Calculo-completo.docx

  • Uploaded by: Sthefano Asencio
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Calculo-completo.docx as PDF for free.

More details

  • Words: 656
  • Pages: 4
TEORIA DE LAS MAQUINAS Y MECANISMOS Diseñe un mecanismo de cuatro barras para mover el objeto por sus tres posiciones en su orden numerado mediante pivotes fijos. Datos del problema P21x= 421 y P21y=963 P31x=184 y P31y=1400 O2x= −330 y O2y= −300 O4x=175 y O4y=−280 Resolución α2= OP2-OP1 = 27° α3= OP3-OP1= 88° Para el pivote O2 R1x= 330 R1y=300 R1 = 445.982 R2x=751 R2y=1263 R2= 1.469x 10^3 R3x=514 R3y=1.7x 10^3 R3 = 1.776 x 10^3 ζ 1 = 42.27 ζ 2 = 59.26 ζ3 = 73.17 Hallamos β2 y β3: C1 = 921.8695 C2 = 953.6586 C3 =-802.2988 C4 = 1379.7 C5 = -592.9547 C6 = 845.5275 A1 = -2.4925*10^6 A2 = 1.278901039653426e+05 A3= -1.625412428424902e+06 A4= 4.883705985783216e+05 A5= -1.278901039653426e+05 A6= -2.036328954831268e+06 K1= 3.372332158170032e+12

K2= -5.333773188655043e+11 K3= -4.153597047804312e+11 𝛽31 = 88° 𝛽32 = −105.97° 𝛽3 = 𝛽32 𝛽21 = 53.97° 𝛽22 = −53.97° 𝛽2 = 𝛽22 Para el pivote O4 R1x= -175 R1y= 280 R1 = 329.66 R2x= 247 R2y= 1243 R2= 1267.30 R3x= 10 R3y= 1680 R3 = 1680.03 ζ 1 = (-58.142001108672154) +180o = 121.8580o ζ 2 = 78.761000054907610o ζ3 = 89.658957721141160o Hallamos 𝛾3 y 𝛾2 C1 = 4.798251959263433e+02 C2 = 1.211202256968619e+03 C3 = -2.959015713141192e+02 C4 = 1.844122168429133e+03 C5 = -5.291514361775770e+02 C6 = 1.072509372727428e+03 A1= -3.488344311997934e+06 A2= 6.584626852720173e+05 A3= -2.134415051522742e+06 A4= 5.264596297624000e+05 A5= -6.584626852720173e+05 A6= -2.375585961957941e+06 K1= 5.417140454889822e+12 K2= 4.405513538213774e+11 K3= 6.293384572823389e+11 𝛾31 = 88° 𝛾32 = −78.70° 𝛾3 = 𝛾32 = −78.70°

𝛾21 = 51.99° 𝛾22 = −51.99° 𝛾2 = 𝛾22 = −51.99° Tomar: 𝛽2 = −53.97° 𝛽3 = −105.97°, 𝛾2 = −51.99°, 𝛾3 = −78.70° Solución: Tenemos como datos: 𝛽2 = −53.97° 𝛽3 = −105.97° 𝛾2 = −51.99° 𝛾3 = −78.70° Definimos en el punto P1 el origen de coordenadas, con ello podemos determinar 𝑃21 , 𝑃31 , 𝛿2 y 𝛿3 : 𝑃1 = (0, 0) 𝑃2 = (421, 963) 𝑃3 = (184, 1400 ) 𝑃21 = √4212 + 9632 = 1051.004 𝑃31 = √1842 + 14002 = 1412.039 𝛿2 = tan−1 (963/421) = 66.386° 𝛿3 = tan−1 (1400/184) = 82.513° Además, podemos notar por la gráfica que: 𝛼2 = 27° , 𝛼3 = 88°. Primero resolveremos la diada ZW: A=cos(𝛽2 ) − 1 = − 0.411

B=sin(𝛽2 )= − 0.808

C=cos(𝛼2 ) − 1 = − 0.109

D=sin(𝛼2 )= 0.454

E=𝑃21 cos(𝛿2 )= 421

F=cos(𝛽3 ) − 1=− 1.275

G=sin(𝛽3 )= − 0.961

H=cos(𝛼3 ) − 1= − 0.965

K=sin(𝛼3 )= 0.999

L=𝑃31 cos(𝛿3 )= 183.990

M=𝑃21 sin(𝛿2 )= 962.994

N=𝑃31 sin(𝛿3 )= 1400

Ahora usaremos la ecuación matricial para determinar las componentes de W y de Z. 𝐴 𝐹 [ 𝐵 𝐺

−𝐵 −𝐺 𝐴 𝐹

𝐶 𝐻 𝐷 𝐾

−𝐷 𝑊1𝑥 𝐸 −𝐾 𝑊1𝑦 𝐿 =[ ] ] 𝑍 𝐶 𝑀 1𝑥 𝐻 [ 𝑍1𝑦 ] 𝑁

Solucionando el sistema en MATLAB, obtenemos: 𝑊1𝑥 = −740.1 𝑦 𝑊1𝑦 = 293.5 𝑍1𝑥 = 1071.4 𝑦 𝑍1𝑦 = 7.7 Entonces podemos determinar W, Z, 𝜃 y ∅. 𝑊 = 796.172

𝑍 = 1071.427 𝜃 = 111.63° ∅ = 359.59° Con esto ya tenemos solucionada la primera diada, ahora procederemos a resolver la diada US: A=cos(𝛾2 ) − 1 = −0.384

B=sin(𝛾2 )= −0.787

C=cos(𝛼2 ) − 1 = −0.109

D=sin(𝛼2 )= 0.454

E=𝑃21 cos(𝛿2 )= 421

G=sin(𝛾3 )= −0.980

H=cos(𝛼3 ) − 1= −0.965

K=sin(𝛼3 )= 0.999

L=𝑃31 cos(𝛿3 )= 183.990

M=𝑃21 sin(𝛿2 )= 962.994

N=𝑃31 sin(𝛿3 )= 1400

F=cos(𝛾3 ) − 1=−0.804

Ahora usaremos la ecuación matricial para determinar las componentes de W y de Z. 𝐴 𝐹 [ 𝐵 𝐺

−𝐵 −𝐺 𝐴 𝐹

𝐶 𝐻 𝐷 𝐾

−𝐷 𝑈1𝑥 𝐸 𝑈 1𝑦 −𝐾 𝐿 =[ ] ] 𝐶 𝑆1𝑥 𝑀 𝐻 [ 𝑆1𝑦 ] 𝑁

Solucionando el sistema en MATLAB, obtenemos: 𝑈1𝑥 = −914.0320 𝑦 𝑈1𝑦 = 224.0993 𝑆1𝑥 = 739.8207 𝑦 𝑆1𝑦 = 56.6387 Entonces podemos determinar W, Z, 𝜃 y ∅. 𝑈 = 941.1030 𝑆 = 741.9855 𝜎 = 166.22° 𝜓 = 4.377° Entonces los pivotes fijos son O2x= −330 y O2y= −300 O4x=175 y O4y=−280

More Documents from "Sthefano Asencio"

Calculo-completo.docx
June 2020 14
Paper.docx
June 2020 6
December 2019 17
Malla Corregida.doc
December 2019 22