Calculo Ejercicios 11.5.docx

  • Uploaded by: Amilvia Vega Orozco
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Calculo Ejercicios 11.5.docx as PDF for free.

More details

  • Words: 2,043
  • Pages: 13
ASIGNATURA: CALCULO DIFERENCIAL

TALLER EJERCICIOS 11.5

PRESENTA: EDINSON JUNIOR BAZA ROJAS ID 636386

DOCENTE: Dickson LondoΓ±o

BARRANQUILLA – COLOMBIA

SoluciΓ³n al taller Punto 1. Costo Marginal 𝐢(π‘₯) = 100 + 2π‘₯ -> 𝐢´(π‘₯) = 2 El cual serΓ­a costo marginal

Punto 2. 𝐢(π‘₯) = 40 + (𝐿𝑛 2)π‘₯Β² -> 𝐢´(π‘₯) = 0 + 𝑙𝑛2(2π‘₯) = 2π‘₯ Β· 𝑙𝑛2 = 𝑙𝑛2Β²π‘₯ 𝐢´(π‘₯) = 𝑙𝑛2Β²π‘₯ El cual serΓ­a costo marginal

Punto 3. 𝐢(π‘₯) = 0.0001π‘₯ 3 βˆ’ 0.09π‘₯ 2 + 20π‘₯ + 1200 β†’ 𝐢´(π‘₯) = 3(0.0001)π‘₯ 2 βˆ’ 2(0.09)π‘₯ + 20 + 0 β†’ 𝐢´(π‘₯) = 0.0003π‘₯ 2 βˆ’ 0.18π‘₯ + 20 El cual serΓ­a costo marginal

Punto 4. 𝐢(π‘₯) = 10βˆ’6 π‘₯ 3 βˆ’ (3 βˆ— 10βˆ’3 )π‘₯ 2 + 36π‘₯ + 2000 β†’ 𝐢´(π‘₯) = 3(10βˆ’6 )π‘₯ 2 βˆ’ 2(3 βˆ— 10βˆ’3 )π‘₯ + 36 + 0 β†’ 𝐢´(π‘₯) = 0.000003π‘₯ 2 βˆ’ 0.006π‘₯ + 36 serΓ­a costo marginal

o

β†’ 𝐢´(π‘₯) = 3 βˆ— 10βˆ’6 π‘₯ 2 βˆ’ 6 βˆ— 10βˆ’3 π‘₯ + 36

Punto 5. Ingreso Marginal 𝑅(π‘₯) = π‘₯ βˆ’ 0.01π‘₯ 2 β†’ 𝑅´(π‘₯) = 1 βˆ’ 2(0.01)π‘₯ = 1 βˆ’ 0.02π‘₯ β†’ 𝑅´(π‘₯) = 1 βˆ’ 0.02π‘₯ El cuΓ‘l serΓ­a el ingreso marginal

Punto 6. 𝑅(π‘₯) = 5π‘₯ βˆ’ 0.01π‘₯ 5/2 5

3

β†’ 𝑅´(π‘₯) = 5 βˆ’ 3(0.01)π‘₯ 2βˆ’1 = 5 βˆ’ 0.05π‘₯ 2 3

β†’ 𝑅´(π‘₯) = 5 βˆ’ 0.05π‘₯ 2 El cuΓ‘l serΓ­a el ingreso marginal

Punto 7. 𝑅(π‘₯) = 0.1π‘₯ βˆ’ 10βˆ’3 π‘₯ 2 βˆ’ 10βˆ’5 π‘₯ 5/2 5

β†’ 𝑅(π‘₯) = 0.1 βˆ’ 2(10βˆ’3 )π‘₯ βˆ’ 5/2(10βˆ’5 )π‘₯ 2βˆ’1 β†’ 𝑅(π‘₯) = 0.1 βˆ’ 0.002π‘₯ βˆ’ 0.000025π‘₯ 3/2

El cual

Punto 8. 𝑅(π‘₯) = 100π‘₯ βˆ’ (𝑙𝑛5)π‘₯ 3 (√π‘₯) β†’ 𝑅´(π‘₯) = 100 βˆ’ 𝑙𝑛5[(π‘₯ 3 )Β΄(1 + (√π‘₯) + (π‘₯ 3 ) (1 + (√π‘₯)) Β΄ ] 1

β†’ 𝑅´(π‘₯) = 100 βˆ’ 𝑙𝑛5[3π‘₯Β²(1 + (√π‘₯) + (π‘₯ 3 ) (1/2 (π‘₯ 2βˆ’1 ) ] xΒ³ β†’ 𝑅´(π‘₯) = 100 βˆ’ 𝑙𝑛5[3π‘₯Β²(1 + (√π‘₯) + 2 √π‘₯ (2√π‘₯)(3π‘₯ 2 )(1 + √π‘₯) + π‘₯Β³ β†’ 𝑅´(π‘₯) = 100 βˆ’ 𝑙𝑛5[ 2√π‘₯ 6π‘₯²√π‘₯(1 + √π‘₯) + π‘₯Β³ β†’ 𝑅´(π‘₯) = 100 βˆ’ 𝑙𝑛5[ 2√π‘₯ 6π‘₯ 2+1/2 (1 + √π‘₯) + π‘₯Β³ β†’ 𝑅´(π‘₯) = 100 βˆ’ 𝑙𝑛5[ 2√π‘₯ 6π‘₯ 5/2 (1 + √π‘₯) + π‘₯Β³ β†’ 𝑅´(π‘₯) = 100 βˆ’ 𝑙𝑛5[ 2√π‘₯ 6π‘₯ 5/2 (1+√π‘₯)+π‘₯Β³

β†’ 𝑅´(π‘₯) = 100 βˆ’ 𝑙𝑛5[

]

2√π‘₯

Punto 9. π‘₯ + 4𝑝 = 100 β†’ 4𝑝 = 100 βˆ’ π‘₯ β†’ 𝑝 =

100 4

βˆ’

100 4

π‘₯

𝑅(π‘₯) = π‘₯ Β· 𝑝 = π‘₯(25 βˆ’ 4) β†’ 𝑅(π‘₯) = 25π‘₯ βˆ’ β†’ 𝑅´(π‘₯) = 25 βˆ’

π‘₯ 4

2π‘₯ 4 π‘₯

β†’ 𝑅´(π‘₯) = 25 βˆ’ 2 β†’ 𝑅´(π‘₯) =

50βˆ’π‘₯ 2

Simplificamos β†’

25 1

π‘₯

βˆ—2=

π‘₯

β†’ 𝑝 = 25 βˆ’ 4

50βˆ’π‘₯ 2

El cuΓ‘l serΓ­a el ingreso marginal

Punto 10. √π‘₯ + 𝑝 = 10

β†’ 𝑝 = 10 βˆ’ √π‘₯

β†’ 𝑅(π‘₯) = π‘₯ Β· 𝑝 = π‘₯(10 βˆ’ √π‘₯) β†’ 𝑅´(π‘₯) = (π‘₯)Β΄(10 βˆ’ √π‘₯) + (π‘₯)(10 βˆ’ √π‘₯)Β΄ 1 1 β†’ 𝑅´(π‘₯) = (1)(10 βˆ’ √π‘₯) + (π‘₯) [0 βˆ’ (π‘₯)2βˆ’1 (1)] 2

βˆ’1 β†’ 𝑅´(π‘₯) = (10 βˆ’ √π‘₯) + (π‘₯)( ) 2√π‘₯ β†’ 𝑅´(π‘₯) = (10 βˆ’ √π‘₯) βˆ’ β†’ 𝑅´(π‘₯) =

π‘₯ 2√π‘₯

(2√π‘₯)(10 βˆ’ √π‘₯) βˆ’ π‘₯ 2√π‘₯ 1 1

β†’ 𝑅´(π‘₯) = β†’ 𝑅´(π‘₯) =

20√π‘₯ βˆ’ 2π‘₯ 2+2 βˆ’ π‘₯ 2√π‘₯ 20√π‘₯βˆ’3π‘₯ 2√π‘₯

queda asΓ­: 𝑅´(π‘₯) =

=

β†’ 𝑅´(π‘₯) = 20βˆ’3√π‘₯ 2

=

20√π‘₯ βˆ’ (2√π‘₯)(√π‘₯) βˆ’ π‘₯ 2√π‘₯

20√π‘₯ βˆ’ 2π‘₯ βˆ’ π‘₯ 2√π‘₯ √π‘₯(20βˆ’3√π‘₯) cancelamos raΓ­ces de x y la funciΓ³n de ingreso marginal 2√π‘₯

Punto 11. 3

π‘₯ 2 + 50𝑝 = 1000 Cuando p=16

𝑅(π‘₯) = π‘₯ Β· 𝑝 = π‘₯ Β· 16 = 16π‘₯ β†’ 𝑅´(π‘₯) = 16

π‘₯ 3/2 + 50𝑝 = 100 β†’ 50𝑝 = 1000 βˆ’ π‘₯ 3/2 3

π‘₯2

β†’ 𝑃(π‘₯) = 1000 βˆ’ 50 = 20 βˆ’

3

π‘₯ 3/2 50

3

π‘₯2 π‘₯ 2+1 π‘₯ 5/2 𝑅(π‘₯) = π‘₯ Β· 𝑝(π‘₯) = π‘₯ (20 βˆ’ ) = 20π‘₯ βˆ’ = 20π‘₯ βˆ’ 50 50 50 π‘₯ 5/2 𝑅(π‘₯) = 20π‘₯ βˆ’ 50 β†’ 𝑅(π‘₯) = 20 βˆ’

1 50 1

5 5βˆ’1 ( Β·π‘₯ 2 ) 2 5

5

β†’ 𝑅´(π‘₯) = 20 βˆ’ 50 Β· 2 Β· π‘₯ 3/2 β†’ 𝑅´(π‘₯) = 20 βˆ’ 100 π‘₯ 3/2 3

β†’ 𝑅´(π‘₯) = 20 βˆ’ 0.05π‘₯ 2

Luego, π‘₯ 3 + 50𝑝 = 100 Pero p vale 16 β†’ π‘₯ 3 = 1000 + 50𝑝 3

3

β†’ π‘₯ = √(1000 βˆ’ 50𝑝)Β² 3

β†’ π‘₯ = √[1000 βˆ’ 50(16)Β²] 3

3 π‘₯ = √(1000 βˆ’ 800)Β² β†’ √(200)Β² β†’ √40000

π‘₯ = 34.19

Entonces, 𝑅´(π‘₯) = 20 βˆ’ 0.05π‘₯ 3/2 𝑅´(π‘₯) = 20 βˆ’ 0.05 √π‘₯ 3 𝑅´(π‘₯) = 20 βˆ’ 0.05 √(34.19)Β³ 𝑅´(π‘₯) = 20 βˆ’ 0.05 √39966,60 𝑅´(π‘₯) = 20 βˆ’ (0.05)(199.9)Β² 𝑅´(π‘₯) = 20 βˆ’ 9,995 𝑅´(π‘₯) = 10,005

Punto 12. 10𝑝 + π‘₯ + 0.01π‘₯ 2 = 700

Cuando p = 10

β†’ 10(10) + π‘₯ + 0.01π‘₯ 2 = 700 β†’ 100 + π‘₯ + 0.01π‘₯ 2 βˆ’ 700 = 0 β†’ 0.01π‘₯ 2 + π‘₯ βˆ’ 700 + 100 = 0 β†’ 0.01π‘₯ 2 + π‘₯ βˆ’ 600 = 0 Formula General CuadrΓ‘tica: π‘₯=

βˆ’π‘Β±βˆšπ‘2 βˆ’4π‘Žπ‘ 2π‘Ž

a= 0.01

b=1

c= -600

β†’π‘₯=

βˆ’1 Β± √(1)2 βˆ’ 4(0.01)(βˆ’600) 2(0.01)

β†’π‘₯=

βˆ’1 Β± √1 + 24 βˆ’1 Β± √25 βˆ’1 Β± 5 = = 0.02 0.02 0.02

π‘₯1 =

βˆ’1 + 5 4 = = 200 0.02 0.02

π‘₯2 =

βˆ’1 βˆ’ 5 βˆ’6 = = βˆ’300 0.02 0.02

Tomando π‘₯1 = 200 𝑅(π‘₯) = π‘₯ Β· 𝑝(π‘₯) 𝑃(π‘₯) =

βˆ’0.01π‘₯ 2 βˆ’ π‘₯ + 700 10

β†’ 𝑃(π‘₯) =

βˆ’0.01π‘₯Β² π‘₯ 700 βˆ’ + 10 10 10

β†’ 𝑃(π‘₯) = βˆ’0.001π‘₯ 2 βˆ’ 0.1π‘₯ + 70 => 𝑃(π‘₯) = π‘₯ Β· 𝑝(π‘₯) = π‘₯(βˆ’0.001π‘₯ 2 βˆ’ 0.1π‘₯ + 70) β†’ 𝑅(π‘₯) = 0.001π‘₯ 3 βˆ’ 0.1π‘₯ 2 + 70π‘₯ β†’ 𝑅´(π‘₯) = βˆ’0.003π‘₯ 2 + 0.2π‘₯ + 70 FunciΓ³n de ingreso

Evaluando π‘₯ = 200 β†’ 𝑅(π‘₯) = βˆ’0.003(200)3 βˆ’ 0.2(200) + 70 β†’ 𝑅(π‘₯) = βˆ’0.003(8000000) βˆ’ 40 + 70 β†’ 𝑅(π‘₯) = βˆ’24000 βˆ’ 40 + 70 β†’ 𝑅(π‘₯) = βˆ’23970

Punto 13.

𝐢(π‘₯) = 100 + 5π‘₯ π‘₯ + 4𝑝 = 100 β†’ 𝑝 =

100βˆ’π‘₯ 4

π‘₯ 𝑅(π‘₯) = π‘₯ Β· 𝑝 = π‘₯ (25 βˆ’ ) 4 β†’ 𝑅(π‘₯) = 25π‘₯ βˆ’

π‘₯2 4

→𝑝=

100 π‘₯ βˆ’4 4

β†’ 𝑝 = 25 βˆ’

4

El cuΓ‘l serΓ­a la funciΓ³n de ingreso

Luego, 𝑃(π‘₯) = 𝑅(π‘₯) βˆ’ 𝐢(π‘₯) Para hallar la utilidad generada β†’ 𝑃(π‘₯) = (25π‘₯ βˆ’

β†’ 𝑃(π‘₯) = βˆ’

π‘₯2 ) βˆ’ 100 + 5π‘₯ 4

π‘₯2 + 25π‘₯ + 5π‘₯ βˆ’ 100 4

π‘₯2 β†’ 𝑃(π‘₯) = βˆ’ + 30π‘₯ βˆ’ 100 4

π‘₯Β² 4

β†’ 𝑃´(π‘₯) = βˆ’

2π‘₯ 4

+ 30 βˆ’ 0 Simplificamos

π‘₯

β†’ 𝑃´(π‘₯) = βˆ’ 4 + 30 βˆ’ 0 Esto serΓ­a la utilidad marginal

Punto 14. √π‘₯ + 𝑝 = 10 β†’ 𝑝 = 10 βˆ’ √π‘₯ 𝐢(π‘₯) = 60 + π‘₯ β†’ 𝑅(π‘₯) = π‘₯ Β· 𝑝 = π‘₯(10 βˆ’ √π‘₯) β†’ 𝑅(π‘₯) = π‘₯(10 βˆ’ √π‘₯) El cuΓ‘l serΓ­a la funciΓ³n ingreso Luego, 𝑃(π‘₯) = 𝑅(π‘₯) βˆ’ 𝐢(π‘₯)

β†’ 𝑃(π‘₯) = π‘₯(10 βˆ’ √π‘₯) βˆ’ (60 + π‘₯) β†’ 𝑃(π‘₯) = 10π‘₯ + (π‘₯)(√π‘₯) βˆ’ 60 + π‘₯ β†’ 𝑃(π‘₯) = 10π‘₯ + π‘₯ βˆ’ π‘₯ 1+1/2 βˆ’ 60 β†’ 𝑃(π‘₯) = 9π‘₯ βˆ’ π‘₯ 3/2 βˆ’ 60 3

β†’ 𝑃(π‘₯) = βˆ’π‘₯ 2 + 9π‘₯ βˆ’ 60 𝑃´(π‘₯) =

βˆ’3 3βˆ’1 π‘₯2 + 9 βˆ’ 0 2

β†’ 𝑃´(π‘₯) =

βˆ’3 3 βˆ’3 3 √π‘₯ + 9 π‘₯2 + 9 = 2 2

β†’ 𝑃´(π‘₯) =

βˆ’3 √π‘₯ 3 2

+ 9 la cuΓ‘l serΓ­a la utilidad marginal

Punto 15. π‘₯ 3/2 + 50𝑝 = 1000 A) P=16

𝐢(π‘₯) = 50 + π‘₯ 3/2

b) x=25

π‘₯ 3/2 + 50𝑝 = 1000

→𝑃=

100βˆ’π‘₯ 3/2 50

→𝑃=

100 π‘₯ 3/2 βˆ’ 50 50

π‘₯ 3/2 𝑃 = 20 βˆ’ 50 3

3

π‘₯2 π‘₯ 2+1 𝑅(π‘₯) = π‘₯ Β· 𝑝 = π‘₯ (20 βˆ’ ) = 20π‘₯ βˆ’ 50 50 π‘₯ 5/2 50

β†’ 𝑅(π‘₯) = 20π‘₯ βˆ’ Luego,

𝑃(π‘₯) = 𝑅(π‘₯) βˆ’ 𝐢(π‘₯) 5

π‘₯2 𝑃(π‘₯) = 20π‘₯ βˆ’ βˆ’ 50 + π‘₯ 3/2 50 5

3 π‘₯2 𝑃(π‘₯) = βˆ’ + π‘₯ 2 + 20π‘₯ βˆ’ 50 50 5

3

𝑃(π‘₯) = βˆ’0.02π‘₯ 2 + π‘₯ 2 + 20π‘₯ βˆ’ 50 Por tanto, 3 5 5 𝑃´(π‘₯) = (βˆ’0.02)( )π‘₯ 2βˆ’1 + 3π‘₯ 2βˆ’1 + 20π‘₯ βˆ’ 0 2 3

β†’ 𝑃´(π‘₯) = 0.05π‘₯ 2 + 1.5π‘₯ 1/2 + 20 a) Cuando p vale 16 π‘₯ 3/2 + 50𝑝 = 1000 3

3

β†’ π‘₯ = 3√(1000 βˆ’ 50𝑝)Β² = √(1000 βˆ’ (50)(16)]Β² = √(1000 βˆ’ 800)Β² 3

3

β†’ π‘₯ = √(200)2 = √40000 β†’ π‘₯ = 34.19 Luego en 𝑃´(π‘₯) reemplazamos π‘₯ = 34.19 𝑃´(π‘₯) = βˆ’0.05√π‘₯ 3 + 1.5√π‘₯ + 20

β†’ 𝑃´(16) = βˆ’0.05√(34.19)3 + 1.5√34.19 + 20 β†’ 𝑃´(16) = βˆ’0.05√39966.60 + (1.5)(5.84) + 20 β†’ 𝑃´(16) = (βˆ’0.05)(199.91) + 8.76 + 20 β†’ 𝑃´(16) = βˆ’9.9955 + 28.76 β†’ 𝑃´(16) = 18.76

b) Cuando π‘₯ = 25 c) d) e) f)

β†’ 𝑃´(25) = βˆ’0.05√(25)3 + 1.5√25 + 20 β†’ 𝑃´(25) = (βˆ’0.05)(√15625) + (1.5)(5) + 20 β†’ 𝑃´(25) = βˆ’6.25 + 27.5 β†’ 𝑃´(25) = 21.25

Punto 16. 10𝑝 + π‘₯ + 0.01π‘₯ 2 = 700

𝐢(π‘₯) = 1000 + 0.01π‘₯Β²

Cuando P vale 10 Teniendo en cuenta el ejercicio 12 la funciΓ³n de ingreso estΓ‘ dada de la siguiente forma: 𝑅(π‘₯) = 25π‘₯ βˆ’

π‘₯Β² Entonces 4

𝑃(π‘₯) = 𝑅(π‘₯) βˆ’ 𝐢(π‘₯) β†’ 𝑃(π‘₯) = 25π‘₯ βˆ’

π‘₯2 βˆ’ (1000 + 0.01π‘₯ 2 ) 4

π‘₯2 β†’ 𝑃(π‘₯) = 25π‘₯ βˆ’ βˆ’ 1000 + 0.01π‘₯ 2 4 β†’ 𝑃(π‘₯) = 25π‘₯ βˆ’ 0.25π‘₯Β² βˆ’ 1000 + 0.01π‘₯ 2 β†’ 𝑃(π‘₯) = βˆ’0.26π‘₯ 2 + 25π‘₯ βˆ’ 1000 β†’ 𝑃´(π‘₯) = βˆ’0.52π‘₯ + 25 Utilidad marginal

A) Cuando π‘₯ = 100 β†’ 𝑃´(π‘₯) = (βˆ’0.52)(100) + 25 β†’ 𝑃´(100) = βˆ’52 + 25 β†’ 𝑃´(100) = βˆ’27 B) P=10 10𝑝 + π‘₯ + 0.01π‘₯ 2 = 700

10(10) + π‘₯ + 0.01π‘₯ 2 = 700 100 + π‘₯ + 0.01π‘₯ 2 = 700 β†’ π‘₯ + 0.01π‘₯ 2 = 700 βˆ’ 100 β†’ π‘₯ + 0.01π‘₯ 2 = 600 β†’ 0.01π‘₯ 2 + π‘₯ βˆ’ 600 = 0

π‘₯=

βˆ’π‘Β±βˆšπ‘2 βˆ’4π‘Žπ‘ 2π‘Ž

a= 0.01

b=1

c= -600

β†’π‘₯=

βˆ’1 Β± √(1)2 βˆ’ 4(0.01)(βˆ’600) 2(0.01)

β†’π‘₯=

βˆ’1 Β± √1 + 24 βˆ’1 Β± √25 βˆ’1 Β± 5 = = 0.02 0.02 0.02

π‘₯1 =

βˆ’1 + 5 4 = = 200 0.02 0.02

π‘₯2 =

βˆ’1 βˆ’ 5 βˆ’6 = = βˆ’300 0.02 0.02

Reemplazando π‘₯1 = 200 en 𝑃´(π‘₯) = 0.52π‘₯ + 25 β†’ 𝑃´(π‘₯) = (βˆ’0.52)(200) + 25 => 𝑃(200) = βˆ’104 + 25 β†’ 𝑃(200) = βˆ’79

Punto 17-18 A) Punto 17 π‘₯ =?

𝑃´(π‘₯) = 0

𝑃´(π‘₯) =

βˆ’π‘₯ 2

βˆ’π‘₯ 2

= βˆ’30

+ 30

β†’0=

βˆ’π‘₯ 2

+ 30

β†’ βˆ’π‘₯ = 2(βˆ’30) = βˆ’60 cancelamos signos negativos de x y del resultado y

quedarΓ­a: π‘₯ = 60 𝑃(π‘₯) =

βˆ’π‘₯Β² + 30π‘₯ βˆ’ 100 4

𝑃(60) =

(βˆ’60)2 + 30(60) βˆ’ 100 4

𝑃(60) = βˆ’900 + 1800 βˆ’ 100 𝑃(60) = 800

b) Punto 18 π‘₯ =?

𝑃´(π‘₯) = 0 3

𝑃´(π‘₯) = π‘₯ 3/2 + 9π‘₯ βˆ’ 60 3

β†’ 0 = βˆ’π‘₯ 2 + 9π‘₯ βˆ’ 60

3

βˆ’π‘₯ 2 = 60 βˆ’ 9π‘₯

β†’ π‘₯ 2 = βˆ’60 + 9π‘₯

β†’ π‘₯ = √9π‘₯ βˆ’ 60

Punto 19. 𝑝1 = 4

𝑝2 = 5

π‘₯1 = 100

π‘₯2 = 80

π‘š=

𝑝2 βˆ’ 𝑝1 5βˆ’4 βˆ’1 = = π‘₯2 βˆ’ π‘₯1 80 βˆ’ 100 20

Luego: 𝑃 βˆ’ 𝑝2 = π‘š(π‘₯ βˆ’ π‘₯1 ) β†’π‘ƒβˆ’4=

βˆ’1 (π‘₯ βˆ’ 100) 20

β†’π‘ƒβˆ’4=

βˆ’π‘₯ 20

→𝑃=

βˆ’π‘₯ 20

+

100 20

β†’π‘ƒβˆ’4=

+ 5+4 β†’ 𝑃 =

βˆ’π‘₯ 20

βˆ’π‘₯ 20

+9

Entonces: βˆ’π‘₯ 𝑅(π‘₯) = π‘₯ Β· 𝑝 β†’ 𝑅(π‘₯) = π‘₯ ( + 9π‘₯) 20 𝑅´(π‘₯) =

βˆ’2 π‘₯ 20

+ 9 Ingreso Marginal

𝑅´(π‘₯) = 0 0=

βˆ’2 (βˆ’9)(20) π‘₯+9 β†’π‘₯ = 20 βˆ’2

π‘₯=

βˆ’180 Se βˆ’2

π‘₯ = 90

cancelan signos

+5

Related Documents


More Documents from ""