Cap 21- Reacciones De Los Alcanos Y De Los Cicloalcanos

  • Uploaded by: nicolas
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Cap 21- Reacciones De Los Alcanos Y De Los Cicloalcanos as PDF for free.

More details

  • Words: 8,174
  • Pages: 30
CAPÍTULO 21

Reacciones de los alcanos y de los cicloalcanos La mayoría de las reacciones hasta ahora consideradas en este libro, realmente la mayoría de las reacciones de la química orgánica, implican grupos funcionales . La parte de hidrocarburo saturado de la molécula no sufre cambios importantes durante el transcurso de la mayoría de las reacciones . Existen muy pocas reacciones selectivas que puedan efectuarse con un alcano o con los grupos alquilo de la mayor parte de las moléculas, lo cual resulta fácil de comprender . Si una molécula contiene muchos enlaces C-H y C-C y sólo un enlace C-Y, será precisamente este enlace C-Y el que experimente numerosas reacciones selectivas, esto es que no afecten a los enlaces C-H y C-C . Es mucho más difícil seleccionar un enlace C-H o C-C particular para que reaccione . En los otros enlaces C-H o C-C tendrán lugar reacciones competitivas . Las reacciones de los alcanos que van a tratarse en las secciones siguientes comprenden aquellas que permiten una cierta selectividad y otras en las que esto no es necesario . El petróleo, del que los Estados Unidos procesan diariamente trece millones de barriles, está compuesto principalmente por alcanos (véase tabla 3 .3) . El producto bruto que la naturaleza nos brinda es muy poco conveniente y nada adecuado para los productos petrolíferos que se requieren en la vida moderna . Por consiguiente la industria del petróleo lleva a cabo numerosas reacciones a escala gigantesca para convertirlo en las sustancias que deseamos . La mayoría de estas reacciones no son adecuadas como operaciones de laboratorio ; son de naturaleza específica y no ilustran principios químicos nuevos . Por lo tanto no se describirá aquí detalladamente la industria del petróleo sino que se hará en el capítulo 36 .

21 .1

Oxidación

Cuando se prenden los alcanos o los cicloalcanos en presencia de oxígeno, arden con producción de dióxido de carbono, agua y calor . Por ejemplo, el calor de

851



852

Reacciones de los alcanos y de los cicloalcanos

combustión del metano, el componente principal del gas natural, es de 213 kcal/mol : CH4(g) + 2 0 2(g) --~ C0 2(g) + 2 H 2 0(g) + 213 .0 kcal/mol

La importancia de la oxidación de los combustibles hidrocarbonados para la estabilidad (y la inestabilidad) económica y política del mundo resulta bien conocida a cualquier persona . La oxidación de los hidrocarburos en los motores o en los hornos rara vez resulta completa ; si no hay suficiente oxígeno presente, se forman grandes cantidades de monóxido de carbono que es un peligro para la salud . A escala de laboratorio la oxidación completa de los hidrocarburos y de otros compuestos orgánicos se utiliza en el análisis químico para determinar fórmulas empíricas (sección 2 .2) . En la sección 3 .5 se expuso el empleo de los calores de combustión para determinar la tensión en los hidrocarburos . La oxidación de los alcanos, bien como combustión completa a CO Z y H20, bien como oxidación no tan a fondo en otras reacciones que dan productos intermedios, es muy exotérmica . Sin embargo se requiere la iniciación por medio del calor, la luz o los catalizadores químicos . El mecanismo de la oxidación implica, sin duda alguna, la formación y las reacciones de especies tipo radicales libres (sección 12 .4) . El oxígeno en su estado fundamental se sale de lo corriente en el sentido de ser un dirradical ; esto es debido a que posee dos electrones no apareados . Al ser un dirradical, el oxígeno puede sustraer un átomo de hidrógeno a un alcano originando un radical hidroperóxido y un radical alquilo : Sustracción de hidrógeno 1

1

-C : H + -0 : U- --~ -C • + H : O :O • I I Radical Radical alquilo hidroperóxido

Si hay diferentes tipos de hidrógenos que puedan ser arrebatados por el oxígeno, se formará preferentemente el radical alquilo más estable . Por ejemplo, los radicales bencilo y alilo se forman con preferencia a los terciarios, secundarios, primarios y a los radicales metilo (sección 12 .4) . En la etapa siguiente el radical alquilo puede reaccionar con el oxígeno para dar un peroxi-radical : 1 I -C-+-0--O . --) -C-0-01 1 •• Peroxi-radical

y este peroxi-radical continuará reaccionando con el alcano para dar un peróxido orgánico y un radical alquilo :



Oxidación

853 I I -C-0-O • + -C : H - -C-0-0-H+-C . Hidroperóxido Radical de alquilo alquilo

El radical alquilo reaccionará luego con el oxígeno para formar otro peroxiradical . Se formará un nuevo radical alquilo por cada uno que reaccione hasta que no quede alcano . El estudiante reconocerá que este proceso es una reacción en cadena que exhibirá las características típicas de esta clase de reacción (sección 14 .6) . La reacción neta en la secuencia de la cadena es la combinación de un alcano con el oxígeno para dar un hidroperóxido de alquilo : 1

I

-U-H+0 2 - -C-0-0-H 1 1 " —

Los hidroperóxidos orgánicos son compuestos muy reactivos . El enlace oxígeno-oxígeno es lábil y se rompe homolíticamente con facilidad . Ruptura homolítica

I

I

-C-O-O-H --a -C-O • + •O -H

Las reacciones posteriores dan mezclas complejas de productos . Los compuestos que puedan formar radicales estables (bencílicos, alílicos o terciarios) suelen reaccionar con el oxígeno a temperatura ambiente, consistiendo el procedimiento experimental simplemente en hacer burbujear aire a través del líquido . Los compuestos que sólo pueden formar radicales bastante inestables (primarios o secundarios) no suelen reaccionar salvo a elevadas temperaturas o en presencia de iniciadores . En algunos casos es posible aislar los hidroperóxidos intermedios controlando las condiciones de la reacción . Por ejemplo, el isopropilbenceno (cumeno) forma un radical bencílico terciario ; el hidroperóxido de cumilo puede aislarse a temperaturas bajas : CH 3 C-H I CH 3 Isopropilbenceno (cumeno)

CH 3 I C-O-O-H +0,

CH 3 Hidroperóxido de cuinilo

La oxidación de las cadenas laterales de los compuestos aromáticos, para dar ácidos (ArCOOH), posee una gran importancia para síntesis ; se expuso con bastante detalle en la sección 15 .9 .

5.

ALLINGER *





854

Reacciones de los alcanos y de los cicloalcanos EJERCICIO 21 .1 Tanto la cis- como la trans-decalina forman el mismo hidroperóxido al reaccionar con el oxígeno . Sugerir su estructura .

Transposición de hidroperóxido de cumilo La oxidación del cumeno a su hidroperóxido y las subsiguientes transposiciones de éste, catalizadas por ácidos, constituyen un proceso industrial importante para sintetizar fenol y acetona y es una forma de descomposición de los hidroperóxidos de alquilo .

1

1

CH 3 CH, CH3 1 + 1 1 HCH 3 -C-O-OH --> CH 3 -C-O- H 2 -, CH 3 -C =O-C65 -~ C6Hs H,o :l C 6H5 O 11 H 5 H+ + C6 OH + CH 3 -C-CH 3

CH 3 CH 3 H 1 I 1 H - CH -C -O-C6^5 4- CH 3 -C-O-C 6 H 5 3+OH, OH

MATERIA OPTATIVA Oxígeno singlete . Hemos visto que las reacciones del oxígeno en estado de triplete (oxígeno en su estado fundamental, figura 21 .1) son de tipo radicales libres y aunque son altamente exotérmicas necesitan la típica iniciación por medio del calor, la luz o un catalizador químico . El oxígeno puede ser excitado a un estado de singlete, de mayor energía, en el cual los electrones que ocupan el orbital de energía más alta tienen apareado su spin .

EJERCICIO 21 .2 Explicar por qué el oxígeno singlete es un estado excitado y el oxígeno triplete el estado fundamental basándose en la figura 21 .1 . Puesto que el oxígeno singlete no es un radical libre, no reacciona con los alcanos . Sin embargo, por ser una especie excitada, origina reacciones químicas la mayoría de ellas con los alquenos . Como en este momento estamos tratando el oxígeno, nos apartaremos brevemente de la química de los alcanos y pasaremos revista a algunas de las reacciones del oxígeno singlete con los alquenos . El oxígeno singlete puede



855

Oxidación

considerarse como un reactivo tipo filodieno capaz de dar las reacciones de DielsAlder (sección 14 .11) con dienos adecuados . Por ejemplo, el oxígeno singlete forma un peróxido inestable con el ciclohexadieno con rendimiento del 20 % y un producto de adición con el antraceno con rendimiento bajo :

®00 Estados del 0 2

Ocupación de los orbitales más altos, 7r* 2p'

Primer estado excitado (singlete) Estado fundamental (triplete)

T

_L

Energía por encima del estado fundamental 22 kcal/mol 0

a 2s

Orbitales de valencia del átomo de oxígeno

Orbitales de valencia de la molécula de oxígeno

Orbitales de valencia del átomo de oxígeno

Figura 21 .1

Diagrama de orbitales moleculares del 0 2 , que muestra la naturaleza de triplete del estado fundamental . (Los electrones ir* 2p no están apareados .)



856

Reacciones de los alcanos y de los cicloalcanos

EJERCICIO 21 .3

El ascaridol, peróxido natural presente en el aceite de quenopodio, se forma a partir del a-terpineno y oxígeno singlete . Sugerir una estructura para el ascaridol .

a-terpineno El oxígeno singlete reacciona con los alquenos formando hidroperóxidos a, 3-insaturados . Un mecanismo concordante con los resultados experimentales consiste en la adición concertada del oxígeno singlete al alqueno para dar un peroxirano, acompañada por la sustracción del hidrógeno y de reordenación . H + 0* ---->

Por ejemplo, el tetrame tiletileno da 3-hidroperoxi-2,3-dimetil-1-buteno con un rendimiento del 60 % . La reducción del hidroperóxido suministra 2,3-dimetil-3-buten-2-ol . CH

CH 3 3\

CH 3

CH 3

/

C=C / \

\

+02 -> CH 3

CH 2

CH 3 1 C-C-O-O-H CH 3 11H]

CH 3

CH 3 \

CH 2

C-C-O-H I CH 3

21 .2 Halogenación

Numerosas reacciones de las expuestas en este capítulo son reacciones en cadena (sección 14 .6) en las que se forman grandes cantidades de productos tras la iniciación por medio de una pequeña cantidad de una especie tipo radical libre o ion carbonio . Las tres etapas de una reacción en cadena son la iniciación, la propagación y la terminación . Por ejemplo, la cloración del metano, para dar clorometano, transcurre así :



857

Halogenación Iniciación C1 2

-->

20 -

Propagación CI. + CH 4

-->

C1 -H + CH 3 •

CH 3 • + C1 2 -- CH 3 CI + C1 • Terminación CH 3 • + CI' -i CH 3 ---C1 Las halogenaciones por radicales libres pueden iniciarse mediante la luz . Un cuanto de luz o de cualquier otra forma de energía radiante posee una frecuencia que depende de su energía (E = hv) . Si la luz de frecuencia adecuada incide sobre una molécula de halógeno puede ser absorbida y puede romperse el enlace halógeno-halógeno para dar dos átomos : F 2 + 37 kcal/mol

hv + 2F •

C1 2 + 58 kcal/mol Br 2 + 46 kcal/mol

2C1' ~

h

-+

2Br•

12 + 36 kcal/mol ~~; 21 • En la primera de las dos etapas de propagación el átomo del halógeno ataca al alcano (como se indica, como ejemplo, para el metano) : CH4 + F • ---+ HF + CH 3 • + 33 kcal/mol CH4 + Cl• - HCI + CH 3 • + 1 kcal/mol CH4 + Br • + 15 kcal/mol -+ HBr + CH 3 • CH 4 + 1 • + 31 kcal/mol -a HI + CH 3

»

Como el ataque al metano por parte del Br • o del 1 • es una reacción endotérmica, las reacciones inversas (ataque del CH 3 ' al HBr o al HI) son exotérmicas y energéticamente más favorables lo cual trae como resultado que el metano no pueda bromarse o yodarse de esta forma sin muchas más acciones de iniciación y a temperaturas más altas que las requeridas para la cloraGión . Si existe un enlace C-H más débil que los del metano, por ejemplo un enlace C--H bencílico, la bromación resultará energéticamente favorable y tendrá lugar .



858

Reacciones de los alcanos y de los cicloalcanos CH 2 . 111

3

O\

+ Br •

+ HBr + 9 kcal/mol Radical bencilo

La reacción en cadena continúa en la etapa de transferencia con el ataque del radical metilo o bencilo a una molécula de halógeno : CH 3 • + F 2 -4 CH 3 F + F. + 60 kcal/mol CH 3 • + C12 --> CH 3 Cl + Cl • + 24 kcal/mol

En esta etapa se forma el halogenuro de alquilo como producto, a la vez que otro radical halógeno que atacará al metano o al tolueno como ya se ha descrito . Así pues, la formación de una pequeña cantidad de radical halógeno en la etapa de iniciación hace que comience la reacción en cadena en la cual el producto de una etapa de propagación es la sustancia reaccionante de la otra y así sucesivamente . La reacción en cadena termina por unión de dos radicales : Ci . + CI . -+ C1 2 CH 3 • + Cl . - CH 3 C1 CH 3 • + CH 3 • --* CH 3 -CH 3 Mientras la concentración de radicales sea baja, las propagaciones serán mucho más probables que las terminaciones ; es inverosímil estadísticamente que choquen dos radicales . La etapa de propagación de la reacción en cadena de los átomos de halógeno con el metano puede resumirse mediante el término longitud de la cadena, esto es el número de moléculas halogenadas como resultado de la iniciación debida a un único átomo de halógeno . Como la etapa de propagación en la cloración determina la velocidad y tiene una energía de activación baja (ambas etapas son exotérmicas), la longitud de la cadena es elevada (alrededor de 10 000) . En la bromación la abstracción del hidrógeno es endotérmica (15 kcal/mol), necesita



859

Halogenación

una energía de activación considerable y la longitud de la cadena es sólo de 100 . En la yodación la abstracción del hidrógeno es aún más endotérmica (31 kcal/mol) y la longitud de la cadena viene a ser alrededor de cero . El átomo de halógeno puede dar una cualquiera de estas reacciones : X . + CH 4

-->

X . +X . --'

HX + CH 3 -

x2

En el caso del yodo la energía de activación de la primera es tan elevada que transcurre preferentemente la segunda a pesar de que la concentración de 1 - sea baja y el proceso estadísticamente improbable . La fluoración del metano por radicales libres ocurre aun sin iniciación mediante la luz . El que sólo se requieran 4 kcal/mol para la reacción del flúor con el metano sugiere que la iniciación puede ocurrir también mediante la siguiente reacción : CH4 + F 2 + 4kcal/mol -CH 3 • + HF + F .

EJERCICIO 21 .4

La cloración del ciclopentano conduce a varios diclorociclopentanos isómeros . ¿Cuántos hay? Nombrarlos y formular sus estructuras . Para predecir los productos de la halogenación de un alcano hay que tomar en consideración a la vez la estabilidad de los radicales alquilo y la selectividad del radical halógeno . Los radicales halógenos atacan preferentemente a los enlaces C-H cuya ruptura conduzca a la formación de los radicales más estables . Como se ha discutido en capítulos anteriores las reactividades relativas de los alcanos son terciario > secundario > primario y las estabilidades relativas de los radicales son terciario > secundario > primario . Como el Br - es bastante menos reactivo que el Cl con respecto al ataque a los enlaces C-H, la bromación es mucho más selectiva que la cloración . A temperaturas elevadas un átomo de cloro reacciona casi con cualquier hidrógeno de la molécula con el que choque y la sustitución tiene lugar más al azar . Consideremos, por ejemplo, la halogenación del isobutano . Se pueden formar los radicales terciario y primario : CH3

CH 3

CH 3

CH 3 -C-CH 3 + X • ---> CH 3 -C-CH 3 + CH 3 -CH-CH 2 • + HX / H Terciario Primario

Radical terciario

Radical primario



860

Reacciones de los alcanos y de los cicloalcanos

La bromación del isobutano por radicales libres a 300° C da casi exclusivamente 2-bromo-2-metilpropano : CH 3 1 CH

3

-C--CH

CH

3

3(q°C

+ Br 2

->

1

CH

3

3

1 --C-CH

3

+ HBr

1

H

Br 2-Brorno-2-metilpropano

La conjunción de la selectividad del bromo y la mayor estabilidad del radical t-butilo explican este resultado . En cambio la cloración produce lós dos productos posibles como cabía esperar dada la selectividad mucho menor del átomo de cloro . Podría predecirse estadísticamente que el rendimiento de 1-cloro-2-metilpropano sería nueve veces mayor que el del 2-cloro-2-metilpropano puesto que había mueve hidrógenos primarios y sólo uno terciario . Sin embargo los rendimientos aparecen en la relación 2 : 1 . CH 3

1 CH 3 -C--CH 3 + Cl 2 -; I 300°c

CH 3 1 :H 1 -CH-CH 2

-Cl +

H

CH 3 1 CH 3 -C--CH 3 I Cl

1 -Cloro-2-metilpropano

2-Cloro-2-inetil propano

Rendimiento experimental : 2 a 1 Predicción estadística : 9 a 1

La cantidad del 2--cloroderivado es mayor que la indicada considerando sólo la estadística debido a la mayor estabilidad del radical terciario a partir del cual se forma . De acuerdo con la teoría del estado de transición (sección 13 .4), la posición del ataque del Cl al propano, por ejemplo, depende de las reactividades relativas de los átomos de hidrógeno primarios frente a los secundarios, y de un factor estadístico, la entropía (sección 13 .1) . AGt = AH : - TAS1

Así, pues, la entalpía libre de activación (A Gt) depende de las reactividades relativas de los hidrógenos (que corresponden a AM, diferencia de entalpía) y a los números relativos de átomos de hidrógeno primarios y secundarios presentes (que corresponden a A St, diferencia de entropía) . En el propano el factor estadístico es 3 : 1 :

C



861

Halogenación CH 3 CH 2CH 3

Seis H primarios Dos H secundarios

Si un hidrógeno secundario tuviera la misma reactividad que uno primario, la cloración del propano daría cloruro de propilo en una cantidad tres veces mayor que el cloruro de isopropilo . En realidad la cloración produce cantidades iguales de ambos cloruros y por lo tanto el ataque del Cl a los hidrógenos secundarios del propano es unas tres veces más rápido que el pronosticado a partir del factor estadístico exclusivamente . Esto significa que los átomos de hidrógeno secundarios son tres veces más reactives frente al Cl que los átomos de hidrógeno primarios . EJERCICIO 21 .5

Partiendo de los datos precedentes, ¿cuáles serían las reactividades relativas de los hidrógenos primarios y terciarios frente al C12 Las transposiciones de los radicales libres son mucho menos corrientes que las de los correspondientes iones carbonio . Así la dotación por radicales libres del neopentano produce cloruro de neopentilo : CH 3

CH 3 1 y no C113-C---CH 2CH 3 1 Cl

CH 3

CH 3 -C---CH 3 + C1 2 I CH 3

-i

CH 3 --C--CH 2 -Cl + HCl I CH 3

2-Cloro-2-metilbutano

Cloruro de neopentilo

Compárese esta ausencia de transposiciones, cuando el intermedio es un radical libre, con las reacciones del alcohol neopentílico donde el intermedio era un ion carbonio (sección 17 .6) . Aunque son poco frecuentes las transposiciones de los radicales libres, pueden ocurrir . Tienen lugar si es posible que un radical primario se convierta en terciario y si el grupo que emigra es un fenilo en vez de un alquilo . CH 3

011 3 CI .

C 6 HS C-CH 3

> Cs H s-CH z--C-C1 CH 3

(H 3 lel,

CI .

CH 3 C 6 Hs-C

CH z

0113

CH 3 C-CH z CH 3

C 1H S



862

Reacciones de los alcanos y de los cicloalcanos

Es difícil parar las halugenaciones por radicales libres en el paso de la monosustitución . La cloración del metano, por ejemplo, da cantidades diversas de cloruro de metileno, cloroformo y tetracloruro de carbono, además del cloruro de metilo : CHI + C1 2

>

CH 3 CI

+

Cloruro de metilo

CH 2 C1 2

+

Cloruro de metileno

CHCI 3 Cloroformo

+ CCI 4 Tetracloruro de carbono

El producto monohalogenado está favorecido empleando un gran exceso de alcano . Por ejemplo si se usa doble cantidad de metano que de cloro se forma cloruro de metilo con un rendimiento del 62 o/o y cloroformo con un rendimiento del 7 % ; si se utilizan metano y cloro en proporción equimolecular, sólo se obtiene un 37 % de cloruro de metilo mientras que aparece un 19 % de cloroformo . Aunque la cloración es un proceso bastante indiscriminado es útil a veces ; por ejemplo, al preparar disolventes para la limpieza «en seco» que son mezclas de hidrocarburos clorados ; en este caso la separación de los componentes de la mezcla no es necesaria . Pueden utilizarse iniciadores diferentes de la luz . Las reacciones a través de radicales libres pueden iniciarse térmicamente o mediante pequeñas cantidades de peróxidos, azocompuestos, nitratos de alquilo, electrólisis o por otros métodos : calor C1 2 -4 2C1 • R-O-O-R -, 2ROR-C-O-O-C-R -i 2R- + 2CO 2 II O

II O

R-N=N-R -2R . + N 2 RO-NO 2 - RO . + NO 2 RCO 2 ° + RCO 2 • -i R • + CO 2 Se puede inhibir una reacción en cadena a través de radicales mediante la presencia de sustancias que reaccionen con los radicales alquilo formando radicales menos reactivos . El yodo es una de estas sustancias puesto que un radical yodo es menos reactivo que un radical carbonado : 1 1 -C + 1 2 - - C-1 + I • I I



863

Halogenación

Los fenoles y las aminas aromáticas inhiben eficazmente las reacciones de los radicales . La hidroquinona se emplea ampliamente como antioxidante y para evitar la polimerización de compuestos muy sensibles . Actúa reaccionando con los radicales para formar un radical más estable :

OH I -C I

I -C-H + I OH

4-

etc .

Estos radicales se desproporcionan después formando mezclas de quinona e hidroquinona ; estos dos compuestos dan un complejo de transferencia de carga denominado quinhidrona (que puede aislarse como sólido cristalino oscuro), finalizando así la reacción en cadena . Un reactivo específico para efectuar la bromación alílica de los alquenos es la N-bromosuccinimida (NBS) . Se trata de una reacción mediante radicales libres en la que se emplean como iniciadores la luz o los peróxidos . Se supone que el agente bromante activo es el Br 2 liberado en concentraciones muy bajas por reacción de la NBS con HBr (el otro producto de la reacción) :

La halogenación en un carbono bencílico es un proceso útil para preparar no sólo halogenuros sino también compuestos carbonílicos . La velocidad de cada halo-



864

Reacciones de los alcanos y de los cicloalcanos

genación sucesiva es menor que la de la anterior, de forma que todas las reacciones que se indican transcurren con buen rendimiento : CH,

j~CC1,

ci, hv

Benzotricloruro

1 H,O

H,O

IH,O

Z

CH 2 OH

CHO

COOH

La nitración de los alcanos tiene lugar en fase gaseosa a 400° C por un mecanismo de radicales libres . Se obtienen mezclas de productos ; la reacción no es útil en el laboratorio (pero se usa industrialmente) .

EJERCICIO 21 .6

Pronosticar el producto que se obtendrá al tratar el p-xileno con 4 moles de C1 2 e hidrolizar lo que resulte .

21 .3

Deshidrogenación e hidrogenolisis

Los cicloalcanos y los cicloalquenos que contienen uno o más anillos de seis eslabones pueden convertirse en los correspondientes derivados bencénicos por calefacción a temperatura elevada con un catalizador de platino o de paladio . Esta reacción, conocida por deshidrogenación, es la inversa de la hidrogenación (secciones 11 .1 y 14 .2), la cual suele llevarse a cabo a temperaturas mucho más bajas .



Deshidrogenación e hidrogenólisis

"l

865 Pd

+ 5H 2

250°C

~~CH s

CH 3

EJERCICIO 21 .7

Explicar termodinámicamente por qué la reacción de hidrogenación está favorecida a temperaturas bajas mientras que la reacción inversa, la deshidrogenación, está favorecida a temperaturas mucho más elevadas . Cuando un carbono cuaternario forma parte de la estructura cíclica no puede formarse un anillo bencénico, excepto si se elimina un sustituyente alquilo . En tales casos el azufre o el selenio suelen ser superiores a los metales nobles como agentes deshidrogenantes (convirtiéndose en H 2S o H2 Se) si bien los rendimientos de estas reacciones suelen ser bajos e incluso se obtienen a veces productos transpuestos . La deshidrogenación se ha empleado frecuentemente en el laboratorio, y con éxito, como medio para determinar las estructuras de compuestos desconocidos . Por ejemplo la estructura cíclica básica del colesterol, compuesto de enorme importancia biológica y causante de la arteriosclerosis (endurecimiento de las arterias) en los seres humanos, resultó muy difícil de determinar ; la etapa clave en esta determinación fue la deshidrogenación con selenio . El colesterol es el miembro más conocido de un grupo de compuestos denominados esteroides . Estos importantes compuestos se discutirán con más detalle en las secciones 27 .6 y 27 .7 . Los productos obtenidos, criseno y metilciclopentanofenantreno, dieron la pista para conocer la estructura de la molécula de colesterol y proporcionaron la información fundamental que permitió llegar finalmente a la determinación total de la estructura .

HO

m& "¡u

Se, calor -H,

'

Colesterol

Criseno (producto transpuesto)

Metilciclopentanofenantreno



866

Reacciones de los alcanos y de los cicloalcanos

Obsérvese que durante el transcurso de la deshidrogenación se ha perdido la cadena lateral de ocho carbonos . Éste es el resultado de la hidrogenolisis, ruptura de enlaces C-C para dar alcanos . El hidrógeno proviene, en este caso, de la reacción de deshidrogenación . La isomerización catalizada por el paladio se ha utilizado para determinar las estabilidades relativas de los sistemas cíclicos fusionados . El equilibrio se establece a través de una secuencia de deshidrogenación y re-hidrogenación y se lleva a efecto en un sistema cerrado para que el hidrógeno no escape . Por ejemplo, se ha encontrado que la trans-decalina tiene una entalpía que es 2,7 kcal/mol más baja (o sea es más estable) que la de la cis-decalina, en estado líquido . La determinación se efectuó dejando que se alcanzase el equilibrio sobre un catalizador de paladio y midiendo directamente la relación entre las cantidades de los dos isómeros :

AH ° = + 2 .7 kcal/mol

Los calores de combustión se han utilizado también para determinar la estabilidad relativa de los cicloalcanos . Para las decalinas, los calores de combustión dieron el mismo valor para AH', que el obtenido por equilibración directa .

21 .4

Reacciones especiales de los hidrocarburos cíclicos pequeños

El ciclopropano es mucho más reactivo que los otros cicloalcanos debido a la liberación de energía que tiene lugar al abrirse el anillo y desaparecer la tensión (sección 3 .5) . El ciclobutano es menos reactivo que el ciclopropano y los cicloalcanos mayores reaccionan en su mayoría como los hidrocarburos acíclicos . De ordinario los enlaces carbono-carbono de los alcanos y de los cicloalcanos no se rompen con hidrógeno y un catalizador ; sin embargo los anillos pequeños sufren hidrogenolisis . El mismo ciclopropano, por ejemplo, se hidrogenoliza a 120'C en presencia de níquel como catalizador o a 25° C con platino : CH Z Ni, !20°C

HZC/-\ CH Z + H2

'

CH,-CH Z -CH 3

También puede conseguirse la hidrogenolisis del ciclobutano a n-butano pero



Reacciones especiales de los hidrocarburos cíclicos pequeños

867

requiere temperaturas mucho más altas . Los cicloalcanos con anillos mayores no adicionan hidrógeno salvo en condiciones muy drásticas (sección 36 .2) .

EJERCICIO 21 .8 Tanto el etilciclobutano como el ciclohexano pueden convertirse parcialmente en n-hexano por hidrogenolisis, en presencia de un catalizador . ¿Cual reaccionará a menor temperatura? Indicar por qué con la ayuda de un diagrama de la coordenada de reacción . Las halogenaciones de los cicloalcanos mediante radicales libres siguen en general las mismas rutas que las de los alcanos . El ciclopropano con el cloro y luz ultravioleta da cloruro de ciclopropilo :

CH 2 H 2 C-CH 2

CH Z + C12 - . H 2 C\CH-Cl + H0

(+ algo de 1,1-diclorociclopropano)

Cloruro de ciclopropilo Por otra parte el bromo (en presencia de un catalizador) y el yodo se adicionan al ciclopropano en vez de sustituir a un hidrógeno .

CHZ H 2C-CH 2

CH AIHr / 2\ (+ algo de 1,1- y 1,2-dibro+ Br 2 -' H 2C CH 2 mociclopropano) Br Br 1,3-Dibromopropano

Sin embargo estos reactivos no rompen ni el ciclobutano ni ningún otro cicloalcano . A continuación se citan otras reacciones especiales del ciclopropano : CH 2 H 2 CCH 2

+ HBr '° H CH 3CH 2 CH 2 Br

CH 2 H 2 C\CH 2 + H 2 O i' Hn ` CH 3 CH 2CH 2 OH (en D2 SO 4 D 2 0 tiene lugar la entrada de D en las posiciones a, 0 y y) CH 2 H 2 CCH 2 + PhH "" PhCH 2 CH 2CH 3



868

Reacciones de los alcanos y de los cicloalcanos

21 .5

Inserción de metileno

MATERIA OPTATIVA Vimos en la sección 20 .10 que el metileno, un carbeno, se forma a partir del diazometano por acción de la luz, del calor o de catalizadores como el cloruro cuproso : CH 2 N 2

hv, ¿~, o

CH 2 + N 2

Cui

Diazometano

Metileno

Las dos estructuras electrónicas diferentes de los carbenos se expusieron en la sea clon 12 .5 . Cuando se libera metileno a partir de diazometano y en presencia de un alcano o de un cicloalcano, se inserta entre un carbono y un hidrógeno : Inserción 1 CH,N, 1 -C-H + CH 2 -C-CH 2 --H ti` La inserción suele ocurrir al azar, es decir, no es selectiva . Por ejemplo, el metileno reacciona con el n-pentano para formar una mezcla de hexanos isómeros cuya composición refleja la falta total de selectividad comportándose los 12 hidrógenos del pentano como se indica a continuación : 12 CH CH2 1 CHCHCH 3 1 2

H + 12 CH 2

?N CH ?:

hv

6 CH3 CH2 CH CH CH CH 2 2 2 2

H

H H + 4 CH 3 CH 2 CH 2 CHCH 3 + 2 CH 3 CH 2CHCH 2 CH 3 1 1 CH 2 CH 2 1 1 H H En esta reacción el metileno es extraordinariamente reactivo y se encuentra, probablemente, en estado singlete con los electrones no compartidos apareados . Las reacciones del metileno pueden ser más selectivas si se trata del metileno «frío», esto es, en estado triplete con los electrones no compartidos desapareados . El que el metileno sea «frío» o «caliente» (poco o muy energético) depende de las condiciones experimentales : reactivo a partir del cual se libera, longitud de onda de la luz utilizada y fase (líquida o gaseosa) de la reacción . Por ejemplo cuando se fotoliza diazometano en presencia de propano en fase gaseosa se forman cantidades aproximadamente idénticas de n-butano y de isobutano . Sin embargo si se añade argón (con lo cual el metileno «caliente» puede perder energía a través de colisiones) aumen-



Ajuste de ecuaciones de oxidación-reducción (redox) orgánicas

869

ta el rendimiento en isobutano lo que indica una inserción en un enlace secundario C-H con preferencia a uno primario por parte del metileno «enfriado» .

21 .6 Ajuste de ecuaciones de oxidación-reducción (redox) orgánicas MATERIA OPTATIVA La mayoría de los compuestos orgánicos pueden oxidarse y muchos de ellos reducirse . Ahora que hemos visto una variada selección de estas reacciones parece apropiado considerar algunos detalles puramente formales de las reacciones redox . Antes de que pueda estudiarse realmente cualquier equilibrio o reacción química, debe conocerse con exactitud la exacta estequiometría del proceso ; en otras palabras, debemos ser capaces de formular la ecuación ajustada del proceso . La mayoría de las reacciones orgánicas pueden ajustarse a simple vista . Sólo las reacciones de oxidación-reducción presentan problemas suficientemente importantes como para necesitar discutirlas . Para ajustar reacciones redox inorgánicas hay una gran variedad de métodos que pueden emplearse satisfactoriamente . Para las reacciones orgánicas de esta clase sólo hay un método práctico : el de las semi-reacciones . Existen por lo menos tres variantes de este método que hayan sido utilizadas, en las cuales [O], [H] o e - son, respectivamente, los componentes imaginarios de las semi-reacciones . Tan artificial es uno como los otros y sin embargo todos dan resultado . El estudiante es libre de utilizar el método que prefiera . Expondremos el método que emplea [H] y sugerimos que salvo que el estudiante domine ya uno de los otros métodos utilice éste . En primer lugar es necesario escribir la semi-reacción tanto del compuesto que se oxida (a) como del que se reduce (b) . Después se recorrerán los siguientes pasos para ajustar cada semi-reacción : 1 . Ajustar las cargas utilizando H+ si la solución es ácida u OH - si es básica . 2 . Ajustar el oxígeno con H 2 O . 3 . Ajustar el hidrógeno con [H] . Luego se suman las semi-reacciones de la manera habitual . Todo esto se verá mejor por medio de un ejemplo . Considérese esta reacción : OH O I CY0, CH3-C-CH3 HOAc-H,O> CH 3 -C-CH 3 I H El trióxido de cromo tiene cromo en un estado de oxidación + 6 y el producto es el ion crómico (+ 3) . La disolución es ácida . Las semi-reacciones (sin ajustar) son las siguientes : OH O 1 II CH 3 -C-CH 3 -i CH 3 -C-CH 3 I H

y

CrO3 -i Cr 3+



870

Reacciones de los alcanos y de los cicloalcanos

Utilizándolas en ese orden, ajustaremos primero las cargas ; se ve que la primera semi-reacción está ya ajustada . Ajustamos la segunda con respecto a la carga por adición de protones : CrO 3 + 3H+ -- Cr 31 Ahora ajustaremos los oxígenos : OH O 1 II CH3-CH-CH3 - CH 3 -C-CH 3 CrO3 + 3H + -+Cr3+

(está bien así)

(hay que añadir agua)

CrO 3 + 3H+ - Cr 3+ + 3H 2 0

Finalmente ajustaremos los hidrógenos añadiendo [H] según se indica : OH O 1 II CH 3 -CH-CH 3 -+ CH 3 -C-CH 3 + 2[H] 3[H] + CrO 3 + 3H+ -+Cr3+ + 3H 2 0 Tenemos ahora dos semi-reacciones ajustadas . Debemos multiplicarlas y sumarlas de tal manera que se simplifiquen los [H] artificiales ; para ello multiplicaremos la primera por 3 y la segunda por 2 : OH O 1 II 3CH 3 -CH-CH 3 --, 3CH 3 -C-CH 3 + 6[H] 6[H] + 2CrO 3 + 6H+ -+ 2Cr 3 + + 6H 2O y sumando : 3CH 3 -O CI H-CH 3 + 2CrO3 + 6H+ --- 3CH 3 -C-CH 3 + 2Cr 3 + + 6H 2 O

Finalmente comprobaremos que ambos lados de la ecuación contienen el mismo número de carbonos, cromos, cargas, oxígenos e hidrógenos y así estaremos seguros de haber ajustado correctamente la ecuación . Consideremos como otro ejemplo la siguiente reacción :



Ajuste de ecuaciones de oxidación-reducción (redox) orgánicas CH 2CH 3 + KMn04

(D

OHH,o

~~ COO -

871

+ Mn0 2 + C023

El permanganato potásico oxida al etilbenceno dando una sal del ácido benzoico y carbonato, mientras que el manganeso + 7 se reduce a dióxido de manganeso (+ 4) . Operando como antes las semi-reacciones sin ajustar serán : ,^_ -CH 2 CH 3

~~COO -

O

O

V

V

+ Coa

y KMnO 4 -+ K+ + Mn0 2 Si ajustamos ahora las cargas (con OH - puesto que se trata de una solución básica) se convertirán en :

O

CH 2CH 3

C

+ co3

+ 30H -

KMn04 - K+ + Mn0 2 + OH Ahora ajustaremos los oxígenos con agua :

CH 2 CH 3

COO + 30H - + 2H 20

+ CO3 -

KMnO 4 -K + + Mn0 2 + OH - + H 2 O y finalmente ajustaremos los hidrógenos con [H] CH 2 CH 3

O + ,

+ 30H - + 2H 2 0 -~

~ COO-

C0 2- + 12[H]

KMn04 + 3[H] -K + + Mn0 2 + OH - + H 2 O



872

Reacciones de los alcanos y de los cicloalcanos

Multiplicando la última ecuación por 4 y sumando : CH2CH3

COO• 30H- + 2H20 + C03- + 12[H]

4KMnO4 + 12[H] - 4K+ + 4MnO2 + 40H- + 4H20

CH2CH3

COO• 30H- + 2H20 + 4KMnO4

+ CO3- + 4K+ + 4MnO2 + 40H- + 4H 20 Como el agua y los OH- aparecen en ambos miembros de la ecuación, los simplificaremos lo más posible : CH2CH3 COO+ 4KMnO4 + CO3- + 4K+ + 4MnO2 + OH- + 2H20 Los iones potasio están también en ambos miembros . Podemos excluirlos o aso . ciarlos con los aniones : CH2CH3

COOK • 4KMnO4 -~

+ K2CO3 + 4MnO2 + KOH + 2H20

Estos ejemplos deben haber aclarado que los métodos de ajuste «a ojo» no serán adecuados para ajustar estas ecuaciones . El método expuesto puede parecer laborioso, y lo es, pero da resultados correctos y es el método más fácil para tratar las ecuaciones de esta clase . 21 .7 Resumen de las reacciones de los alcanos y de los cicloalcanos Los alcanos se caracterizan, en general, por su falta de reactividad . Cuando ocurre una reacción tiende a ser no selectiva, a menos que ciertas porciones de la molécula sean bastante diferentes del resto .



Resumen de métodos de síntesis para alcanos y cicloalcanos

873

Oxidación Los hidrocarburos reaccionan con el oxígeno, quemándose y además dando hidroperóxidos . -C-H 1 -C -O-OH 1 1 Esta reacción no es significativa para los alcanos sencillos . Transcurre a través de una reacción en cadena mediante radicales libres y tiene lugar fácilmente cuando el radical intermedio está estabilizado . Por lo tanto se forman hidroperóxidos fácilmente si el hidrógeno está activado por un doble enlace, un anillo bencénico o un oxígeno contiguos .

Halogenación -C-H xz -C-X + HX 1 1 De nuevo se trata de una reacción en cadena a través de radicales libres . La cloración transcurre bastante indiscriminadamente en los alcanos ; la bromación es mucho más selectiva . Otra vez, como en la oxidación, se tendrá una reacción útil si se puede formar un radical intermedio estable .

Deshidrogenación e hidrogenólisis La deshidrogenación tiene lugar a temperaturas superiores a 300 °C, sobre un catalizador de paladio, o similar, si se puede formar en la reacción un anillo aromático por eliminación de hidrógeno . La hidrogenólisis del ciclopropano transcurre fácilmente pero los otros cicloalcanos y los alcanos no suelen dar esta reacción . Pd 300°C

A \ H, and Pt > CH3CHZCH3 21 .8 Resumen de métodos de síntesis para alcanos y cicloalcanos 1 . Alcanos a . A partir del gas natural o del petróleo : la mayoría de los alcanos se ob-



874

Reacciones de los alcanos y de los cicloalcanos

tienen a partir de estas fuentes . Los alcanos naturales se transforman en alcanos sintéticos por medio del craqueo, la isomerización o la alquilación (sección 36 .2) . b . A partir de alquenos : (1) por hidrogenación con hidrógeno y un catalizador (sección 14 .2) 1 1 1 H H (2) por hidroboración e hidrólisis de los trialquilboranos resultantes (sección 14 .8) • / 1 1 6 C=C + B 2 H 6 ---+ 2 -C-C B • \ 1 1 H



C=C



/

+ H2 \

o Ni I

Pt, Pd,

-C-C-

'3

1 I -C-C B + 3 RCOOH -~ 3 -C-C-H + B(OCOR) 3 H I H 3

Mediante RCOOD se puede introducir deuterio en posiciones específicas, por este procedimiento, en un alcano . 111 -C-C 1 1 H

c.

1

I I B + 3 RCOOD -a -C-C-D + B(OCOR) 3 1 1 H 3

A partir de halogenuros de alquilo (sección 16 .16) : (1) por reducción a través de un reactivo de Grignard 1 1 -C-X + Mg -i -C-MgX 1 1 -C-MgX + H 2 0 ---> -C-H + HOMgX

o 1 1 -C-MgX + D2 0 ---* -C-D + DOMgX (2)

por reducción bimolecular con sodio metálico (reacción de Wurtz, sección 16 .15)

1 1 1 2 -C-X + 2 Na --+ -C-C- + 2 NaX 1 1 1



Resumen de métodos de síntesis para alcanos y cicloalcanos

875

por reducción con zinc y un hidrácido (sección 16 .16)

(3)

1 1 -C-X + Zn + HX ---~ -C-H + ZnX 2 por acción de bases sobre sales de fosfonio cuaternarias (sección 31 .12) 1 + I (CH 3 ) 3 P + -C-CI --* (CH 3 ) 3P-C- + C1 I I

(4)

+ 1 (CH 3 ) 3 P-C- + HO 1 d.

1 - (CH 3 )3 P-O + -C-H 1

A partir de cetonas y aldehídos (sección 18 .11)

-C-

-' -CH 2 -

O 2 . Cicloalcanos a . A partir del petróleo . En el petróleo existen varios cicloalcanos de cinco y seis eslabones . b . A partir de cicloalquenos (véase el método lb anterior paró las reacciones) : (1) por hidrogenación de cicloalquenos (sección 14 .2) (2) por hidroboración de cicloalquenos e hidrólisis de los tricicloalquilboros (sección 14 .8) c . A partir de arenos por hidrogenación (sección 15 .10) Ni o Pt

+ 3H2 -> d.

A partir de dialogenuros (sección 16 .15) /CH,-Cl 2

/ CH z + Zn

Nal

,

Na,CO,

CH 2

CH 2 -C1 e.

+ ZnCI

A CH 2

A partir de cetonas (sección 18 .11)

(CH2)

C=O -+ (CH 2 )

H2



876

Reacciones de los alcanos y de los cicloalcanos f . Por adición de carbenos a alquenos \

/

/\

/ C--C \ + CH 2 --•

y

cicloalquenos (sección 14 .12)

2

-C-CI I

PROBLEMAS 1 . Los enlaces olefínicos emigran en las condiciones en que se lleva a cabo la deshidrogenación . Por ejemplo cuando se calienta el 2,5-dimetil-l,5-hexadieno a 250`C en presencia de óxidos de cromo y de aluminio como catalizadores se obtiene un isómero cuyo espectro de RMN se reproduce . ¿Cuál es su estructura? Interpretar el espectro .

@Esas gozan zoggw"i lamazgam" z ii '~•• Niiiiigii sumamos m∎ lo:s: ii .• • •.::::a :: RUNI . .. ga na.uu .uu . .iiiñ .. . i z .uuuuuouu∎ S„au∎u∎∎∎aaauuuazuz uuu∎∎∎∎∎∎un ∎I REHaoena ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎anal ∎mamUaan∎na∎∎∎ ~.y,~ ∎∎∎ nanam ,mamanmaanaa~ymaannnan∎aaO∎I∎~~∎∎mana,∎∎∎aa∎∎∎∎aM∎al HE :1 „,mana∎m∎∎aran` . .maga∎=∎~a∎a∎m∎aaaaaaana∎a . . rrr`rr`∎ zz∎muna∎,∎a∎m∎ .r. ∎∎∎∎∎/a∎∎a∎∎∎∎∎n∎A∎∎I ∎∎r∎∎∎∎∎∎∎r∎∎m∎∎r∎ ∎∎∎m∎∎∎∎∎∎∎∎mama ∎ arrr∎∎rr∎gra~aa∎r ∎rr∎∎∎gg∎la∎∎∎∎∎∎I∎un∎∎∎∎∎∎∎∎∎∎∎a∎∎∎∎∎∎H∎∎I ∎∎/∎∎∎aaOaara∎,, munan∎∎, ∎aanaaannnmnauanaaaagann∎nmaaa∎nig∎∎∎∎∎∎∎r∎∎∎∎∎u∎∎∎∎∎/∎∎∎I ∎∎∎∎maman∎∎man as∎mamnam mamnana, 0n∎naanamaanamz∎∎anm∎∎m∎a∎ama∎aun∎∎∎∎maa,ll,∎∎naa∎∎aa∎/∎∎∎∎∎mena∎a∎a, ∎°`amaga* ama`amaa`aauumo∎asumas usnaoooaonuuuonsouuruununo∎ goza, uuuoo∎o∎ooa∎ogonuun∎unnnumuu∎nununuaumnnna∎∎zz, un∎∎∎∎air∎∎∎∎∎∎∎∎∎∎∎∎∎∎u, uuu∎u∎r∎un∎∎uunuuuuuuaau∎u∎nuzua∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎nono ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎m on∎o∎uusmangas* uuuonanamasa ,omununnunuuuomnnuua∎∎,I,~,∎ai∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎n i iiiiiiiiiicansaniiiiiiamazonas ii~iiiiiiamenazamos:: iiiii.III• iiiiiii ~iiiiiiiiiiiiiiiiiiiiiiii •U .. . Inrooo∎oumuuunm nr nrnr"a'ama∎ amen∎"uggua"uounonnunonoooumouon r°am°'m∎m∎∎∎mmn∎∎`n"""m "`u∎ao∎"ogronoouauoumu∎orouonan nuououunuonn∎n rmasaaa∎aasaasaamaazaamzamaama∎aasaamaaaaaza∎gzaaaaazaamasazaazzzamga∎aa∎∎∎∎aun∎∎∎ama∎∎∎∎∎magma,∎∎∎ ∎ ∎∎ ∎ , raz∎azm∎azazaaamaaazamgaaaa∎mz∎ soasa∎z∎m∎~an~,,∎∎aamaaammag∎mazaaama∎mmaaaaall„m∎aamas∎aaz mamen∎∎∎m∎,∎„ °°mmmmm°∎°∎∎∎a∎∎r∎∎∎`a∎∎∎∎`oouunoaaouumoou∎uououanuonuuuaouunurnunn∎, vmunuuuunoao∎oumun~uoun∎uuu∎uau∎u∎ooomuouo∎∎∎∎,,,,ouuuu∎uoo∎aun, ∎∎∎uu∎u ∎nono∎∎nu~auuusuonuuu∎∎ouoousuuuu∎uuu∎∎∎,,,,∎∎∎∎∎∎o∎,∎∎∎u∎∎u∎∎∎u, ∎ m∎∎m∎∎am∎∎∎∎ma∎maa∎mama∎ramm∎mamasa∎∎am∎a∎ama∎m∎aa∎zaaasmaa∎,,mano∎rana∎m∎∎a„1,∎∎∎m∎∎∎maaa∎∎∎mama, ∎ ∎∎n ga*mesa ag'la a a1a1a a agan al a lanlasrma∎ ∎a∎∎a∎∎a aaaaaa aaaaaam.HR.H.N. rzm∎∎ ∎m∎∎amaga ,∎∎a∎amsm∎sam∎sga∎mmms∎m∎∎ama∎∎∎∎ms∎sm∎∎rga∎∎gr∎∎u„∎asa∎asa∎∎r∎∎∎∎∎∎∎∎∎∎∎n r"`aaa`aaam∎aam . 9 . ∎ .o∎mango∎a ∎∎o∎uuoouuuuuuuouuu∎u∎ouuruu~r~~uo∎musa,,∎uuu∎∎uuu∎∎∎u∎∎m or∎ama∎a∎∎a∎∎∎maaaaaaaaaamaaaaasaa∎,mamamasa'a'aa∎arazl,ll∎aaaaataa∎aaagaala∎'azasl ~∎ ra∎smm∎ama∎∎∎ raen∎roa∎mammar∎amaro∎s∎mz∎aa∎maamena∎∎mammaaaaama∎∎mamama∎raaaaazsn∎11amana,,,∎mama∎aazz∎∎zaal mama ,∎∎aa∎aaa∎∎aazaaazaa∎azzsazam∎mana∎nasa ,∎∎aamaaaazmgasaamaazaar~~aaaaaau„maa∎mama∎aaaa∎∎mma∎m∎∎∎n ua∎uuuo uuauuaonaasaase∎ouousu∎auaaaoau∎u∎uu∎o∎amenounnuouun∎uuu∎∎∎∎∎n, ∎∎goa∎,mano∎a∎∎maaraaazaraaaaa∎mzamzsa∎ama∎∎∎az∎m∎ama∎∎ ∎∎∎zaamaaaaa∎ga∎∎,amen„∎∎maa∎aaamm∎∎∎∎maza∎"∎mal n∎uuuu∎g :os :: ∎ra∎ ,a∎m∎maa∎am∎amoamonauoninnmum∎nnn∎∎∎∎n∎aus∎menanouo∎∎∎∎∎∎∎∎n a Es ∎sas∎uuu :: :05uuusuoo~nu~ ,∎ ,, ∎ , ∎,,∎ouuuuuouno∎.s∎mm∎a∎∎∎∎.∎∎ulnlo∎ .somnu∎oomua∎n∎, '`°'n°n∎a∎∎∎z nuuuooolu,uuuua∎aunu∎aa∎∎an oooouon : :: ::0 ∎„∎∎∎nm∎aanna∎ama"""unomu uunn∎uoa∎an Haaaauaumaza∎ninunumua∎mar∎uuaaumuao∎∎∎∎∎aun ∎ua~nuauuannaumuo,,uasaaaaamaanaaagaamaam a∎nmmmmmma raa~~an∎n∎∎∎n∎guau∎armanou∎ullocal mamara∎∎∎m∎∎∎∎am∎aiGga~i~iGfmGi∎rmil .. .~ w ~ ww~~ esa:: ma Ramo a :C :9 :: :: :::: ~ -1 a . ,p

ro

ao

qo

.p

!A

;o

-

1

p

o

5

Espectro de RMN del isómero desconocido . Problema 1 . 2 . Un hidrocarburo A fue aislado del petróleo . Su análisis elemental y la determinación de su peso molecular demostraron que su fórmula era C,H 16 . Calentado a 320 °C con paladio, desprendió hidrógeno y se obtuvo el compuesto B cuyo espectro RMN se muestra . ¿Cuáles son las estructuras de A y de B? 3 . Explicar a base de formas de resonancia el siguiente orden de estabilidades : CH, 1 C 6 H 5 -CH 2 - > CH 3 -C • > CH 3 -CH 2 1 CH 3



877

Problemas

rouu∎oru∎∎∎∎

uu∎HUOUH∎ HH∎Hrrr∎∎∎∎l∎ oro∎u° •u °∎ . .uuH∎luuu∎∎∎ .∎∎∎∎∎∎∎∎i uumuuuu∎ uuuuuuuHi'r'`inuuuN∎∎∎∎∎ri3fii∎∎∎∎∎∎∎∎∎∎∎∎uurZni ∎∎∎∎∎∎∎∎ U∎N∎∎N U∎∎∎∎u∎∎∎I .∎NN∎∎NNNNN∎~∎∎/∎NU∎u∎uroueruurur∎uN∎uN~II∎∎N∎uuu∎∎HU∎∎tH 1 7ut∎N∎∎∎∎∎∎∎∎∎/∎ir/∎∎l∎/∎∎∎∎/l∎∎\∎\∎rr~~1Ir/∎\l∎∎∎O//t/∎l∎∎∎irl//∎\/∎∎∎//r∎l\//rrr∎∎∎rt///\∎∎//∎∎r∎/ld.Li/I ` „∎L∎∎∎rr∎\∎r/∎∎∎~/∎∎rr∎∎∎∎l\trr∎∎∎i∎'I∎rt∎∎∎rr∎∎∎t/∎∎rr~/∎∎rrr//∎rrr//rrrrñ\trt∎∎rrrrrr\/rrrrNrrl :CLL :: :CG:: .LLLLLLLLLLLLLLLL~LLLLLLLLLLasomamos D'∎LLmanual 7LLLL: :: :LQiCLC :LLCL: LLLLL : .LLLLLIILLLLLSC : ∎NNN∎∎∎∎∎Ilrt∎∎∎ r, l/∎∎N//∎∎∎H∎Nrr rrN/∎rrr/t/NNr∎ r∎∎∎∎O∎/∎∎HNN∎MNO∎rO∎∎∎//t/∎∎∎I∎∎rl ∎∎//∎/////∎//∎∎I r∎rrr∎rrrr∎∎∎Ilrrrrr∎rrrr∎rrrrr∎∎rrrrrrrr∎rrr∎rrrrrrrrrrrrrrrr∎rrrrr/∎∎r∎r/∎///∎∎/∎//\/∎∎ /∎//∎∎\∎/∎∎∎∎IIr/∎∎rrr∎∎∎rrrr\∎∎∎//∎∎∎/∎∎∎l∎t//∎∎/r∎∎∎∎∎∎r∎∎∎∎∎∎//∎∎∎∎rrr∎∎rr∎∎/∎rrrr/∎∎r///rrrr/rrr∎rrtl ∎∎∎∎∎∎\∎/∎∎∎\Il∎∎∎∎//∎∎∎∎∎∎∎∎∎tt∎∎∎/∎∎rr∎∎∎∎∎∎rr∎∎∎rr∎r∎∎∎∎rrr∎/∎∎∎t∎∎∎r∎∎∎∎r∎t∎∎∎∎r∎∎∎rr∎∎∎rr∎∎r∎∎∎∎∎∎I ∎∎∎∎∎∎/∎∎∎t\rrrrr∎∎∎∎∎rrrrr∎rr∎/t∎rrrr∎∎t∎rt\\t∎∎∎r∎rr//∎r∎∎/∎∎rr∎tt∎//rl ∎∎\∎/rrr/∎∎/∎Ir/∎∎rrrrr∎\\rrrr / ∎∎∎∎l∎∎∎∎∎∎∎∎1/t∎∎t∎/∎∎∎Nrr∎∎/∎∎∎∎/∎t/∎/∎lrrrr∎∎∎rrrr/∎/rrr∎/∎∎∎∎r∎∎∎∎∎∎∎∎∎rr/∎∎/rrr∎//rrrr∎rrr∎r∎rrrr) ∎∎∎∎∎∎l∎∎∎/∎∎I∎∎∎∎r∎∎/∎lrrrr∎/∎∎∎\∎\∎∎/tt∎∎rrrr∎∎∎rrrr∎∎//rrrr∎\∎∎rt∎∎∎∎∎∎∎rrr∎∎∎∎rr/t//∎∎/∎/∎/∎∎∎∎r∎∎∎I . ∎rrr∎∎∎rrr∎/rrrr\rr=∎∎∎rr∎rrrr∎rr ∎∎rrrr ∎/ ∎rrr∎J/∎rrrrr∎∎/rrrrrr∎tr∎r∎ .∎r∎∎∎∎rrr∎r. .∎L∎∎rrtl .∎∎rrt/l∎∎r ∎/∎/rr/∎t/∎rrllr∎\tt/rrr∎∎/r/∎/∎∎∎∎∎\rrr/r∎∎\rrrr//∎/∎∎111\1∎/t\∎l∎r/∎∎l∎∎/∎∎∎∎\∎∎/∎∎∎\∎∎∎/\//∎∎∎∎∎l∎∎∎∎I :SLL ..rLLLLLLLLL∎LLLL/ILLLI .LLL∎rLLLL .. .LrLrL .LLLLÜ HOR :∎ /LLLL. . .L1iLLL .∎LLLLLLL ..L.LLLLLLLL . LCLLCÍ .r∎rLLrL °LLLLLLLLLLLLLL .LLLLLLLIiiL .L°LLLLLaCumaLLLLL∎\LLL ~% LLLLL∎.LL .IILL.L//:LLL. .LLLLLLLLLLLLLLL. ∎rr//\ 1111∎∎∎∎rrr∎∎∎Irr∎I /∎∎∎//∎∎∎∎∎rrllr∎∎∎rrrrr/∎/\rrrrrt//rrrr/∎r//rrr∎∎//rrr∎r∎∎rrrrr∎∎r∎∎∎rrr/Lrrrr ∎ ∎∎∎II∎///∎/∎/∎/∎∎lr/∎∎\t///∎∎∎//∎∎/∎∎///∎∎/l∎//∎∎∎/rt//∎//∎∎\t/∎r∎∎∎∎tr∎t∎∎∎∎∎/tl ∎∎ ∎„/∎∎∎∎∎∎∎∎,∎,,,Ilrr\∎∎∎∎∎rr∎t∎∎∎/∎r∎lrrrr∎∎rrr/∎∎∎∎∎∎∎ll//∎∎/∎/t\∎/∎ll∎∎∎111∎∎∎∎∎∎I∎∎∎∎∎/∎\∎∎∎∎∎∎∎\1/∎∎∎∎\I • .rrrr∎∎rr∎∎rrrr ;lrrrr∎∎∎∎r r∎r∎r∎∎∎r1 /∎∎∎rrr∎∎∎∎∎∎Ilrrt∎∎∎∎rrr∎∎∎∎/∎rrrrrrr∎rrLrrrrrrrrrrr∎rrrrrtrrrrrrr M ∎∎∎∎∎r∎∎∎\∎∎∎ ∎∎∎∎∎∎\∎∎∎∎∎∎∎∎∎∎∎r∎∎∎∎∎∎∎∎∎∎∎∎∎∎ ∎\∎r1 ∎∎∎∎∎∎∎∎∎∎∎∎∎II∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ ∎ll∎∎∎Mano ∎∎∎∎ ,,,11~~rrr∎r∎t∎r∎rt∎∎rrr∎∎lrr∎∎∎∎∎∎∎∎∎∎∎/I ∎∎∎∎∎∎ouu∎∎∎N∎uuHUUUUUN/∎NNNNUOU/uuNUUr∎∎N∎∎NNU∎uuonul∎NNUN∎∎∎ ∎u/I Iunl NnuunurnunuuuuuuuuuN∎NNNnuuurrrr∎∎∎∎rrrr°°∎N∎∎∎unuruurur∎∎∎Nnu∎ tlurl ∎∎∎unonuNNnuuuurNUrr∎Nr∎NnruuuuuurNrNrrr∎∎∎∎∎uNNUUrnrruuruuu ..5 a m,B mano un r∎∎, rrr\NrrN∎NIIO∎NrrprprOrrrrrONrrNNrrNrrrrrr∎1∎rrrrr∎rO∎rrr∎∎rrrrrrrrlN∎I l∎rrr∎rrNNr∎rII∎r∎I ∎∎O∎\∎∎Ol∎∎11∎∎∎∎/∎l∎/∎∎/∎/∎////rrrrr\/∎∎∎/∎/∎\rrrr∎∎∎∎∎∎t∎∎////∎∎/t\∎∎/t∎∎∎rr 11\11/∎∎/∎∎∎∎rrr/∎\I∎∎/∎I rr∎rrrrrr∎rrrrrr∎rrrrrrrrr∎∎∎∎1111rrr∎∎∎rrr∎//∎rrrr∎∎r∎∎/∎r∎t/∎∎rr∎∎∎∎r∎∎∎∎∎r∎∎∎∎∎r∎II∎∎∎r∎∎/∎∎r∎∎/∎iI∎∎∎I \∎uuuH∎uu∎uuu∎HUUOUOOH∎HU∎∎uHH∎u\∎∎\l∎,∎∎∎∎„c ouuuouuu ∎uu∎uuoou 1∎∎∎I ∎∎∎∎∎∎∎/rrrr/Il/r∎∎∎r∎∎∎∎∎rrrrr/∎t∎rrrrrr//rrrrr∎/rrrrr//t/Nr//trrrY∎∎l/rt∎∎∎t∎∎∎∎∎∎Ilr∎∎∎∎∎r∎∎∎∎∎r∎Ilr∎∎I I1∎∎∎I ,,,,∎∎∎∎,,,,∎ I INl/∎∎∎O∎N/∎∎∎HrrNN∎/Nt∎∎/∎l\∎∎∎/OU///∎∎∎NHHNN∎NNUHI ∎/ul∎∎/N∎∎∎∎∎∎ uuunnuuunuuNru/rrrrr∎ur∎∎∎rrrrrr∎∎∎n∎Nm nuNnr∎uNli∎ur uuuuuur I1ur1 ∎∎∎\uuu \ \LI / ∎∎∎∎∎∎∎/∎∎∎l∎∎\\∎l∎∎∎l∎O∎∎∎l∎∎∎∎l∎∎∎l∎∎∎/l∎/∎∎\/∎∎11∎ °∎ll\∎∎∎∎∎∎∎°'∎1'∎∎∎/∎∎∎∎\∎∎∎l∎~°∎∎I I *amo ouuuunuuuurouuuuunuNrrrr∎uuu∎u∎uu∎uuu∎ru∎inrrN∎unr∎ulnm∎/uurNNUavr/ .NNU∎°1111∎rnuN∎NINNI° ∎u' uuuuu∎nuuuuuu∎uouuoNNN∎NrN∎NNUUUUUU∎∎∎11∎III' • •^ .r. .ggq~yl \∎I . . .\^ ./r∎A//r .11~~wwrL\7/rP∎wq∎q/comol∎P∎r~∎~gUJCÍ∎~wLN~gr,hJllll • ruw,t^nqN,g~ : °~ó/~uuuurlrr∎HUrro∎r∎r∎rrrururourr∎rr como .∎∎ ..uru∎uuruurH000U∎∎∎oo∎∎∎∎ouuu∎ . .



HooruuuuuuunH∎i

/~---A w~~~w~ e,o

40

2,0

3,0

;0

0

d

Espectro de RMN del compuesto desconocido . Problema 2. 4 . Esquematizar síntesis de laboratorio que partiendo de metanol, etanol o benceno conduzcan a : (b) Ph--CH 2 CH 2 CH 3

(a) CH 3 -CHCH 2 CH 2 CH 3 1 CH 3

CH 3 1 (d) CH3-C-CH 2 CH 3

(c) CH 3 --CH-CH--CH 3 CH 3 CH 3

5.

6.

CH 3

La figura reproduce el espectro infrarrojo del octano . Indicar qué bandas de absorción típicas aparecerían si se oxidase a : (a) 1-octanol ; (b) octanal ; (c) ácido octanoico ; (d) 2-octanona ; (e) 1-octeno y (f) 1-octino . Formular, para el proceso :

CH 3 -CH 3 + C12

(Ph000),

CH 3-0120 + HCl

(a) Las reacciones de iniciación . (b) Las reacciones de propagación . (c) Las reacciones de terminación .



Reacciones de los alcanos y de los cicloalcanos

878

Longitud de onda (µm ) 2,5 3 4 5 6 7 8 9 10 12 15 100 ∎iir∎r∎rwr∎∎ ∎ ∎∎p∎/∎urur~r∎ie'∎ :∎∎/∎∎∎∎~~~∎ ó so ñr∎r/rpr//iii ∎∎\\lmill~=~ ∎∎∎∎∎r f,\∎ c Q> ∎p∎/∎∎p=INI∎M∎//∎M/p∎p∎~I'~NN∎///∎∎mol\

á 60 u C N

q F

/~∎ppp/I~~1∎∎∎.\l a~(M : NI,IIM :: ∎Ñ p∎∎/ .∎18111∎p∎∎/∎ H∎ ∎pp∎p//1/611∎∎∎ /∎∎∎p∎Bp∎/ =~a m .∎∎∎/ 40 p8881∎..∎∎/181111∎∎∎∎∎∎//∎p∎p∎/∎∎p∎∎p∎∎∎N∎∎/∎∎∎∎ 81M/∎/∎N∎18111∎ ∎∎// ∎p∎∎/∎..∎..∎∎/∎∎∎∎∎∎∎ 8881/p/p/∎18U1∎ ∎ EN ma a mo s ∎p∎~p∎∎/161W//~∎~ ama 20 pp/∎∎∎∎∎111∎∎∎ p∎∎/Ramo/VI∎p∎ no mas p/~EN 8L//∎∎ ∎∎p∎∎∎∎p∎pp∎∎∎∎r∎∎∎∎∎∎∎∎∎N∎ p=∎∎p∎ ∎∎∎∎p∎∎u/8~∎..∎p∎en o 0 - N 4000 3500 3000 2500 2000 1800 1600 1400 1200 1000 800 800 Frecuencia (cm - ')

o

:::∎: C~~~--5---=-

EZ.

Espectro infrarrojo del n-octano realizado sobre el líquido puro . Problema 5 . 7.

Las velocidades de reacción de los hidrógenos primarios, secundarios y terciarios valen, respectivamente, 1,0, 3,0 y 4,5 en un proceso del tipo : R-H + C12

h~

R-Cl + HCl

La cloración del isopentano conduce a cuatro monocloruros diferentes . ¿Qué porcentaje se formará de cada isómero? 8.

Sugerir un mecanismo para la reacción :

CH 3

+

O II ( CH,-C-O-)2

A

CH 2 -CH 2 +2CH,+2CO 2

9.

Completar estos procesos : (a) CH3 CH=CH 2

+ C12

irlo oscuridad

(b) CH 3CH=CH 2 + C12 (1 mol)

so0*c,

O peróxidos

N-Br



879

Problemas CH 2 (d) H 2 C-CH 2

H' O

2 C-CH 2

CH 2 (h) H 2 C \CH2

ci,

(e) H H 2 C -CH 2 Pd

(f) CH3 CH 2

Pd

~C1. .1 3

300°C

O ,

10 .

11 .

O

hv -

~CH, (i)

(9)

ci,

,CH 2 CH 3

(J) h, -

tubo cerrado 250° C

CH 2 CH=CH 2 Pd 120°C

Br,

El 3,3-dietilheptano es inerte frente al bromo en presencia de la luz solar pero el 3,4-dietilheptano reacciona, aunque lentamente . ¿Cuál es el producto que cabe esperar a partir de este último compuesto? ¿Qué razón hay para esa diferencia de reactividad entre los dos hidrocarburos? Esquematice síntesis de laboratorio que, partiendo de benceno, tolueno, y cualesquiera compuestos alifáticos necesarios, conduzcan a las siguientes sustancias : ()

CH 2

(b)

CH 2 CH2 -

(d)

C-CH Z

H (e)

PROBLEMAS OPTATIVOS

12 .

Ajustar las ecuaciones de las siguientes reacciones : CH 3 (a)

OH -

+ KMnO, -+

O\



1

880

Reacciones de los alcanos y de los cicloalcanos CH 2 OH KMnO,

(b)

OH

CHO

OH como, i

(c)

H,O'

OH

COOH crO,

(d)

H,O'

i

(CH 2 ) 2 000H

OH (e)

croa . H,O'

O

00

13 . ¿Cuántos estereoisómeros del perhidroantraceno existen? ¿Cuáles son ópticamente activos?

Perhidroantraceno

Related Documents


More Documents from ""

Planificacion Meiosis
April 2020 3
April 2020 2
Teologia Reconc
April 2020 3
Evidencia 5.4.docx
November 2019 17