Calculus.docx

  • Uploaded by: Raymond
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Calculus.docx as PDF for free.

More details

  • Words: 3,856
  • Pages: 25
Example cosh 2π‘₯βˆ’1

Prove that tanh2 π‘₯ = cosh 2π‘₯+1 Solution tanh2 π‘₯ sinh π‘₯ 2 tanh π‘₯ = ( ) cosh π‘₯ 2

sinh2 π‘₯

= cosh2 π‘₯ 1 sinh2 π‘₯ = (𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ )2 2 cosh2 π‘₯ =

1 π‘₯ (𝑒 + 𝑒 βˆ’π‘₯ )2 2

1 π‘₯ (𝑒 βˆ’ 𝑒 βˆ’π‘₯ )2 cosh 2π‘₯ βˆ’ 1 2 = = 1 π‘₯ (𝑒 + 𝑒 βˆ’π‘₯ )2 cosh 2π‘₯ + 1 2 1 2π‘₯ (𝑒 + 𝑒 βˆ’2π‘₯ βˆ’ 2) 2 = 1 2π‘₯ (𝑒 + 𝑒 βˆ’2π‘₯ + 2) 2 𝑒 2π‘₯ 𝑒 βˆ’2π‘₯ + 2 βˆ’1 = 22π‘₯ 𝑒 𝑒 βˆ’2π‘₯ + 2 2 +1 1 2π‘₯ (𝑒 + 𝑒 βˆ’2π‘₯ ) βˆ’ 1 2 1 2π‘₯ (𝑒 + 𝑒 βˆ’2π‘₯ ) + 1 2 =

cosh 2π‘₯ βˆ’ 1 cosh 2π‘₯ + 1

Hence proved Example 21.1.3 Prove thatcosh(𝐴 + 𝐡) = cosh 𝐴 cosh 𝐡 + sinh 𝐴 sinh 𝐡 Solution From the left-hand side

𝑒 𝐴 + 𝑒 βˆ’π΄ 𝑒 𝐡 + 𝑒 βˆ’π΅ 𝑒 𝐴 βˆ’ 𝑒 βˆ’π΄ 𝑒 𝐡 βˆ’ 𝑒 βˆ’π΅ cosh 𝐴 cosh 𝐡 + sinh 𝐴 sinh 𝐡 = ( )( )+( )( ) 2 2 2 2 𝑒 𝐴+𝐡 + 𝑒 π΄βˆ’π΅ + 𝑒 π΅βˆ’π΄ + 𝑒 βˆ’π΄βˆ’π΅ 𝑒 𝐴+𝐡 βˆ’ 𝑒 π΄βˆ’π΅ βˆ’ 𝑒 π΅βˆ’π΄ + 𝑒 βˆ’π΄βˆ’π΅ =( )+( ) 4 4 =

2𝑒 𝐴+𝐡 + 2𝑒 βˆ’π΄βˆ’π΅ 4

=

2(𝑒 𝐴+𝐡 + 𝑒 βˆ’π΄βˆ’π΅ ) 4

(𝑒 𝐴+𝐡 + 𝑒 βˆ’(𝐴+𝐡) ) = 2 = cosh(𝐴 + 𝐡). Hence cosh(𝐴 + 𝐡) = cosh 𝐴 cosh 𝐡 + sinh 𝐴 sinh 𝐡

INVERSE HYPERBOLIC FUNCTIONS 𝑦 = coshβˆ’1 π‘₯ means π‘₯ = cosh 𝑦 , 𝑦 β‰₯ 0, π‘₯ β‰₯ 1

GRAPHS OF HYPERBOLIC FUNCTIONS 𝑦 = π‘π‘œπ‘ β„Žπ‘₯ y

1

𝑦 = 2 𝑒π‘₯

𝑦 = π‘ π‘–π‘›β„Žπ‘₯ 0

y 𝑦 = π‘π‘œπ‘‘β„Žπ‘₯ 𝑦=1

x 𝑦 = βˆ’1

𝑦 = π‘π‘œπ‘‘β„Žπ‘₯

y

𝑦 = π‘π‘œπ‘ β„Žπ‘₯ 𝑦=1 𝑦 = π‘ π‘’π‘β„Žπ‘₯ 0

y

x

𝑦 = π‘ π‘–π‘›β„Žπ‘₯

x

𝑦 = π‘π‘ π‘β„Žπ‘₯

ELEMENTARY DIFFERENTIAL CALCULUS The Concept of a Limit Consider the functions 𝑓(π‘₯) =

π‘₯2 βˆ’ 4 π‘₯βˆ’2

The function is undefined at π‘₯ = 2 Let us examine the behavior of the function at π‘₯ = 2

π‘₯

𝑓(π‘₯) =

π‘₯ 2 βˆ’4 π‘₯βˆ’2

π‘₯

𝑓(π‘₯) =

1.9

3.9

2.1

4.1

1.99

3.99

2.01

4.01

1.999

3.999

2.001

4.001

1.9999

3.9999

2.0001

4.0001

π‘₯ 2 βˆ’4 π‘₯βˆ’2

Notice that as you move down the first column of the table, the π‘₯ βˆ’values get closer to 2 but are less than 2. We use the notation π‘₯ β†’ 2βˆ’ to indicate π‘₯ approaches 2 from the left. π‘₯ β†’ 2+ to indicate π‘₯ approaches 2 from the right. We call lim 𝑓(π‘₯) and π‘™π‘–π‘šπ‘“(π‘₯) one sided limit. π‘₯ β†’ 2βˆ’ π‘₯ β†’ 2βˆ’ Theorem A limit exists if and only if both corresponding one sided limits exists and are equal. That is lim 𝑓(π‘₯) = 𝐿 for some number 𝐿if and only if π‘₯β†’π‘Ž lim 𝑓(π‘₯) = π‘™π‘–π‘šπ‘“(π‘₯) π‘₯ β†’ aβˆ’ π‘₯ β†’ a+

Example Determine if the limit exists for the following a) lim

π‘₯ 2 βˆ’4

π‘₯β†’2 π‘₯βˆ’2 π‘₯

b) lim |π‘₯| π‘₯β†’0

Solution a) limβˆ’

π‘₯ 2 βˆ’4 π‘₯βˆ’2

π‘₯β†’2

= limβˆ’

(π‘₯βˆ’2)(π‘₯+2) π‘₯βˆ’2

π‘₯β†’2

lim (π‘₯ + 2) = 4

π‘₯β†’2βˆ’

and lim+

π‘₯ 2 βˆ’4

π‘₯β†’2

π‘₯βˆ’2

= lim+

(π‘₯βˆ’2)(π‘₯+2)

π‘₯β†’2

π‘₯βˆ’2

lim (π‘₯ + 2) = 4

π‘₯β†’2βˆ’

∴ limβˆ’ = 4 = lim+ π‘₯β†’2

π‘₯β†’2

Hence the limit exists.

π‘₯

b) lim |π‘₯| π‘₯β†’0

Solution π‘₯, |π‘₯| = { βˆ’π‘₯,

π‘₯β‰₯0 π‘₯<0

π‘₯ =1 π‘₯β†’0 π‘₯β†’0 π‘₯ π‘₯ limβˆ’ 𝑓(π‘₯) = limβˆ’ = βˆ’1 π‘₯β†’0 π‘₯β†’0 βˆ’π‘₯ lim+ 𝑓(π‘₯) = lim+

Since lim+ 𝑓(π‘₯) β‰  limβˆ’ 𝑓(π‘₯) the limit does not exist. π‘₯β†’0

π‘₯β†’0

y 1 𝑓(π‘₯) 0←π‘₯

π‘₯β†’0 𝑓(π‘₯)

-1 By definition π‘₯

π‘₯

𝑓(π‘₯) = π‘₯ = 1 and 𝑓(π‘₯) = βˆ’π‘₯ = βˆ’1

Theorem 1.2 sin π‘₯ =1 π‘₯β†’0 π‘₯ lim

Example Evaluate the following a) lim

π‘₯β†’0

cos2 π‘₯

b) lim

π‘₯

π‘₯β†’0

Solution a) lim

π‘₯β†’0

b) lim

π‘₯β†’0

cos2 π‘₯ π‘₯

tan3 π‘₯ π‘₯

= 2 lim

cos2 π‘₯ 2π‘₯

π‘₯β†’0

tan3 π‘₯

= lim3 ( π‘₯β†’0

3π‘₯

=2

)=3

tan3 π‘₯ π‘₯

COMPUTATION OF LIMITS For any constant 𝑐 and any real number π‘Ž, lim 𝑐 = 𝑐

(1)

π‘₯β†’π‘Ž

For any real number π‘Ž, lim π‘₯ = π‘Ž

(2)

π‘₯β†’π‘Ž

Theorem 2.1 lim 𝑓( π‘₯) and lim 𝑔( π‘₯) both exists, and let 𝑐 be any constant. The

Suppose that

π‘₯β†’π‘Ž

π‘₯β†’π‘Ž

following then apply; i)

lim [𝑐. 𝑓(π‘₯)] = 𝑐 lim 𝑓(π‘₯)

ii)

lim [𝑓(π‘₯) Β± 𝑔(π‘₯)] = lim 𝑓(π‘₯) Β± lim 𝑔(π‘₯)

iii)

lim [𝑓(π‘₯). 𝑔(π‘₯)] = [lim 𝑓(π‘₯)[ lim 𝑔(π‘₯)]

π‘₯β†’π‘Ž

π‘₯β†’π‘Ž

π‘₯β†’π‘Ž

π‘₯β†’π‘Ž

π‘₯β†’π‘Ž

𝑓(π‘₯)

lim 𝑔(π‘₯) =

iv)

π‘₯β†’π‘Ž

π‘₯β†’π‘Ž lim 𝑓(π‘₯)

π‘₯β†’π‘Ž

lim 𝑔(π‘₯)

π‘₯β†’π‘Ž

π‘₯β†’π‘Ž

π‘₯β†’π‘Ž

if lim 𝑔(π‘₯) β‰  0 π‘₯β†’π‘Ž

Example Apply the rule of limits to evaluate a) lim(3π‘₯ 2 βˆ’ 5π‘₯ + 4) π‘₯β†’2

b) lim

π‘₯β†’3

c) lim

π‘₯ 3 βˆ’5π‘₯+4 π‘₯ 2 βˆ’2 π‘₯ 2 βˆ’1

π‘₯β†’1 1βˆ’π‘₯ √π‘₯+2βˆ’βˆš2 π‘₯ π‘₯β†’0

d) lim

Solution a) lim(3π‘₯ 2 βˆ’ 5π‘₯ + 4) = lim3π‘₯ 2 βˆ’ lim5π‘₯ + lim4 π‘₯β†’2

= 12 βˆ’ 10 + 4 =6

π‘₯β†’2

π‘₯β†’2

π‘₯β†’2

b) lim

π‘₯ 3 βˆ’5π‘₯+4

=

π‘₯ 2 βˆ’2

π‘₯β†’3

c) lim

π‘₯ 2 βˆ’1

π‘₯β†’1 1βˆ’π‘₯

(3)3 βˆ’5(3)+4

= π‘™π‘–π‘š

(3)2 βˆ’2 (π‘₯βˆ’1)(π‘₯+1) βˆ’(π‘₯βˆ’1)

π‘₯β†’1

=

16 7

= βˆ’2

√π‘₯+2βˆ’βˆš2 π‘₯ π‘₯β†’0

d) lim

lim

(√π‘₯+2βˆ’βˆš2)(√π‘₯+2+√2) π‘₯(√π‘₯+2+√2)

π‘₯β†’0

π‘₯+2βˆ’2

lim π‘₯(√π‘₯+2+√2)

π‘₯β†’0

π‘₯

lim

π‘₯β†’0 π‘₯(√π‘₯+2+√2)

1

lim

π‘₯β†’0 (√π‘₯

+ 2 + √2)

1 √2 + √2

=

1 2√2

Theorem 2.2 For any polynomial 𝑝(π‘₯) and any real number π‘Ž, lim 𝑝(π‘₯) = 𝑝(π‘Ž)

π‘₯β†’π‘Ž

Theorem 2.3 Suppose that lim 𝑓(π‘₯) = 𝐿 and 𝑛 is any positive integer, Then π‘₯β†’π‘Ž

𝑛

𝑛

lim βˆšπ‘“(π‘₯) = π‘›βˆš lim 𝑓(π‘₯) = √𝐿 π‘₯β†’π‘Ž π‘₯β†’π‘Ž Where for 𝑛 even, we assume that 𝐿 > 0

Theorem 2.4 For any real number π‘Ž, we have; i) ii)

lim sin π‘₯ = sin π‘Ž

π‘₯β†’π‘Ž

lim cos π‘₯ = cos π‘Ž

π‘₯β†’π‘Ž

lim 𝑒 π‘₯ = 𝑒 π‘Ž

iii)

π‘₯β†’π‘Ž

lim ln π‘₯ = ln π‘Ž for π‘Ž > 0

iv)

π‘₯β†’π‘Ž

lim sinβˆ’1 π‘₯ = sinβˆ’1 π‘Ž for βˆ’1 < π‘Ž < 1

v)

π‘₯β†’π‘Ž

lim cosβˆ’1 π‘₯ = cosβˆ’1 π‘Ž for βˆ’1 < π‘Ž < 1

vi)

π‘₯β†’π‘Ž

lim tanβˆ’1 π‘₯ = tanβˆ’1 π‘Ž for βˆ’βˆž < π‘Ž < ∞

vii)

π‘₯β†’π‘Ž

and If P is a polynomial and lim 𝑓(π‘₯) = 𝐿, then π‘₯β†’π‘Ž

lim 𝑓(𝑝(π‘₯)) = 𝐿

π‘₯β†’π‘Ž

Example 5

a) Evaluate lim √3π‘₯ 2 βˆ’ 2π‘₯ π‘₯β†’2

b) Evaluate lim sinβˆ’1 (

π‘₯+1

π‘₯β†’0

2

)

c) Evaluate lim(π‘₯π‘π‘œπ‘‘π‘₯) π‘₯β†’0

Solution 5

5

a) lim √3π‘₯ 2 βˆ’ 2π‘₯ = 5√lim3π‘₯ 2 βˆ’ 2π‘₯ = √8 π‘₯β†’2 π‘₯β†’2 b) lim sinβˆ’1 ( π‘₯β†’0

π‘₯+1 2

1

) = sinβˆ’1 (2) =

πœ‹ 6

c) lim(π‘₯π‘π‘œπ‘‘π‘₯) = (lim π‘₯) (limπ‘π‘œπ‘‘π‘₯) = 0.0 ? π‘₯β†’0

π‘₯β†’0

π‘₯β†’0

cos π‘₯

π‘₯

∴ lim(π‘₯π‘π‘œπ‘‘π‘₯) = lim (π‘₯. sin π‘₯ ) = lim (sin π‘₯) (cos π‘₯) π‘₯β†’0

π‘₯β†’0

π‘₯ (lim ) (lim cos π‘₯) sin π‘₯ π‘₯β†’0 π‘₯β†’0

1 sin π‘₯ ) (lim cos π‘₯) = 1 lim ( π‘₯β†’0 π‘₯β†’0 π‘₯

π‘₯β†’0

Theorem 2.5 SQUEEZ THEOREM Suppose that 𝑓(π‘₯) ≀ 𝑔(π‘₯) ≀ β„Ž(π‘₯) For all π‘₯ in some interval (𝑐, 𝑑), except possibly at the point π‘Ž ∈ (𝑐, 𝑑) and that lim 𝑓(π‘₯) = lim β„Ž(π‘₯) = 𝐿

π‘₯β†’π‘Ž

π‘₯β†’π‘Ž

For some number 𝐿. Then it follows that lim 𝑔(π‘₯) = 𝐿 also.

π‘₯β†’π‘Ž

Example 1

Evaluate π‘‘β„Žπ‘’ lim [π‘₯ 2 cos (π‘₯)] π‘₯β†’0

Solution 1 lim [π‘₯ 2 cos ( )] π‘₯β†’0 π‘₯ 1 (βˆ’1 ≀ cos ( ) ≀ 1) π‘₯ 2 π‘₯ 1 βˆ’π‘₯ 2 ≀ π‘₯ 2 cos ( ) ≀ π‘₯ 2 π‘₯ π‘₯β‰ 0 limβˆ’π‘₯ 2 = 0 = limπ‘₯ 2

π‘₯β†’0

π‘₯β†’0

∴ from the squeeze theorem, it follows that 1 limπ‘₯ 2 cos ( ) = 0 π‘₯β†’0 π‘₯

A LIMIT FOR A PIECEWISE FUNCTION Example Evaluate lim𝑓(π‘₯), where 𝑓(π‘₯) is defined by π‘₯β†’0

π‘₯ 2 + 2π‘π‘œπ‘ π‘₯ + 1, π‘“π‘œπ‘Ÿ π‘₯ < 0, 𝑓(π‘₯) = 𝑓(π‘₯) = { 𝑒 π‘₯ βˆ’ 4,

π‘“π‘œπ‘Ÿ π‘₯ β‰₯ 0

Solution lim 𝑓(π‘₯) = limβˆ’ (π‘₯ 2 + 2π‘π‘œπ‘ π‘₯ + 1) = 3

π‘₯β†’0βˆ’

π‘₯β†’0

and also lim (𝑒 π‘₯ βˆ’ 4) = 𝑒 0 βˆ’ 4 = 1 βˆ’ 4 = βˆ’3

π‘₯β†’0βˆ’

Thus lim𝑓(π‘₯) does not exist π‘₯β†’0

LIMITS INVOLVING INFINITY; ASYMPTOTES Example Examine lim

1

π‘₯β†’0 π‘₯

solution

𝑓(π‘₯)

0 𝑓(π‘₯)

lim+

π‘₯β†’0

limβˆ’

π‘₯β†’0

1 =∞ π‘₯ 1 π‘₯

= βˆ’βˆž the limit does not exist 1

The graph of 𝑦 = π‘₯ approaches the vertical line π‘₯ = 0, as π‘₯ β†’ 0 as shown above When this occurs, we say that the line π‘₯ = 0.

Example Evaluate lim

1

π‘₯β†’0 π‘₯ 2

𝑓(π‘₯)

𝑓(π‘₯)

solution 0

1 =∞ π‘₯β†’0 π‘₯ 2 1 limβˆ’ 2 = βˆ’βˆž π‘₯β†’0 π‘₯ The limit does not exist. lim+

LIMITS AT INFINTY 1

1

Returning to 𝑓(π‘₯) = π‘₯ , we can see that as π‘₯ β†’ ∞, π‘₯ β†’ 0. In view of this, we write 1 =0 π‘₯β†’βˆž π‘₯ lim

1 =0 π‘₯β†’βˆ’βˆž π‘₯ lim

The graph appears to approach the horizontal line 𝑦 = 0, as π‘₯ β†’ ∞ and as π‘₯ β†’ βˆ’βˆž. In this case, we call 𝑦 = 0 a horizontal asymptote. A LIMIT OF A QUOTIENT THAT IS NOT THE QUOTIENT OF A LIMIT Example Evaluate lim

5π‘₯βˆ’7

π‘₯β†’βˆž 4π‘₯+3

Solution lim

π‘₯β†’βˆž

lim (5π‘₯βˆ’7)

5π‘₯βˆ’7

∞

= π‘₯β†’βˆž =∞ ? 4π‘₯+3 lim (4π‘₯+3) π‘₯β†’βˆž

NOTE: i) ii) iii) iv)

∞

indeterminate form

∞ ∞

0 ∞. ∞ 0.0

Rule of thumbs ∞

When faced with the indeterminate form ∞ in calculating limits of a rational function, divide numerator and denominator by the highest power of x appearing in the denominator.

Here we have 5π‘₯ 7 7 βˆ’π‘₯ 5βˆ’π‘₯ 5 5π‘₯ βˆ’ 7 π‘₯ lim = = lim = 4π‘₯ 3 π‘₯β†’βˆž 3 4 π‘₯β†’βˆž 4π‘₯ + 3 4+π‘₯ π‘₯ +π‘₯

Example Evaluate lim

4π‘₯ 3 +5

π‘₯β†’βˆž βˆ’6π‘₯ 2 βˆ’7π‘₯

Solution 4π‘₯ 3 5 + 2 4π‘₯ 3 + 5 π‘₯2 π‘₯ lim = lim π‘₯β†’βˆž βˆ’6π‘₯ 2 βˆ’ 7π‘₯ π‘₯β†’βˆž 6π‘₯ 2 7π‘₯ βˆ’ 2 βˆ’ 2 π‘₯ π‘₯ 5 2 π‘₯ lim = βˆ’βˆž 7 π‘₯β†’βˆž βˆ’6 βˆ’ π‘₯ 4π‘₯ +

Two LIMITS OF AN INVERSE TRIGONOMETRIC FUNCTION Evaluate lim tanβˆ’1 π‘₯ and lim tanβˆ’1 π‘₯ π‘₯β†’βˆž

π‘₯β†’βˆž

y

y = tanβˆ’1 π‘₯

πœ‹

πœ‹

βˆ’2

lim tanβˆ’1 π‘₯ =

π‘₯β†’βˆž

2

πœ‹ 2

lim tanβˆ’1 π‘₯ = βˆ’

π‘₯β†’βˆ’βˆž

πœ‹ 2

πœ‹ 2

𝑦 = tanβˆ’1 π‘₯

πœ‹

βˆ’2

Example Evaluate lim (βˆšπ‘› + 1 βˆ’ βˆšπ‘›) π‘₯β†’βˆž

Solution (βˆšπ‘›+1βˆ’βˆšπ‘›)

lim (βˆšπ‘› + 1 βˆ’ βˆšπ‘›) (

π‘₯β†’βˆž

lim

𝑛 + 1 + βˆšπ‘› βˆšπ‘› + 1 βˆ’ βˆšπ‘› βˆšπ‘› + 1 βˆ’ 𝑛 βˆšπ‘› + 1 + βˆšπ‘›

π‘₯β†’βˆž

lim

βˆšπ‘›+1βˆ’βˆšπ‘›)

1

π‘₯β†’βˆž βˆšπ‘›

+ 1 + βˆšπ‘› 1

𝑛+1 βˆšπ‘› √ 𝑛 + βˆšπ‘› lim

π‘₯β†’βˆž

lim

π‘₯β†’βˆž

1 1 βˆšπ‘› √ ( 1 + 𝑛 + 1) 𝑛 √ 1 βˆšπ‘› 1 βˆšπ‘› √ ( 1 + 𝑛 + 1) βˆšπ‘›

=

0 =0 2

CONTINUITY Definition A function f is continuous at π‘₯ = π‘Ž when 𝑓(π‘₯) is defined lim 𝑓(π‘₯) exists

i) ii)

π‘₯β†’π‘Ž

lim 𝑓(π‘₯) = 𝑓(π‘Ž)

iii)

π‘₯β†’π‘Ž

Otherwise,𝑓 is said to be discontinuous at π‘₯ = π‘Ž As an example of a continuous function, let us investigate 𝑓(π‘₯) = π‘₯ 2 At some fixed value π‘₯ = 𝑐. certainly 𝑓(𝑐) = 𝑐 2 at π‘₯ = 𝑐. Furthermore, the difference 𝑓(π‘₯) βˆ’ 𝑓(𝑐) = π‘₯ 2 βˆ’ 𝑐 2 = (π‘₯ βˆ’ 𝑐)(π‘₯ + 𝑐) Approaches zero as a limit when π‘₯ βˆ’ 𝑐 approaches zero, since as when π‘₯ ⟢ 𝑐, We have lim[𝑓(π‘₯) βˆ’ 𝑓(𝑐)] = lim(π‘₯ βˆ’ 𝑐)lim(π‘₯ + 𝑐) 0.2𝑐 = 0 ∴ 𝑓(π‘₯) = π‘₯ 2 is continuous at any point where π‘₯ = 𝑐

Example 3.1 Finding where a rational function is continuous Determine where 𝑓(π‘₯) =

π‘₯ 2 +2π‘₯βˆ’3 π‘₯βˆ’1

is continuous

Solution 𝑓(π‘₯) =

π‘₯ 2 +2π‘₯βˆ’3 π‘₯βˆ’1

=

(π‘₯βˆ’1)(π‘₯+3) π‘₯βˆ’1

=π‘₯+3

for π‘₯ β‰  1 this says that the graph of 𝑓 is a straight line but with a hole in it at π‘₯ = 1 ∴ 𝑓 is discontinuous at π‘₯ = 1 but continuous everywhere

{𝐷: π‘₯ ∈ ℝ|π‘₯ β‰  1} y

𝑦=

π‘₯ 2 +2π‘₯βˆ’3 π‘₯βˆ’1

4

5

x

Example Removing a discontinuity Let us redefine example 3.1 to make it continuous everywhere

π‘₯ 2 + 2π‘₯ βˆ’ 3 , 𝑖𝑓 π‘₯ β‰  1 𝑔(π‘₯) = { π‘₯ βˆ’ 1 π‘Ž, 𝑖𝑓 π‘₯=1

lim𝑔(π‘₯) = lim

π‘₯β†’1

π‘₯2 + 2π‘₯ βˆ’ 3

π‘₯β†’1

π‘₯βˆ’1

=

(π‘₯ βˆ’ 1)(π‘₯ + 3) π‘₯β†’1 π‘₯βˆ’1 lim

lim(π‘₯ + 3) = 4

π‘₯β†’1

Now if we choose π‘Ž = 4,then lim𝑔(π‘₯) = 4 = 𝑔(1) and so g is continuous at π‘₯ = 1.

π‘₯β†’1

NOTE: When we can remove a discontinuity by redefining the function at that point, we call the discontinuity a removable discontinuity. Example The function f defined by 𝑓(π‘₯) =

sin π‘₯ π‘₯

for π‘₯ β‰  0

has a removable discontinuity at π‘₯ = 0 , the formula is not valid when π‘₯ = 0 but lim

π‘₯β†’0

sin π‘₯ π‘₯

=1

sin π‘₯ 𝑓(π‘₯) = { π‘₯ , 1,

π‘€β„Žπ‘’π‘› π‘₯ β‰  0 π‘€β„Žπ‘’π‘› π‘₯ = 0

by so defining the value of f at 0, we have made f continuous there, since we now have 𝑓(π‘₯) = π‘™π‘–π‘šπ‘“(π‘₯) as π‘₯ approaches zero. Non-removable discontinuity The discontinuity at π‘₯ = 0 in the foregoing example could be removed because f had a limit, namely 1, as π‘₯ approaches zero. On the other hand, if 𝑔(π‘₯) =

|π‘₯| π‘₯

for π‘₯ β‰  0

Then there is a discontinuity at 0, that can be removed. π‘₯, 𝑖𝑓 π‘₯ β‰₯ 0 |π‘₯| = { βˆ’π‘₯, π‘₯<0 π‘₯ =1 π‘₯β†’0 π‘₯ π‘₯ limβˆ’ = 1 π‘₯β†’0 π‘₯ lim+

∴ the limit does not exist. If we assign the value 0 to g(0), the resulting function is the signum function ( or sign function) of π‘₯. +1 signπ‘₯ = { 0 βˆ’1

𝑖𝑓 π‘₯ > 0 𝑖𝑓 π‘₯ = 0 𝑖𝑓 π‘₯ < 0

the signum function is defined for all π‘₯, but it is not continuous at π‘₯ = 0. It is continuous for π‘₯ β‰  0 Example Non-removable discontinuity 𝑓(π‘₯) =

1 π‘₯2

Solution We should observe from the diagram 1 =∞ π‘₯β†’0 π‘₯ 2 lim

∴ the limit does not exist .

-3

3

Hence 𝑓 is discontinuous at π‘₯ = 0 and non- removable. Theorem All polynomials are continuous everywhere. Additionally, 𝑠𝑖𝑛π‘₯, π‘π‘œπ‘ π‘₯, tanβˆ’1 π‘₯ π‘Žπ‘›π‘‘ 𝑒 π‘₯ are 𝑛 continuous everywhere. √π‘₯ is continuous for all π‘₯, when n is odd and for π‘₯ β‰₯ 0 when n is even. We also have that ln π‘₯ is continuous for π‘₯ > 0 and sinβˆ’1 π‘₯ and cos βˆ’1 π‘₯ are continuous for βˆ’1 < π‘₯ < 1 Theorem Suppose that 𝑓 π‘Žπ‘›π‘‘ 𝑔 are continuous at π‘₯ = π‘Ž. Then all of the following are true: i) (𝑓 Β± 𝑔) is continuous at x=a ii) (𝑓. 𝑔) is continuous at x=a and 𝑓

iii) (𝑔) is continuous at π‘₯ = π‘Ž if 𝑔(π‘Ž) β‰  0 Theorem Suppose that lim 𝑔(π‘₯) = 𝐿 and 𝑓 is continuous at 𝐿 then, π‘₯β†’π‘Ž

lim 𝑓(𝑔(π‘₯)) = 𝑓(π‘™π‘–π‘šπ‘”(π‘₯)) = 𝑓(𝐿) π‘₯β†’π‘Ž

π‘₯β†’π‘Ž

Corollary 3.1 Suppose that 𝑔 is continuous at a and 𝑓 is continuous at 𝑔(π‘Ž). Then, the composition π‘“π‘œπ‘” is continuous at a. Example Continuity for a composite function Determine where β„Ž(π‘₯) = cos(π‘₯ 2 βˆ’ 5π‘₯ + 2) is continuous. Solution Note that β„Ž(π‘₯) = 𝑓(𝑔(π‘₯)) Where 𝑔(π‘₯) = π‘₯ 2 βˆ’ 5π‘₯ + 2 and 𝑓(π‘₯) = π‘π‘œπ‘ π‘₯ Since both 𝑓 π‘Žπ‘›π‘‘ 𝑔 are continuous for all x, h is also continuous for all x by corollary 3.1 Definition 3.2 If f is continuous at every point on an open interval (π‘Ž, 𝑏), we say that f is continuous on the closed interval [π‘Ž, 𝑏], if f is continuous on the open interval (π‘Ž, 𝑏) and lim 𝑓(π‘₯) = 𝑓(π‘Ž) and limβˆ’π‘“(π‘₯) = 𝑓(𝑏).

π‘₯β†’π‘Ž+

π‘₯→𝑏

Finally, if 𝑓 is continuous on all of 𝑔(βˆ’βˆž, ∞), we simply say that 𝑓 is continuous. Example Determine the interval where 𝑓 is continuous for, a) 𝑓(π‘₯) = √4 βˆ’ π‘₯ 2 b) 𝑓(π‘₯) = ln(π‘₯ βˆ’ 3) solution a) 𝑓(π‘₯) = √4 βˆ’ π‘₯ 2 √4 βˆ’ π‘₯ 2 β‰₯ 0 2

(√4 βˆ’ π‘₯ 2 ) β‰₯ (0)2 4 βˆ’ π‘₯2 β‰₯ 0 (βˆ’1) βˆ’ π‘₯ 2 β‰₯ βˆ’4(βˆ’1) π‘₯2 ≀ 4 √π‘₯ 2 ≀ ±√4 |π‘₯| ≀ Β±2

recall that |π‘₯| = √π‘₯ 2

βˆ’2 ≀ π‘₯ ≀ 2

b)

𝑓(π‘₯) = ln(π‘₯ βˆ’ 3)

solution π‘₯βˆ’3>0 ⟹π‘₯ >3 ∴ 𝑓 is continuous on the interval (3, ∞).

Theorem The intermediate value theorem Suppose that 𝑓 is continuous on the closed interval [π‘Ž, 𝑏] and w is any number between 𝑓(π‘Ž) and 𝑓(𝑏). Then there is a number 𝑐 ∈ [π‘Ž, 𝑏] for which 𝑓(𝑐) = 𝑀.

CORRALARY Suppose that 𝑓 is continuous on [π‘Ž, 𝑏] and 𝑓(π‘Ž) and 𝑓(𝑏) have opposite signs [𝑖. 𝑒 𝑓(π‘Ž). 𝑓(𝑏) < 0]. Then there is at least one number 𝑐 ∈ (π‘Ž, 𝑏) for which 𝑓(𝑐) = 0 (recall that c is then a zero of f) Note: Lemma lim

πœƒβ†’0

1βˆ’cos πœƒ πœƒ

=0

DIFFERENTIATION THE GENERAL CASE To find the slope of the tangent line to 𝑦 = 𝑓(π‘₯) π‘Žπ‘‘ π‘₯ = π‘Ž, first pick two points on the curve, one point is the point of tangency (π‘Ž, 𝑓(𝑐)). Call the x-coordinate of the secant point π‘₯ = π‘Ž + β„Ž, for some small number corresponding y-coordinates is 𝑓(π‘Ž + β„Ž).It is natural to think of h as being positive , as shown in figure (a), h can also be negative as shown in figure (b)

●

● π‘Ž

π‘Ž+β„Ž

π‘Ž+β„Ž

π‘Ž

a)

b) secant line β„Ž > 0

secant line β„Ž < 0

the slope of the secant line through the point (π‘Ž, 𝑓(π‘Ž)) and (π‘Ž + β„Ž, 𝑓(π‘Ž + β„Ž) is given by

𝑀𝑠𝑒𝑐 =

𝑓(π‘Ž+β„Ž)βˆ’π‘“(π‘Ž) (π‘Ž+β„Ž)βˆ’π‘Ž

=

𝑓(π‘Ž+β„Ž)βˆ’π‘“(π‘Ž) β„Ž

1.1

Notice that the expression in 1.1 is called a difference quotient gives the slope of the secant line for any secant point we might choose (that is for any β„Ž β‰  0)

In order to obtain an improved approximation to the tangent line, we zoom in closer and closer towards the point of tangency. This makes the two points closer together to 0 as shown below. y

𝑄

●

● 𝑃 ● ● ● x

Notice that as the point Q approaches the point P(𝑖. 𝑒 , π‘Žπ‘  β„Ž β†’ 0), the secant line approaches the tangent line at P. Definition The slope π‘šπ‘‘π‘Žπ‘› of the tangent line to 𝑦 = 𝑓(π‘₯) at π‘₯ = π‘Ž is given by

𝑓(π‘Ž + β„Ž) βˆ’ 𝑓(π‘Ž) β„Žβ†’0 β„Ž

𝑓 β€² (π‘Ž) = lim

Provided the limit exists. If the limit exists, we say that 𝑓 is differentiable at π‘₯ = π‘Ž. 𝑓(π‘₯+β„Ž)βˆ’π‘“(π‘₯) β„Ž β„Žβ†’0

Or the derivative of 𝑓(π‘₯) is the function 𝑓 β€² (π‘₯) given by 𝑓 β€² (π‘₯) = lim

provided

the limit exists. The process of computing a derivative is called differentiation. Further, f is differentiable at a point on an interval 𝐼 if it is differentiable at every point in 𝐼. This is also called the 1𝑠𝑑 principle of derivative. Example Use the definition to find the derivative function of the following. a) 𝑓(π‘₯) = √π‘₯ π‘Žπ‘›π‘‘ π‘₯ > 0 b) 𝑓(π‘₯) = sin π‘₯

solution

𝑓(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯) β„Žβ†’0 β„Ž

𝑓 β€² (π‘₯) = lim

√π‘₯+β„Žβˆ’βˆšπ‘₯ β„Ž β„Žβ†’0

= lim = lim

(√π‘₯ + β„Ž βˆ’ √π‘₯)(√π‘₯ + β„Ž + √π‘₯) β„Ž(√π‘₯ + β„Ž + √π‘₯)

β„Žβ†’0

(π‘₯+β„Ž)βˆ’π‘₯

= lim β„Ž(√π‘₯+β„Ž+

√π‘₯)

β„Žβ†’0

1

= lim

β„Žβ†’0 √π‘₯

= =

+ β„Ž + √π‘₯

1 √π‘₯ + 0 + √π‘₯ 1 2 √π‘₯

b) 𝑓(π‘₯) = sin π‘₯ 𝑓(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯) β„Žβ†’0 β„Ž

𝑓 β€² (π‘₯) = lim

sin(π‘₯ + β„Ž) βˆ’ 𝑠𝑖𝑛π‘₯ β„Žβ†’0 β„Ž

= lim

𝑠𝑖𝑛π‘₯ π‘π‘œπ‘ β„Ž + π‘π‘œπ‘ π‘₯ 𝑠𝑖𝑛π‘₯ βˆ’ 𝑠𝑖𝑛π‘₯ β„Žβ†’0 β„Ž

= lim

(π‘π‘œπ‘ π‘₯ βˆ’ 1) π‘ π‘–π‘›β„Ž + π‘π‘œπ‘ π‘₯ lim β„Žβ†’0 β„Žβ†’0 β„Ž β„Ž

= 𝑠𝑖𝑛π‘₯ lim

= 𝑠𝑖𝑛π‘₯(0) + π‘π‘œπ‘ π‘₯(1) = π‘π‘œπ‘ π‘₯

ALTERNATIVE DERIVATIVE NOTATIONS We have denoted the derivative function by 𝑓 β€² (π‘₯). There are other Commonly used notations, each with advantages and disadvantages. One of the 𝑑𝑓

converts of calculus, Leibniz, used the notation 𝑑π‘₯ (Leibniz notation) for the derivative. If we write 𝑦 = 𝑓(π‘₯), the following are all alternatives for denoting the derivative

𝑓 β€² (π‘₯) = 𝑦 β€² =

𝑑𝑦 𝑑π‘₯

=

𝑑𝑓 𝑑π‘₯

=

𝑑 𝑑π‘₯

𝑓(π‘₯)

𝑑

The expression 𝑑π‘₯ is called a differential operator and tells you to take the derivative of whatever expression follows. THEOREM If 𝑓(π‘₯) is differentiable at π‘₯ = π‘Ž ,then 𝑓(π‘₯) is continuous at π‘₯ = π‘Ž. Example Show that 𝑓(π‘₯) = {

4, 𝑖𝑓 π‘₯ < 2 2π‘₯ 𝑖𝑓, π‘₯ β‰₯ 2

is not differentiable at π‘₯ = 2

Solution

𝑓(π‘₯+β„Ž)βˆ’π‘“(π‘₯)

𝑓 β€² (π‘₯) = limβˆ’

β„Ž

β„Žβ†’0

limβˆ’

𝑓(π‘₯+β„Ž)βˆ’π‘“(π‘₯)

= limβˆ’

β„Ž

β„Žβ†’0

𝑓(π‘₯+β„Ž)βˆ’π‘“(π‘₯) β„Ž

β„Žβ†’0

2π‘₯+2β„Žβˆ’2π‘₯

β„Žβ†’0

β„Ž

β„Žβ†’0

𝑓 β€² (π‘₯) = lim+ lim+

𝑓(2+β„Ž)βˆ’π‘“(2)

= lim+

β„Žβ†’0

2(π‘₯+β„Ž)βˆ’2(π‘₯)

β„Žβ†’0

=2

2

∴ 𝑓 β€² (π‘₯) β‰  𝑓 β€² (π‘₯) lim

β„Žβ†’0βˆ’

lim

β„Žβ†’0+

The function is not continuous at π‘₯ = 2 COMPUTATION OF DERIVATIVES For any constant c, 𝑑 𝑑π‘₯

(𝑐) = 0

Similarly, 𝑑 𝑑π‘₯

π‘₯=1

Theorem (power rule) For any integer 𝑛 > 0, 𝑑 𝑑π‘₯

π‘₯ 𝑛 = 𝑛π‘₯ π‘›βˆ’1

Theorem (General power rule) For any real number π‘Ÿ ,

𝑑 𝑑π‘₯

= limβˆ’

π‘₯ π‘Ÿ = π‘Ÿπ‘₯ π‘Ÿβˆ’1

β„Ž

4βˆ’4 β„Ž

=0

Example Find the derivatives of the following a)

1 π‘₯ 19 3

b) √π‘₯ 2 c)

π‘₯πœ‹

solution a)

1 π‘₯ 19 𝑑

( 𝑑π‘₯

19 1 𝑑 ) = 𝑑π‘₯ π‘₯ βˆ’19 = βˆ’19π‘₯ βˆ’19βˆ’1 = βˆ’19π‘₯ βˆ’20 = π‘₯ βˆ’20 19 π‘₯ 2

3

b) √π‘₯ 2 = π‘₯ 3 𝑑 3

2

𝑑

2

2

2

1

√π‘₯ 2 = 𝑑π‘₯ π‘₯ 3 = 3 π‘₯ 3βˆ’1 = 3 π‘₯ βˆ’3 = 𝑑π‘₯ c)

𝑑 𝑑π‘₯

2 1 3π‘₯ 3

=

2 3

3 √π‘₯

π‘₯ πœ‹ = πœ‹π‘₯ πœ‹βˆ’1

GENERAL DERIVATIVE RULES THEOREM If 𝑓(π‘₯) and 𝑔(π‘₯) are differentiable at π‘₯ and 𝑐 is any constant, then (i) (ii) (iii)

𝑑 𝑑π‘₯ 𝑑 𝑑π‘₯ 𝑑 𝑑π‘₯

[𝑓(π‘₯) + 𝑔(π‘₯)] = 𝑓 β€² (π‘₯) + 𝑔′ (π‘₯) [𝑓(π‘₯) βˆ’ 𝑔(π‘₯)] = 𝑓 β€² (π‘₯) βˆ’ 𝑔′ (π‘₯) and [𝑐𝑓(π‘₯)] = 𝑐𝑓 β€² (π‘₯)

Example Find the derivative of a) 𝑓(π‘₯) = 2π‘₯ 6 + 3√π‘₯ b) 𝑓(π‘₯) =

4π‘₯ 2 βˆ’3π‘₯+2√π‘₯ π‘₯

Solution 𝑑

𝑑

a) 𝑓 β€² (π‘₯) = 𝑑π‘₯ (2π‘₯ 6 ) + 𝑑π‘₯ (3√π‘₯) 𝑑

𝑑

1

1

= 2 𝑑π‘₯ (π‘₯ 6 ) + 3 𝑑π‘₯ (√π‘₯) = 2(6π‘₯ 5 ) + 3 (2) π‘₯ βˆ’2 = 12π‘₯ 5 + 2

3

√π‘₯

b)

More Documents from "Raymond"

20041202-firefox
August 2019 40
Acer Mpc Pricelist
May 2020 19
Microsoft-certification
August 2019 53
Calculus.docx
November 2019 38
Group Theory.docx
December 2019 32