 for x to find the vehicle’s resale value in 2007, substitute 2 for x to find its resale value in 2008, and so on. 24. Find the approximate resale value of the vehicle in 2010.
24. ____________________________
25. Find the approximate resale value of the vehicle in 2013.
25. ____________________________
29
Name:
Chapter 1 Test Form G
Date:
For problems 1 – 2, indicate which answer makes a true statement. 1. The union of the set of natural numbers and {0} is (a) the set of whole numbers (c) {0}
(b) the set of natural numbers (d) the empty set
2. Every integer is a(n) (a) natural number
(c) rational number
(b) whole number
(d) irrational number
For problems 3 – 4, list each set in roster form. 3. C = { x x > 7 and x ∈ N } (a) C = {7, 8, 9, …}
(b)
C = {8, 9, 10, …}
(c) C = {1, 2, 3, 4, 5, 6}
(d) C = {1, 2, 3, 4, 5, 6, 7}
4. D = { x x is an odd integer} (a) D = {…,, –5, –3, –1} (c) D = {…, –5, –3, –1, 0, 1, 3, 5, …}
(b) D = {1, 2, 3, 5, …} (d) D = {…, –5, –3, –1, 1, 3, 5,…}
1 6⎫ ⎧ For problems 5 – 6, consider the set ⎨−4, −2.1, 0, − , 6, 3.2, 5, ⎬ . 2 7⎭ ⎩
5. List the elements of the set that are rational numbers 1 6 (a) − , 2 7 (c)
6
6. List the elements of the set that are whole numbers (a) 0, 5
1 6 (b) −2.1, − ,3.2, 2 7 1 6 (d) −4, −2.1, 0, − , 3.2, 5, 2 7
(b) −4, 0, 5 1 6 (d) −4, −2.1, 0, − , 6, 3.2, 5, 2 7
(c) −4, −2.1, 0, 3.2, 5
For problems 7 and 8, consider the sets A = {−3, 0, 2} and B = {0, 1, 2, 3} . 7. Find A ∪ B . (a) {0, 2}
(b) {–3, 0, 2}
(c) {0, 1, 2, 3}
(d) {–3, 0, 1, 2, 3}
8. Find A ∩ B . (a) {0, 2}
(b) {–3, 0, 2}
(c) {0, 1, 2, 3}
(d) {–3, 0, 1, 2, 3}
For problems 9 – 10, identify which set is illustrated by the number line: 9.
—2 —1
(a) (c) 10.
0
1
(c)
3
4
5
6
{ x −2 < x ≤ 5 and x ∈ I } { x −2 < x ≤ 5 and x ∈ R}
—4 —3 —2 —1
(a)
2
0
1
2
3
(b) (d)
{ x −2 ≤ x < 5 and x ∈ I } { x − 2 ≤ x < 5 and x ∈ R}
4
{ x −2 < x < 3 and x ∈ I } { x −1 < x < 2 and x ∈ I }
(b) (d)
30
{ x −2 < x < 3 and x ∈ W } { x −1 < x < 2 and x ∈ W }
Chapter 1 Test Form G (cont.)
Name:
For problems 11 – 12, list from smallest to largest: 11.
12.
−3 −3 −3 , ,− 4 5 2 −3 −3 −3 , ,− (a) 4 5 2 −4 −5 −2 , ,− 3 3 3 −2 −4 −5 , , (a) − 3 3 3
(b) −
−3 −3 −3 , , 2 4 5
(c)
−3 −3 −3 , ,− 5 4 2
(d)
−3 −3 −3 ,− , 4 2 5
(b) −
−2 −5 −4 , , 3 3 3
(c)
−4 −2 −5 ,− , 3 3 3
(d)
−5 −2 −4 ,− , 3 3 3
For problems 13 – 14, name the property illustrated. 1 1 = ⋅a =1 a a (a) commutative
13. a ⋅
(b) associative
(c) identity
(d) inverse
(b) associative
(c) identity
(d) double negative
14. − ( −3) = 3 (a) commutative
For problems 15 – 19, evaluate. 12 ÷ −4 5 −48 (a) 5
15. −
(b)
−3 5
(c)
3 5
(d)
48 5
16. 8 ⋅ −4 − 3 ( 7 − 2 ) (a) –59 3
(b) –47 2
⎛ −1 ⎞ ⎛ −2 ⎞ ⎛ 5 ⎞ 17. ⎜ ⎟ + ⎜ ⎟ − ⎜ ⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3⎠ −64 (a) 27
18.
(d) 17
2
(b)
−22 27
(c)
−22 9
(d)
(b)
−38 31
(c)
−34 31
(d) 2
62 27
7 ( −2 ) − 64 ( 32 − 3) 1 − 5 ( −6 )
(a) –2
19.
(c) 5
5 − −9 + 8 ( −2 − 3) −11 − 8 (a) –4
(b) –2
(c) 2
31
(d) 4
Chapter 1 Test Form G (cont.)
Name:
For problems 20 – 21, simplify. Leave no negative or zero exponents in the answer. Assume no variable base is zero. 20.
(x
−3
(a)
y2
)
3
y5 x6
(b)
y6 x9
(c) y 5 x 6
(d) y 5
(b)
1 x
(c) x
(d) x 7
(c) 3.74 × 108
(d) 3.74 × 10−8
−1
⎛ x −3 ⎞ 21. ⎜ −4 ⎟ ⎝x ⎠ 1 (a) 7 x
22. Convert 374,000,000 to scientific notation. (a) 37.4 × 107 (b) 37.4 × 10−7
(
)(
)
23. Simplify 4 × 10−4 1.2 × 10−3 and write the number as a decimal number. (a) 0.000048
(b) 0.0000048
(c) 0.00000048
(d) 0.000000048
During the 1990’s, the value of the homes in a particular neighborhood were increasing at a phenomenal rate. One such home was purchased in 1990 for $120,000, and its value could be approximated by using Value = 120, 000 + 4500x . Substitute 1 for x to find the value of the home in 1991, substitute 2 for x to find the value in 1992, and so on. 24. Find the approximate value of the home in 1996. (a) $142,500 (b) $156,000
(c) $151,500
(d) $147,000
25. Find the approximate value of the home in 2000. (a) $160,500 (b) $165,000
(c) $169,500
(d) $174,000
32
Name:
Chapter 1 Test Form H
Date:
For problems 1 – 2, indicate which answer makes a true statement. 1. The set of integers contains the set of (a) real numbers (b) whole numbers
(c) rational numbers
(d) irrational numbers
2. The union of the set of rational numbers and the set of irrational numbers is (a) the set of whole numbers (b) the null set (c) {0} (d) the set of real numbers
For problems 3 – 4, list each set in roster form. 3. H = { x x is an integer multiple of 3} (a) H = {…, –9, –6, –3, 0, 3, 6, 9, …} (c) H = {0, 3, 6, 9, …}
(b) H = {…, –9, –6, –3, 3, 6, 9, …} (d) H = {3, 6, 9, …}
4. J = { x x < 7 and x is an odd natural number} (a) J = {0, 1, 3, 5}
(b) J = {0, 1, 3, 5, 7}
(c) J = {1, 3, 5}
(d) J = {1, 3, 5, 7}
3 6⎫ ⎧ For problems 5 – 6, consider the set ⎨−92, −4.77, , 0, 5, − 17, − ⎬ . 20 7 ⎩ ⎭
5. List the elements of the set that are irrational numbers. (a) 5, − 17 3 −6 , 0, (c) −92, −4.77, 20 7 6. List the elements of the set that are integers. 3 ,0 (a) –92, 0 (b) 20
5
(b)
(d) −92, −4.77,
(c) 0
3 −6 , 0, 5, − 17, 20 7
(d) none
For problems 7 and 8, consider the sets A = {1, 3, 5} and B = {0, 1, 2, 3, 4} . 7. Find A ∪ B . (a) {1, 2, 3, 4, 5}
(b) {0, 1, 2, 3, 4, 5}
(c) {1, 3, 5}
(d) {1, 3}
8. Find A ∩ B . (a) {1, 2, 3, 4, 5}
(b) {0, 1, 2, 3, 4, 5}
(c) {1, 3, 5}
(d) {1, 3}
For problems 9 – 10, identify which set is illustrated by the number line: 9.
—4 —3 —2 —1
(a)
10.
(c)
1
2
3
{ x x < 4 and x ∈ W }
—4 —3 —2 —1
(a)
0
0
1
2
4
(b)
3
{ x x < 4 and x ∈ N }
⎧ 17 ⎫ ⎧ 17 ⎫ and x ∈ W ⎬ (d) ⎨ x x < and x ∈ N ⎬ (c) ⎨ x x < 4 4 ⎩ ⎭ ⎩ ⎭
4
{ x −2 < x ≤ 2 and x ∈ I } { x −2 < x ≤ 2 and x ∈ R}
(b) (d)
33
{ x −2 ≤ x < 2 and x ∈ I } { x −2 ≤ x < 2 and x ∈ R}
Chapter 1 Test Form H (cont.)
Name:
For problems 11 – 12, list from smallest to largest: 11. 2, −3 , − −2 (a) − −2 , 2, −3
(b) − −2 , −3 , 2
(c)
−3 , − −2 , 2
(d) −3 , 2, − −2
(b) −1 , − −1 , 2
(c) −2, −1 , − −1
(d) −2, − −1 , −1
(b) commutative
(c) distributive
(d) identity
(b) commutative
(c) inverse
(d) identity
12. − −1 , −1 , − 2 (a) − −1 , −1 , − 2
For problems 13 – 14, name the property illustrated. 13. 2 ( x + y ) = 2 x + 2 y (a) associative 14.
( −2 ) ⋅ 1 = 1 ⋅ ( − 2 ) = − 2 (a) associative
For problems 15 – 16, evaluate. 15.
16.
−6 ÷ −3 25 −18 (a) 25
(b)
(c)
−2 25
(d)
2 25
( −7 + 4 ) − 8 ( 3 ⋅ − 6 ) (a) –147
17.
−6 75
( −8)
2
− ( −7 ) − ( −3) 2
(a) –140
(b) –133
(c) 141
(d) 155
(b) –86
(c) –12
(d) 42
(b) –1
(c) 1
(d) 5
(b) –2
(c) 2
(d) 4
3
4 ( −3) − 36 2
18.
19.
64 − ( 52 − 23) (a) –5 −7 − −3 + 12 6 − 8 −13 + −6
(a) –4
For problems 20 – 21, simplify. Leave no negative or zero exponents in the answer. Assume no variable base is zero. 20.
( −3x 2 y −3 ) (a)
21.
−3x 4 y6
2
(b)
−6x 4 y6
(c)
(b)
3xy 2 5
(c) 1
9x 4 y6
(d)
9x 4 y
−3 x −2 y 2
( −5 x −3 )0 (a)
−3 y 2 x2
34
(d) undefined
Name:
Chapter 1 Test Form H 22. Convert 0.000000091 to scientific notation. (a) 9.1× 10−7 (b) 9.1× 107
Date:
(c) 9.1× 10−8
2.4 × 106 and write the number as a decimal number. 3.0 × 10−2 (a) 8,000,000 (b) 80,000,000 (c) 800,000,000
(d) 9.1× 108
23. Simplify
(d) 8,000,000,000
The graduate student enrollment at a particular university has been decreasing since 2005. We can find the approximate number of graduate students enrolled at this university by using Enrollment = 8400 − 240 x . Substitute 1 for x to find the enrollment in 2006, substitute 2 for x to find the enrollment in 2007, and so on. 24. Find the approximate number of graduate students enrolled in 2009. (a) 7680
(b) 7440
(c) 7200
(d) 9360
25. Find the approximate number of graduate students enrolled in 2012. (a) 6480
(b) 10,080
(c) 6720
35
(d) 6960