ASIGNATURA: CALCULO DIFERENCIAL
TALLER EJERCICIOS 11.5
PRESENTA: EDINSON JUNIOR BAZA ROJAS ID 636386
DOCENTE: Dickson LondoΓ±o
BARRANQUILLA β COLOMBIA
SoluciΓ³n al taller Punto 1. Costo Marginal πΆ(π₯) = 100 + 2π₯ -> πΆΒ΄(π₯) = 2 El cual serΓa costo marginal
Punto 2. πΆ(π₯) = 40 + (πΏπ 2)π₯Β² -> πΆΒ΄(π₯) = 0 + ππ2(2π₯) = 2π₯ Β· ππ2 = ππ2Β²π₯ πΆΒ΄(π₯) = ππ2Β²π₯ El cual serΓa costo marginal
Punto 3. πΆ(π₯) = 0.0001π₯ 3 β 0.09π₯ 2 + 20π₯ + 1200 β πΆΒ΄(π₯) = 3(0.0001)π₯ 2 β 2(0.09)π₯ + 20 + 0 β πΆΒ΄(π₯) = 0.0003π₯ 2 β 0.18π₯ + 20 El cual serΓa costo marginal
Punto 4. πΆ(π₯) = 10β6 π₯ 3 β (3 β 10β3 )π₯ 2 + 36π₯ + 2000 β πΆΒ΄(π₯) = 3(10β6 )π₯ 2 β 2(3 β 10β3 )π₯ + 36 + 0 β πΆΒ΄(π₯) = 0.000003π₯ 2 β 0.006π₯ + 36 serΓa costo marginal
o
β πΆΒ΄(π₯) = 3 β 10β6 π₯ 2 β 6 β 10β3 π₯ + 36
Punto 5. Ingreso Marginal π
(π₯) = π₯ β 0.01π₯ 2 β π
Β΄(π₯) = 1 β 2(0.01)π₯ = 1 β 0.02π₯ β π
Β΄(π₯) = 1 β 0.02π₯ El cuΓ‘l serΓa el ingreso marginal
Punto 6. π
(π₯) = 5π₯ β 0.01π₯ 5/2 5
3
β π
Β΄(π₯) = 5 β 3(0.01)π₯ 2β1 = 5 β 0.05π₯ 2 3
β π
Β΄(π₯) = 5 β 0.05π₯ 2 El cuΓ‘l serΓa el ingreso marginal
Punto 7. π
(π₯) = 0.1π₯ β 10β3 π₯ 2 β 10β5 π₯ 5/2 5
β π
(π₯) = 0.1 β 2(10β3 )π₯ β 5/2(10β5 )π₯ 2β1 β π
(π₯) = 0.1 β 0.002π₯ β 0.000025π₯ 3/2
El cual
Punto 8. π
(π₯) = 100π₯ β (ππ5)π₯ 3 (βπ₯) β π
Β΄(π₯) = 100 β ππ5[(π₯ 3 )Β΄(1 + (βπ₯) + (π₯ 3 ) (1 + (βπ₯)) Β΄ ] 1
β π
Β΄(π₯) = 100 β ππ5[3π₯Β²(1 + (βπ₯) + (π₯ 3 ) (1/2 (π₯ 2β1 ) ] xΒ³ β π
Β΄(π₯) = 100 β ππ5[3π₯Β²(1 + (βπ₯) + 2 βπ₯ (2βπ₯)(3π₯ 2 )(1 + βπ₯) + π₯Β³ β π
Β΄(π₯) = 100 β ππ5[ 2βπ₯ 6π₯Β²βπ₯(1 + βπ₯) + π₯Β³ β π
Β΄(π₯) = 100 β ππ5[ 2βπ₯ 6π₯ 2+1/2 (1 + βπ₯) + π₯Β³ β π
Β΄(π₯) = 100 β ππ5[ 2βπ₯ 6π₯ 5/2 (1 + βπ₯) + π₯Β³ β π
Β΄(π₯) = 100 β ππ5[ 2βπ₯ 6π₯ 5/2 (1+βπ₯)+π₯Β³
β π
Β΄(π₯) = 100 β ππ5[
]
2βπ₯
Punto 9. π₯ + 4π = 100 β 4π = 100 β π₯ β π =
100 4
β
100 4
π₯
π
(π₯) = π₯ Β· π = π₯(25 β 4) β π
(π₯) = 25π₯ β β π
Β΄(π₯) = 25 β
π₯ 4
2π₯ 4 π₯
β π
Β΄(π₯) = 25 β 2 β π
Β΄(π₯) =
50βπ₯ 2
Simplificamos β
25 1
π₯
β2=
π₯
β π = 25 β 4
50βπ₯ 2
El cuΓ‘l serΓa el ingreso marginal
Punto 10. βπ₯ + π = 10
β π = 10 β βπ₯
β π
(π₯) = π₯ Β· π = π₯(10 β βπ₯) β π
Β΄(π₯) = (π₯)Β΄(10 β βπ₯) + (π₯)(10 β βπ₯)Β΄ 1 1 β π
Β΄(π₯) = (1)(10 β βπ₯) + (π₯) [0 β (π₯)2β1 (1)] 2
β1 β π
Β΄(π₯) = (10 β βπ₯) + (π₯)( ) 2βπ₯ β π
Β΄(π₯) = (10 β βπ₯) β β π
Β΄(π₯) =
π₯ 2βπ₯
(2βπ₯)(10 β βπ₯) β π₯ 2βπ₯ 1 1
β π
Β΄(π₯) = β π
Β΄(π₯) =
20βπ₯ β 2π₯ 2+2 β π₯ 2βπ₯ 20βπ₯β3π₯ 2βπ₯
queda asΓ: π
Β΄(π₯) =
=
β π
Β΄(π₯) = 20β3βπ₯ 2
=
20βπ₯ β (2βπ₯)(βπ₯) β π₯ 2βπ₯
20βπ₯ β 2π₯ β π₯ 2βπ₯ βπ₯(20β3βπ₯) cancelamos raΓces de x y la funciΓ³n de ingreso marginal 2βπ₯
Punto 11. 3
π₯ 2 + 50π = 1000 Cuando p=16
π
(π₯) = π₯ Β· π = π₯ Β· 16 = 16π₯ β π
Β΄(π₯) = 16
π₯ 3/2 + 50π = 100 β 50π = 1000 β π₯ 3/2 3
π₯2
β π(π₯) = 1000 β 50 = 20 β
3
π₯ 3/2 50
3
π₯2 π₯ 2+1 π₯ 5/2 π
(π₯) = π₯ Β· π(π₯) = π₯ (20 β ) = 20π₯ β = 20π₯ β 50 50 50 π₯ 5/2 π
(π₯) = 20π₯ β 50 β π
(π₯) = 20 β
1 50 1
5 5β1 ( Β·π₯ 2 ) 2 5
5
β π
Β΄(π₯) = 20 β 50 Β· 2 Β· π₯ 3/2 β π
Β΄(π₯) = 20 β 100 π₯ 3/2 3
β π
Β΄(π₯) = 20 β 0.05π₯ 2
Luego, π₯ 3 + 50π = 100 Pero p vale 16 β π₯ 3 = 1000 + 50π 3
3
β π₯ = β(1000 β 50π)Β² 3
β π₯ = β[1000 β 50(16)Β²] 3
3 π₯ = β(1000 β 800)Β² β β(200)Β² β β40000
π₯ = 34.19
Entonces, π
Β΄(π₯) = 20 β 0.05π₯ 3/2 π
Β΄(π₯) = 20 β 0.05 βπ₯ 3 π
Β΄(π₯) = 20 β 0.05 β(34.19)Β³ π
Β΄(π₯) = 20 β 0.05 β39966,60 π
Β΄(π₯) = 20 β (0.05)(199.9)Β² π
Β΄(π₯) = 20 β 9,995 π
Β΄(π₯) = 10,005
Punto 12. 10π + π₯ + 0.01π₯ 2 = 700
Cuando p = 10
β 10(10) + π₯ + 0.01π₯ 2 = 700 β 100 + π₯ + 0.01π₯ 2 β 700 = 0 β 0.01π₯ 2 + π₯ β 700 + 100 = 0 β 0.01π₯ 2 + π₯ β 600 = 0 Formula General CuadrΓ‘tica: π₯=
βπΒ±βπ2 β4ππ 2π
a= 0.01
b=1
c= -600
βπ₯=
β1 Β± β(1)2 β 4(0.01)(β600) 2(0.01)
βπ₯=
β1 Β± β1 + 24 β1 Β± β25 β1 Β± 5 = = 0.02 0.02 0.02
π₯1 =
β1 + 5 4 = = 200 0.02 0.02
π₯2 =
β1 β 5 β6 = = β300 0.02 0.02
Tomando π₯1 = 200 π
(π₯) = π₯ Β· π(π₯) π(π₯) =
β0.01π₯ 2 β π₯ + 700 10
β π(π₯) =
β0.01π₯Β² π₯ 700 β + 10 10 10
β π(π₯) = β0.001π₯ 2 β 0.1π₯ + 70 => π(π₯) = π₯ Β· π(π₯) = π₯(β0.001π₯ 2 β 0.1π₯ + 70) β π
(π₯) = 0.001π₯ 3 β 0.1π₯ 2 + 70π₯ β π
Β΄(π₯) = β0.003π₯ 2 + 0.2π₯ + 70 FunciΓ³n de ingreso
Evaluando π₯ = 200 β π
(π₯) = β0.003(200)3 β 0.2(200) + 70 β π
(π₯) = β0.003(8000000) β 40 + 70 β π
(π₯) = β24000 β 40 + 70 β π
(π₯) = β23970
Punto 13.
πΆ(π₯) = 100 + 5π₯ π₯ + 4π = 100 β π =
100βπ₯ 4
π₯ π
(π₯) = π₯ Β· π = π₯ (25 β ) 4 β π
(π₯) = 25π₯ β
π₯2 4
βπ=
100 π₯ β4 4
β π = 25 β
4
El cuΓ‘l serΓa la funciΓ³n de ingreso
Luego, π(π₯) = π
(π₯) β πΆ(π₯) Para hallar la utilidad generada β π(π₯) = (25π₯ β
β π(π₯) = β
π₯2 ) β 100 + 5π₯ 4
π₯2 + 25π₯ + 5π₯ β 100 4
π₯2 β π(π₯) = β + 30π₯ β 100 4
π₯Β² 4
β πΒ΄(π₯) = β
2π₯ 4
+ 30 β 0 Simplificamos
π₯
β πΒ΄(π₯) = β 4 + 30 β 0 Esto serΓa la utilidad marginal
Punto 14. βπ₯ + π = 10 β π = 10 β βπ₯ πΆ(π₯) = 60 + π₯ β π
(π₯) = π₯ Β· π = π₯(10 β βπ₯) β π
(π₯) = π₯(10 β βπ₯) El cuΓ‘l serΓa la funciΓ³n ingreso Luego, π(π₯) = π
(π₯) β πΆ(π₯)
β π(π₯) = π₯(10 β βπ₯) β (60 + π₯) β π(π₯) = 10π₯ + (π₯)(βπ₯) β 60 + π₯ β π(π₯) = 10π₯ + π₯ β π₯ 1+1/2 β 60 β π(π₯) = 9π₯ β π₯ 3/2 β 60 3
β π(π₯) = βπ₯ 2 + 9π₯ β 60 πΒ΄(π₯) =
β3 3β1 π₯2 + 9 β 0 2
β πΒ΄(π₯) =
β3 3 β3 3 βπ₯ + 9 π₯2 + 9 = 2 2
β πΒ΄(π₯) =
β3 βπ₯ 3 2
+ 9 la cuΓ‘l serΓa la utilidad marginal
Punto 15. π₯ 3/2 + 50π = 1000 A) P=16
πΆ(π₯) = 50 + π₯ 3/2
b) x=25
π₯ 3/2 + 50π = 1000
βπ=
100βπ₯ 3/2 50
βπ=
100 π₯ 3/2 β 50 50
π₯ 3/2 π = 20 β 50 3
3
π₯2 π₯ 2+1 π
(π₯) = π₯ Β· π = π₯ (20 β ) = 20π₯ β 50 50 π₯ 5/2 50
β π
(π₯) = 20π₯ β Luego,
π(π₯) = π
(π₯) β πΆ(π₯) 5
π₯2 π(π₯) = 20π₯ β β 50 + π₯ 3/2 50 5
3 π₯2 π(π₯) = β + π₯ 2 + 20π₯ β 50 50 5
3
π(π₯) = β0.02π₯ 2 + π₯ 2 + 20π₯ β 50 Por tanto, 3 5 5 πΒ΄(π₯) = (β0.02)( )π₯ 2β1 + 3π₯ 2β1 + 20π₯ β 0 2 3
β πΒ΄(π₯) = 0.05π₯ 2 + 1.5π₯ 1/2 + 20 a) Cuando p vale 16 π₯ 3/2 + 50π = 1000 3
3
β π₯ = 3β(1000 β 50π)Β² = β(1000 β (50)(16)]Β² = β(1000 β 800)Β² 3
3
β π₯ = β(200)2 = β40000 β π₯ = 34.19 Luego en πΒ΄(π₯) reemplazamos π₯ = 34.19 πΒ΄(π₯) = β0.05βπ₯ 3 + 1.5βπ₯ + 20
β πΒ΄(16) = β0.05β(34.19)3 + 1.5β34.19 + 20 β πΒ΄(16) = β0.05β39966.60 + (1.5)(5.84) + 20 β πΒ΄(16) = (β0.05)(199.91) + 8.76 + 20 β πΒ΄(16) = β9.9955 + 28.76 β πΒ΄(16) = 18.76
b) Cuando π₯ = 25 c) d) e) f)
β πΒ΄(25) = β0.05β(25)3 + 1.5β25 + 20 β πΒ΄(25) = (β0.05)(β15625) + (1.5)(5) + 20 β πΒ΄(25) = β6.25 + 27.5 β πΒ΄(25) = 21.25
Punto 16. 10π + π₯ + 0.01π₯ 2 = 700
πΆ(π₯) = 1000 + 0.01π₯Β²
Cuando P vale 10 Teniendo en cuenta el ejercicio 12 la funciΓ³n de ingreso estΓ‘ dada de la siguiente forma: π
(π₯) = 25π₯ β
π₯Β² Entonces 4
π(π₯) = π
(π₯) β πΆ(π₯) β π(π₯) = 25π₯ β
π₯2 β (1000 + 0.01π₯ 2 ) 4
π₯2 β π(π₯) = 25π₯ β β 1000 + 0.01π₯ 2 4 β π(π₯) = 25π₯ β 0.25π₯Β² β 1000 + 0.01π₯ 2 β π(π₯) = β0.26π₯ 2 + 25π₯ β 1000 β πΒ΄(π₯) = β0.52π₯ + 25 Utilidad marginal
A) Cuando π₯ = 100 β πΒ΄(π₯) = (β0.52)(100) + 25 β πΒ΄(100) = β52 + 25 β πΒ΄(100) = β27 B) P=10 10π + π₯ + 0.01π₯ 2 = 700
10(10) + π₯ + 0.01π₯ 2 = 700 100 + π₯ + 0.01π₯ 2 = 700 β π₯ + 0.01π₯ 2 = 700 β 100 β π₯ + 0.01π₯ 2 = 600 β 0.01π₯ 2 + π₯ β 600 = 0
π₯=
βπΒ±βπ2 β4ππ 2π
a= 0.01
b=1
c= -600
βπ₯=
β1 Β± β(1)2 β 4(0.01)(β600) 2(0.01)
βπ₯=
β1 Β± β1 + 24 β1 Β± β25 β1 Β± 5 = = 0.02 0.02 0.02
π₯1 =
β1 + 5 4 = = 200 0.02 0.02
π₯2 =
β1 β 5 β6 = = β300 0.02 0.02
Reemplazando π₯1 = 200 en πΒ΄(π₯) = 0.52π₯ + 25 β πΒ΄(π₯) = (β0.52)(200) + 25 => π(200) = β104 + 25 β π(200) = β79
Punto 17-18 A) Punto 17 π₯ =?
πΒ΄(π₯) = 0
πΒ΄(π₯) =
βπ₯ 2
βπ₯ 2
= β30
+ 30
β0=
βπ₯ 2
+ 30
β βπ₯ = 2(β30) = β60 cancelamos signos negativos de x y del resultado y
quedarΓa: π₯ = 60 π(π₯) =
βπ₯Β² + 30π₯ β 100 4
π(60) =
(β60)2 + 30(60) β 100 4
π(60) = β900 + 1800 β 100 π(60) = 800
b) Punto 18 π₯ =?
πΒ΄(π₯) = 0 3
πΒ΄(π₯) = π₯ 3/2 + 9π₯ β 60 3
β 0 = βπ₯ 2 + 9π₯ β 60
3
βπ₯ 2 = 60 β 9π₯
β π₯ 2 = β60 + 9π₯
β π₯ = β9π₯ β 60
Punto 19. π1 = 4
π2 = 5
π₯1 = 100
π₯2 = 80
π=
π2 β π1 5β4 β1 = = π₯2 β π₯1 80 β 100 20
Luego: π β π2 = π(π₯ β π₯1 ) βπβ4=
β1 (π₯ β 100) 20
βπβ4=
βπ₯ 20
βπ=
βπ₯ 20
+
100 20
βπβ4=
+ 5+4 β π =
βπ₯ 20
βπ₯ 20
+9
Entonces: βπ₯ π
(π₯) = π₯ Β· π β π
(π₯) = π₯ ( + 9π₯) 20 π
Β΄(π₯) =
β2 π₯ 20
+ 9 Ingreso Marginal
π
Β΄(π₯) = 0 0=
β2 (β9)(20) π₯+9 βπ₯ = 20 β2
π₯=
β180 Se β2
π₯ = 90
cancelan signos
+5