Calculo 1.docx

  • Uploaded by: Nilton Bautista Diaz
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Calculo 1.docx as PDF for free.

More details

  • Words: 1,353
  • Pages: 8
42)

4−x2

lim (

n

√x−1−1 ) √x−1−1

) (m

x→2 3→√x2 −5

Solución lim (

n

n

n

(4−x2 ) (3+√x2 −5

√x−1−1 ( √(x−1)n−1 + √(x−1)n−2 +⋯+1 )

)(m

x→2 (3−√x2 −5) (3+√x2 −5)

m

m

√x−1−1 ( √(x−1)m−1 + √(x−1)m−2 +⋯+1)

(2−x)(2+x) (3+√x2 −5

(x−2)( n√(x−1)n−1 +⋯+1 )

(2−x)(2+x)

(x−2)( m√(x−1)m−1 +⋯+1)

lim ( x→2

)(

lim((3 + √x 2 − 5) ( x→2

n

n

m

m

)

)

( √(x−1)n−1 + √(x−1)n−2 +⋯+1 )

)

( √(x−1)m−1 + √(x−1)m−2 +⋯+1)

m

6n

3

43)

(3−√3 sgn (x3 +6)−2x )( √28√x2 +13−196 )

lim

x→−6

3

3

x

√x+6 ( 2− √4+√|x−2|−4[|4|]

solución 

Sgn (x 3 + 6)= si x 3 + 6 > 0 → x > √6 3 0 , si x 3 + 6 = 0 → x =√6 3 -1, si x 3 + 6 < 0 → x < √6



[|4|] → x<-6

3

x

𝐱 𝟒

<

−𝟔 𝟒

x

−6

x

[|4|] < [| 4 |] → [|4|]= -2 3

lim

(3−√3(−1)−2x )( √28√x2 +13−196 ) 3

l1 =

3

√x+6 ( 2− √4+√2−x+8

x→−6

lim

(3−√3(−1)−2x )(3+√3(−1)−2x )

x→−6

lim

x→−6

(x+6)(3+√3(−1)−2x) −2( x+6 )

x→−6

2

1

6

3

= =

(x+6)(3+√3(−1)−2x)

= lim

−2( x+6 ) (x+6)(3+√3(−1)−2x)

3

2

3

3

(2− √4+√10−x)(4+ √4+√1−x+ √(4+√10−x) )

l2 = lim

x→−6

2

3

3

(x+6)(4+ √4+√1−x+ √(4+√10−x) ) (4−√10−x )(4+√10−x)

lim

X+6

= lim (x+6)(FR)(4+√10−x)

x→−6 (x+6)(FR)(4+√10−x)

x→−6

1

lim

x→−6

1

2

3

3

(x+6)(4+ √4+√1−x+ √(4+√10−x) )(4+√10−x)

1

= 12.8 = 96

3

( √28(√x2 +13−7))

l3= lim

√x+6

x→−6 3

lim √

3

x→−6

28(√x2 +13−7)(√x2 +13+7) (x+6)(√x2 +13+7)

x→−6 3

2

28(√x +13−7) = lim √ x+6

3

3

28(X+6)(X−6)

3

28(−12)

= lim √ = √ (x+6)(√x2 +13+7) x→−6

14

=

3

√−24 = −2√3

1 3 1 96

l1

L= l2 l3=

3

3

(−2√3) = -64 √3

3

44) lim

√3x2 +x+4+√x2 +5x+10−6x2 3

√√x+3+6+√x+8−5x2

x→1

solución 3

lim

( √3x2 +x+4 −2)+(√x2 +5x+10−4)−(6x2 −6) 3

( √√x+3+6−2)+(√x+8−3)−(5x2 −5)

x→1

3

l1 = lim

3

3

( √3x2 +x+4 −2)( √(3x2 +x+4)2 +2 √3x2 +x+4+4) 3

3

(x−1)( √(3x2 +x+4)2 +2 √3x2 +x+4+4)

x→1

3x2 +x−4

lim

3

3

x→1 (x−1)( √(3x2 +x+4)2 +2 √3x2 +x+4+4)

lim

(3x+4) 3

3

x→1 ( √(3x2 +x+4)2 +2 √3x2 +x+4+4)

l2= lim

= lim

=7/2 x2 +5x−6

(√x2 +5x+10−4)(√x2 +5x+10+4)

x→1

lim

(x−1)(x+6)

x→1 (x−1)(√x2 +5x−10+4)

l3= lim

=lim

(x−1)(√x2 +5x−10+4)

6x2 −6

x→1 x−1

= lim

x→1

x→1 (x−1)(√x2 +5x−10+4)

= lim

x+6

x→1 (√x2 +5x−10+4)

6(x−1)(x+1) x−1

(3x+4)(x−1) 3

= 12

3

x→1 (x−1)( √(3x2 +x+4)2 +2 √3x2 +x+4+4)

= 7/8

3

3

( √3x2 +x+4 −2)( √(√x+3+6)2 +2 3√√x+3+6+4)

l4= lim

3

(x−1)( √(√x+3+6)2 +2 3√√x+3+6+4)

x→1

√x+3−2

lim

3

2

x→1 (x−1)( √ (√x+3+6) +2 √√x+3+6+4) X−1

lim (x−1)FR(

l5= lim

(√x+8−3)(√x+8+3) (X−1)(√x+8+3)

x→1

l6

lim

=

5(X−1)(X+1) X−1

x→1

1

= lim

√x+3+2)

x→1

(√x+3−2)(√x+3+2) = x→1 (x−1)FR(√x+3+2)

=lim

3

= 1/(12)(4)= 1/48

x→1 FR(√x+3+2)

X−1

= lim (X−1)(√x+8+3)= 1/6 x→1

= 10

L= l1+ l2− l3 / l4+ l5− l6 = 506/371 3

45) lim

√5x2 +7 + √x4 +9−8

3

x→2 √√x2 +5+9x+6+√x+2−5

solución 3

lim

( √5x2 +7−3)+(√x4 +9−5) 3

x→2 ( √√x2 +5+9x+6−3)(√x+2−2) 3

l1 = lim

2

3

3

( √5x2 +7−3)( √5x2 +7 +3 √5x2 +7+9)

x→2

l2= lim

(x−2)(

(√x4 +9−5)(√x4 +9+5)

x→2

lim

2 3 √5x2 +7 +3 √5x2 +7+9)

3

x→1

(x−2)(√x4 +9+5) (x2 +4)(x+2) (√x4 +9+5)

= lim

x→2

lim

(x−2)(√x4 +9+5)

x→1

= 32/10

x→2

( √√x2 +5+9x+6−3).FR 2

3

(x−2)( √((√x2 +5−3)+9(x+1)) +⋯+9 (√x2 +5−3)+9(x−2) 3

5(x+2)(x−2) (x−2)FR

(x2 +4)(x−2)(x+2)

= lim

3

l3= lim

x→1

2

(x−2)( √((√x2 +5−3)+9(x+1)) +⋯+9

= 20/27

(√x2 +5−3)(√x2 +5+3)

M= lim

x→2

(x−2)(x+2)

= lim

(x−2)(FR)(√x2 +5+3) 9(x−2)

S = lim

= 9/27 = 1/3

2

3

x→2

= 4/(27)(6) = 4/281

x→2 (x−2)(FR)(√x2 +5+3)

(x−2)( √((√x2 +5−3)+9(x+1)) +⋯+9

l3= m + s= 58/6(27) = 29/81 l4 = lim

(√x+2−2)(√x+2+2)

x−2

= lim

(x−2)(√x+2+2)

x→2

x→2 (x−2)(√x+2+2)



L= l1+ l2 /l3+ l4 46) lim

x→−3

√ 3√−9x+1−2 3

2− √x+11

solución 3 3 (√ √−9x+1−2)(√ √−9x+1+2)

l1= lim

x→−3

3 (x+3)(√ √−9x+1+2)

3 3 (√ √−9x+1−2)(√ √−9x+1+2)

lim

x→−3

x→−3

3

3 (x+3)(√ √−9x+1+2)

3

3 3 3 (x+3)(√ √−9x+1+2)( √(−9x)2 +3 √−9x+9)

−9(x+3) 3

√3

3

=

(x+3)( √−9x+1+2)( √(−9x)2 +3 √−9x+9) 3

l2= lim

( √−9x−3)

( √−9x−3)( √(−9x)2 +3 √−9x+9)

lim

x→−3

x→−3

3 (x+3)(√ √−9x+1+2) 3

lim

3

= lim

x→−3

3

3

(2− √x+11)(4+2 √x+11+ √(x+11)2 ) 3

(x+3)(4+2 3√x+11+ √(x+11)2 )

lim

−(x+3) 3

3

x→−3 (x+3)(4+2 √x+11+ √(x+11)2 )

L= l1 /l2= 1

= −1/12

4 4(27)

3

3

√(x2 +1)2 −2 √2x2 +2+ 3√4

47) lim

(x−1)2

x→1

solución 3

3

( √(x2 +1)− √2)

lim

(x−1)(

x→1

3

3 √4)

)2 =

3

3

3 3 ( √(x2 +1)−√2)( √(x2 +1)2 + √2. √x2 +1+ √4 3

3

(x−1)2 (( √(x2 +1)2 + 3√2( √x2 +1)+ 3√4)

x→1

x2 −2

lim ( 2

3

= lim (

(x−1)2

x→1

(

2

3 √(x2 +1)2 + 3√2( √x2 +1)+ 3√4)

3

)2

1

)2 = lim (

(

x→1

3 √(x2 +1)2 + 3√2( √x2 +1)+ 3√4)

3

)2

3

√4 9

9

13

11

√x−1+4 √x−1− √x−1+4

48) lim

x→0

3

5

7

√x−1−5 √x−1+ √x−1−3

solución 9

11

13

5

7

( √x−1+1)+(4 √x−1+4)−( √x−1+1)

lim

x→0

3

( √x−1+1)−(5 √x−1+5)+( √x−1−1) 9

( √x−1+1)FR

l1= lim

x→0 x(

= lim

1 9 9 √(x−1)8 − √(χ−1)7 + √(x−1)6 …+1

9

x→0 x(

x

9 9 √(x−1)8 − √(χ−1)7 + √(x−1)6 …+1)

11

l2= lim

(4( √x−1+1))FR 11

4x

= lim

11

x→0 x( √(x−1)10 − √(χ−1)9 +⋯+1)

11

( √x−1+1)FR 13

13

x→0 x( √(x−1)12 − √(χ−1)11 +⋯+1)

x

= lim

13

l4= lim

x→0 x(

3

3 √(x−1)2 − √(χ−1)3 +1

= lim

x

x→0 x(

3

3 √(x−1)2 − √(χ−1)3 +1)

5

l5= lim

(5( √x−1+1))FR 5

5

x→0 x( √(x−1)4 − √(χ−1)3 +⋯+1)

5

5

= lim

7

7

( √x−1−1)FR 7

7

x→0 x( √(x−1)6 − √(χ−1)5 +⋯+1)

= 1/3

5x

= lim

x→0 x( √(x−1)4 − √(χ−1)3 +⋯+1)

7

l6= lim

= 1/13

13

x→0 x( √(x−1)12 − √(χ−1)11 +⋯+1)

3

( √x−1+1)FR

= 4/11

11

x→0 x( √(x−1)10 − √(χ−1)9 +⋯+1)

13

l3= lim

L=l1+ l2− l3 / l4− l5+ l6 =-3584/4719

= 1/9

9

x

x→0 x( √(x−1)6 − √(χ−1)5 +⋯+1)

=1 = 1/7

49) lim

x→0

5

6

18

25

√x+1−3 √x+6+2 √x+1+ √x+1−2

solución 5

6

18

25

( √x+1−1)−(3 √x+6−3)

lim

x→0 ( √x+1−1)+( √x+1−1) 5

( √x+1−1)FR

l1= lim

x→0 x(

5

x

= lim

5

= lim

6

5 √(x+1)4 − √(χ+1)3 +⋯+1)

x→0 x(

6

3( √x+6−1)FR

l2= lim

6

6

x→0 x( √(x−1)5 − √(χ−1)4 +⋯+1)

=1/5

5 √(x+1)4 − √(χ+1)3 +⋯+1)

3x 6

x→0 x( √(x+1)5 − √(χ+1)4 +⋯+1)



18

( √x+1−1)(FR) x(FR) x→0

l3= lim

= 1/18

25

( √x+1−1)FR (X)FR x→0

l4= lim l

= 1/25

l

L= l1− l2 = -3(45) /43= -135/43 3+ 4

50) lim

√x3 +3√x−3x−1 3

3

x→1 x+3 √x→ √x2 −1

solución lim

(√x−1)3 3

x→1 ( √x−1)3 3

lim

3

3

( (√x−1)(√x+1)( √x2 + √x+1))3 3

x→1 (( √x−1)(√x+1)(

3

= lim 3

√x2 + 3√x+1))

x→1

3

{ (x−1)( √x2 + √x+1)}3 {(x−1)(√x+1)}3

33

= 23 = 27/8

5

51)

x

√2+ √8 −2 5

√5x−10 lim (2√5− x) √ x→20

x2 −400

(

)

solución √5x−10 ) 2√5−√x

l1= lim ( x→20

(√5x−10)(√5x+10)(2√5+√x)

lim ((2√5− x→20

)

√x)(√5x+10)(2√5+√x)

5(2√5+√x)

5(4√5)

lim (−(√5x+10))= x→20

5

−20

x

x

5

√2+ √8 −2 .√2+ √8 +2 5

l2= lim

x→20

5

5 8x 5

(x−20)(x+20).√2+ √ +2

( 5 8x √ 5

lim

x→20

)

−2 5 8x 5

(x−20)(x+20).√2+ √ +2

(

)

5 8x √ −2(FR) 5

lim

x→20

5 8x 5

5

(x−20)(x+20).(√2+ √ +2)( 5√(8x/5)4 −2 √(8χ/5)3 +⋯+16)

(

)

8(x−20)

lim

x→20

5

8x 5 5 5(x−20)(x+20).(√2+ √ +2)( √(8x/5)4 −2 √(8x/5)3 +⋯+16) 5

( 8

lim (5(40)(4)(8/2) x→20

L=l1. l2 = −

√5 400

)=1/400

)

Related Documents

Calculo
May 2020 44
Calculo
May 2020 43
Calculo
October 2019 59
Calculo
October 2019 46
Calculo
November 2019 63
Calculo
October 2019 60

More Documents from ""

Nilton -derivadas.docx
November 2019 10
November 2019 8
Topo.docx
December 2019 1
Calculo 1.docx
November 2019 5