Calculus Of Multivariable - Solved Assignments - Semester Fall 2007

  • Uploaded by: Muhammad Umair
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Calculus Of Multivariable - Solved Assignments - Semester Fall 2007 as PDF for free.

More details

  • Words: 3,931
  • Pages: 24
1

Assignment Solution Fall 2007 MTH301 (1)

Question 1 Consider the point (1, 0, 0) convert it into cylindrical and spherical coordinates.

Solution

Here the po int is in the cartesian cordinates x =1 here

y=0

z=0

r = x 2 + y 2 = 12 + 02 = 1 y x

0 1

θ = tan −1 ( ) = tan −1 ( ) = tan −1 (0) = 0 z=0 so po int in the cyclinderical coordinates is (1,0,0) now in sphercal coordinates we have

ρ = x 2 + y 2 + z 2 = 12 + 02 + 02 = 1 = 1 0  y tan θ =   ⇒ θ = tan −1 ( ) = 0 1 x z ) φ = cos −1 ( x2 + y 2 + z 2 0 π  = cos −1 ( ) = cos −1 (0) =   1 2

π

so the po int is (1,0, ) 2

2

Question 2

By considering different path of approach, show that the function has no limit as

x2 f ( x, y ) = 2 x −y Solution

x2 f ( x, y ) = 2 x −y here we check along the path y = kx 2 x2 x2 1 lim ( x , y )→(0,0) ( 2 ) = lim x→0 ( 2 ) = x − kx 2 1 − k along y = kx 2 x − y k ≠1

here we will get different lim its for different values of k so lim it does not exist

Question 3

Find the partial derivative w.r.t x and y for the function

Solution

x3 − y 3 z = ln( 2 ) x + y2

( x, y ) → (0,0)

3

x −y ) x2 + y 2 here we can have z = ln(

3

3

z = ln( x 3 − y 3 ) − ln( x 2 + y 2 ) now taking partial derivative w.rt x we will have ∂z 3x 2 2x = 3 − ∂x x − y 3 x 2 + y 2 ∂z 3 y2 2y = 3 − ∂y x − y 3 x 2 + y 2

4

Assignment Solution Fall 2007 MTH301 (2)

Question 1

∂w ∂w and when r = 1 and s = −1 if w = ( x + y + z ) 2 ∂r ∂s where x = r − s , y = cos(r + s ) , z = sin(r + s )

Find

Solution

we have the following formulae ∂w ∂w ∂x ∂w ∂y ∂w ∂z = + + ∂r ∂x ∂r ∂y ∂r ∂z ∂r ∂w ∂w ∂x ∂w ∂y ∂w ∂z = + + ∂s ∂x ∂s ∂y ∂s ∂z ∂s w = ( x + y + z)2 ∂w = 2( x + y + z ) ∂x ∂w = 2( x + y + z ) ∂y ∂w = 2( x + y + z ) ∂z ∂x =1 ∂r ∂x = −1 ∂s

∂y = − sin(r + s ) ∂r ∂y = − sin(r + s ) ∂s

∂z = cos(r + s ) ∂r ∂z = cos(r + s ) ∂s

5

∂w ∂w ∂x ∂w ∂y ∂w ∂z = + + ∂r ∂x ∂r ∂y ∂r ∂z ∂r = 2[ x + y + z ](r − s ) + 2[ x + y + z ] − sin(r + s ) + 2[ x + y + z ]cos(r + s ) = 2[1 + 1 + sin(0) + cos(0)](1) + 2[1 + 1 + sin(0) + cos(0)]sin(0) + 2[1 + 1 + sin(0) + cos(0)]cos(0) = 6 + 0 + 6 = 12 ∂w ∂w ∂x ∂w ∂y ∂w ∂z = + + ∂s ∂x ∂s ∂y ∂s ∂z ∂s = 2[ x + y + z ](−1) + 2[ x + y + z ] − sin(r + s ) + 2[ x + y + z ]cos(r + s ) = 2[1 + 1 + sin(0) + cos(0)](−1) + 2[1 + 1 + sin(0) + cos(0)] − sin(0) + 2[1 + 1 + sin(0) + cos(0)]cos(0) = −6 + 0 + 6 = 0 Question 2

         Verify that ( a × b ).c = (b × c ).a = (c × a ).b and find the volume of the parallelepiped               a , bandc where a = i + j − 2 k b = − i − k c = 2 i + 4 j − 2 k determined by

Solution

              a , bandc where a = i + j − 2k b = − i − k c = 2i + 4 j − 2k here we have          (a × b ).c = (b × c ).a = (c × a ).b 1 1 −2    (a × b ).c = −1 0 −1 2 4 −2 =1

−1 −1 −1 0 0 −1 −1 −2 4 −2 2 −2 2 4

= 1(0 + 4) − 1(2 + 2) − 2(−4 − 0) = 4−4+8 =8 −1 0 −1    (b × c ).a = 2 4 −2 1 1 −2 = −1

4 −2 2 −2 2 4 −0 −1 1 −2 1 −2 1 1

= −1(−8 + 2) − 0 − 1(2 − 4) = 6−0+2 =8 2 4 −2    (c × a ).b = 1 1 −2 −1 0 −1 =2

1 −2 1 −2 1 1 −2 −4 0 −1 −1 0 −1 −1

= 2(−1 + 0) − 4() − 1(2 − 4) = 6−0+2 =8 the volume of the parallelopiped is volume = 8 Question 3

6

7 Find the derivative of

    f ( x, y, z ) = x3 − xy 2 − z at P0 (1,1,0) in the direction of a = 2i − 3 j + 6k

Solution

    f ( x, y, z ) = x − xy − z at P0 (1,1,0) in the direction of a = 2i − 3 j + 6k ; 3

2

f x ( x, y , z ) = 3 x 2 − y 2 f y ( x, y, z ) = −2 xy f z ( x , y , z ) = −1 at P0 (1,1,0) f x ( x, y , z ) = 3 − 1 = 2 f y ( x, y, z ) = −2 f z ( x , y , z ) = −1 now     a = 2i − 3 j + 6 k  | a |= 4 + 9 + 36 = 7    2i − 3 j + 6 k aɺ = 7    ∆f = 2i − 2 j − k       2i − 3 j + 6 k Du f ( x, y , x) = ( ).(2i − 2 j − k ) 7 4+6−6 4 = = 7 7

8

Assignment Solution Fall 2007 MTH301 (3)

Question 1

If

f ( x) = x 2 + 2 x , x0 = 0, dx = 0.1 then find

(a) The change

∆f = f ( x0 + dx) − f ( x0 )

(b) The value of the estimate

(c) The approximate error

df = f '( x0 )dx

∆f − df

Solution

here f ( x) = x 2 + 2 x x0 = 0

dx = 0.1

(a ) ∆f = f ( x0 + dx) − f ( x0 ) = [(0.1)2 + 2(0.1)] − 0 = (0.1)2 + 0.2 = 0.21 df ( x) (b ) = x2 + 2 x dx

9

df = (2 x + 2)dx at x0 = [(2 × 0 + 2)][0.1] = 0.2 (c ) Now ∆f − df = 0.21 − 0.2 = 0.01

Question 2

If

f ( x, y ) = 2 xy − 5 x 2 − 2 y 2 + 4 x + 4 y − 4

find all the local maxima, local minima, and saddle

points of the function .

Solution

f ( x, y ) = 2 xy − 5 x 2 − 2 y 2 + 4 x + 4 y − 4 now we calculate the partial derivatives w.r.t x f x = −10 x + 2 y + 4

(1)

f y = 2 x − 10 y + 4

(2)

now by 1× (1) and 5× (2) −10 x + 2 y + 4 = 0 10 x − 20 y + 20 = 0 −−−−−−−−−−−−−−− −18 y + 24 = 0

10

4 3 now for x −10 x + 2 y + 4 = 0 y=

4 −10 x + 2( ) + 4 = 0 3 8 2 −10 x = −4 − = 3 3 2 4 so the po int is ( , ) 3 3 f xx = −10 f yy = −4 f xy = 2 now D = f xx f yy − f 2 xy = (−10)(−4) − 4 = 36 > 0 and f xx > 0 so local max ima

11

Assignment Solution Fall 2007 MTH301 (4)

Question 1 Find the volume of the prism whose base is the triangle in xy-plane bounded by the x-axis and the lines y=x and x=1 and whose top lies in the plane.

z = f ( x, y ) = 3 − x − y

Solution here 1 x

V = ∫ ∫ (3 − x − y )dydx 0 0 1

= ∫ [3 y − xy − 0

y2 x ]0 dx 2

1

x2 = ∫ ([3 x − x − ] − [0])dx 2 0 2

1

= ∫ [3 x − 0

3x 2 ]dx 2

3x 2 x3 1 − ]0 2 3 3 1 = [ − ] =1 2 2 =[

Question 2 2

Evaluate the integral

Solution

0

∫∫ 0 x −4 2

4

dydx + ∫

x

∫ dydx

0 0

12 2

0

∫∫

4

dydx + ∫

0 x 2 −4

x

∫ dydx

0 0

2

4

= ∫ [ y]

dx + ∫ [ y ]0 x

0 x 2 −4

0

0

2

4

= ∫ [0 − ( x − 4)] dx + ∫ [ x ]dx 2

0

0

2

4

0

0

= ∫ [(4 − x 2 )] dx + ∫ [ x ]dx = (4 x −

3

3 2

3

3 2

x 2 x 4 )0 + ( )0 3 3/ 2

x 2 x 4 )0 + ( )0 3 3/ 2 8 8 = (8 − ) + ( ) 3 3/ 2 8 16 = [8 − + ] 3 3 32 = 3 = (4 x −

13

Assignment Solution Fall 2007 MTH301 (5)

Question 1 1

Change the Cartesian integral into polar integral and solve

∫ ∫

−1 − 1− x 2

Solution 1

1− x 2

∫ ∫

dxdy

−1 − 1− x 2

Chnaging int o polar coordinates we will change dxdy = rdrdθ As it is circle of radius 1 so the lim its of the int egration will be r = 0,1 and θ = 0, 2π so the int egral changes int o =

2π 1

∫ ∫ rdrdθ 0 0

int egrating w.r.t r we will have =



∫ 0

=



∫ 0

=



∫ 0

1

r2 dθ 2 0 12 02 − dθ 2 2

12 02 − dθ 2 2

1− x 2

dxdy

14

=



∫ 0

1 dθ 2

int egrating w.r.t theta =

1 θ 2



= 0

1 (2π ) − 0 = π 2

Question 2 a

Solve the integral by changing into polar coordinates

a 2 − x2

∫ ∫

− a − a2 − x2

Solution

a 2 − x2

a

∫ ∫

dxdy

− a − a 2 − x2

Chnaging int o polar coordinates we will change dxdy = rdrdθ As it is circle of radius 1 so the lim its of the int egration will be r = 0, a and θ = 0, 2π so the int egral changes int o =

2π a

∫ ∫ rdrdθ 0 0

int egrating w.r.t r we will have =



∫ 0

=



∫ 0

=



∫ 0

a

r2 dθ 2 0 a 2 02 − dθ 2 2

a 2 02 − dθ 2 2

dxdy

15

=



∫ 0

a dθ 2

int egrating w.r.t theta =

a θ 2



= 0

a (2π ) − 0 = aπ 2

Question 3

Solve the initial value problem for r as a function of t         dr differential equation  = −ti − tj − tk initial condition r (0) = −ti + 2 j + 3k dt

Solution

        dr differential equation  = −ti − tj − tk initial condition r (0) = −ti + 2 j + 3k dt     dr = [−ti − tj − tk ]dt taking int egral on both sides     r = ∫ [−ti − tj − tk ]dt  −t 2  −t 2  −t 2  r= i− j− k +c 2 2 2 now the given initial condition is     r (0) = −ti + 2 j + 3k    c = −ti + 2 j + 3k    −t 2  −t 2  −t 2   r= i− j− k − ti + 2 j + 3k 2 2 2 2 2   −t  −t 2  −t − t )i − ( − 2) j − ( − 3)k r =( 2 2 2

16

Assignment Solution Fall 2007 MTH301 (6)

Question 1 1 1 Ιf dz = 2 cos ydx + ( − 2 x sin y )dy + dz y z Show that it is an exact differential

Solution

1 1 dz = 2 cos ydx + ( − 2 x sin y )dy + dz y z 1 M = 2 cos y N = − 2 x sin y y ∂M ∂N = −2sin y = ∂y ∂y ∂N ∂P =0 = ∂z ∂y ∂P ∂M =0 = ∂x ∂z

P=

1 z

Hence all the above mentioned partial derivatives are equal so it is an exact differential.

Question 2

Use Line integral to evaluate I = ∫ {( x3 + 2 y 2 )dx + x 2 y 2 dy} from Ο(0, 0) toA (2, 0) along the line y = 0 and then form (2, 0) to (2, 4) along the line x = 2

Solution

17

I = ∫ {( x + 2 y )dx + x y dy} 3

2

2

2

now first along the line y = 0 , dy = 0 the lim its of x = 0, 2 so int egral becomes I = ∫ {( x3 + 2 y 2 )dx + x 2 y 2 dy} 2

I = ∫ {( x3 + 2.0)dx + x 2 y 2 0} 0 2

I = ∫ x3dx 0

x4 2 |0 4 16 = =4 4 now first along the line x = 2 , dx = 0 the lim its of x = 0, 4 so int egral becomes I =|

I = ∫ {( x3 + 2 y 2 )dx + x 2 y 2 dy} 4

I = ∫ {( x3 + 2 y 2 )0 + 4 y 2 dy} 0 4

I = ∫ 4 y 2 dy 0

4 y3 4 |0 3 4.43 256 = = 3 3

I =|

Question 3 I = ∫ {3 x3 ydx + 2 x3 y 2 dy} between O(0,0) and A(3,5) (a) along c1 i.e y = x 2

Evaluate (b) along c2 i.e y = 2 x (c) along c3 i.e x = 0 from (0, 0) to (0,5) y = 5 from (0,5) to (3,5)

18 Solution

I = ∫ {3 x3 ydx + 2 x3 y 2 dy} between O(0,0) and A(3,5) (a) along c1 i.e y = x 2 here y = x 2

, dy = 2 xdx lim its of x = 0,3

I = ∫ {3 x3 ydx + 2 x3 y 2 dy} 3

= ∫ {3 x3 .x 2 dx + 2 x 3 ( x 2 ) 2 2 xdx} 0 3

= ∫ {3 x5 dx + 2 x3 .x 4 2 xdx} 0 3

= ∫ {3 x5 dx + 4 x8 dx} 0 3

3

= ∫ 3x dx + ∫ 4 x8 dx 5

0

0 6

3x 3 4 x9 3 |0 + |0 6 9 729 19638 ] + 4[ ] = 9112.5 = 3[ 6 9 (b) along c2 i.e y = 2 x =

I = ∫ {3 x3 ydx + 2 x3 y 2 dy} 3

= ∫ {3 x3 .2 xdx + 2 x 3 (2 x) 2 2dx} 0 3

= ∫ {6 x 4 dx + 2 x3 .4 x 2 .2dx} 0 3

= ∫ {6 x 4 dx + 16 x5 dx} 0

19 3

3

= ∫ 6 x 4 dx + ∫ 16 x5 dx 0

0

6 x 3 16 x 6 3 |0 + |0 5 6 243 729 ] + 16[ ] = 243 + 8[243] = 2235.6 = 6[ 6 6 (c) along c3 i.e x = 0 from (0, 0) to (0,5) y = 5 from (0,5) to (3,5) =

5

Along x = 0 I =0 along y = 5 , dy = 0

∫ {3x ydx + 2 x y dy} 3

3

3 ∫ 3x 5dx = 15 0

3

2

x4 3 81 1215 |0 = 15. = = 303.5 4 4 4

20

Assignment Solution Fall 2007 MTH301 (7)

Question 1

2 2 2 2 If I = ∫ {( y − x )dx + ( x + y )dy} Use Green’s theorem to evaluate the integral where C: the triangle bounded by y=0, x=3 and y=x

Solution

  F = ( y 2 − x 2 )i + ( x 2 + y 2 ) j here M = y 2 − x2 N = x2 + y 2 ∂M = 2 y ∂N = 2 x ∂y ∂x now green ' s theorem states that ∂N ∂M ∫ {Pdx + Qdy} = ∫∫R ( ∂x − ∂y )dydx 3 x

= ∫ ∫ (2 x − 2 y )dydx 0 0 3

= ∫ {2 xy − 2 0

3

y2 x }0 dx 2

= ∫ {2 xy − y 2 }0x dx 0

21 3

= ∫ {2 xy − y 2 }0x dx 0

3

= ∫ {2 x 2 − x 2 }dx 0

3

= ∫ x 2 dx 0

1 = [ x3 ]30 3 1 = [ x3 ] = 9 3

Question 2

  xyz  −1 z F ( x , y , z ) = ln xi + e j + tan ( ) k Evaluate the curl F and div F x

Solution

   F ( x, y, z ) = ln xi + e xyz j + tan −1 ( z )k x   ∂  ∂  ∂  div F = ( i + i + i ).(ln xi + e xyz j + tan −1 ( z ) x ∂x ∂y ∂z 1 1 1 = + xze xyz + ( ) 2 x 1+ z 2 x x 2 1 1 x = + xze xyz + 2 ( ) 2 x x +z x 1 x2 1 = + xze xyz + 2 ( ) 2 x x +z x 1 x = + xze xyz + 2 x x + z2

22

   F ( x, y, z ) = ln xi + e xyz j + tan −1 ( z )k x i ∂ curlF = ∂x

j ∂ ∂y

ln x e xyz ∂ = i ∂y e xyz

∂ ∂z

k ∂ ∂z tan −1 ( z ) x

∂ ∂ ∂ ∂ ∂z − j ∂x + k ∂x ∂y −1 z −1 z ln x tan ( ) tan ( ) ln x e xyz x x z ) + k ( yze xyz ) = i ( yze xyz ) − j ( 2 2 x +z

23

Assignment Solution Fall 2007 MTH301 (8)

Question 1

  2  If F (r ) = xyi + x zj + 3 yzk evaluate

∫ F .dr c

between A (0, 0, 0) and B (5, 2, 1) along the curve c

2 having the parametric equation x = 5t , y = 2t , z = t

Solution

   F (r ) = xyi + x 2 zj + 3 yzk x = 5t , y = 2t , z = t 2 dx = 5dt dy = 2dt dz = 2tdt dr = (5i + 2 j + 2t )dt    F (t ) = 10t 2i + 5t 4 j + 6t 3k    F .dr = (10t 2 i + 5t 4 j + 6t 3k ).(5i + 2 j + 2t ) F .dr = (50t 2 + 10t 4 + 12t 4 )dt 1

2 4 ∫ F .dr = ∫ (50t + 22t )dt c

0

t t5 + 22 |10 3 5 1 1 250 + 66 316 = 50 + 22 = = 3 5 15 15 = 50

3

Question 2

f ( x) = 2 x 0 ≤ x ≤ 2π Find the Fourier series for the function f ( x) = f ( x + 2π ) take the limits of the integration 0, 2π

24

Solution

f ( x) = 2 x 0 ≤ x ≤ 2π f ( x) = f ( x + 2π ) a0 = a0 = = a0 = an = =

2

π = =

bn = = = =

1





π 1



∫ 2 xdx

π 1

π 1

0

[ x 2 ]02π = 4π 2π

∫ 2 x cos nxdx

π 2

f ( x)dx

0

0 2π

∫ x cos nxdx

π

0



∫ x cos nxdx 0

2

x sin nx 2π 1 }0 − n n

π

[{

2

[0 − 0] = 0

π

2

π 2

π 2

π

∫ sin nxdx] 0



∫ x sin nx dx 0



∫ x cos nxdx 0

[{

−2

π



− x cos nx 2π 1 }0 + n n

[2π − 0] = −1



∫ cos nxdx] 0

Related Documents


More Documents from "Muhammad Umair"