Calculation of Indentation Contact Area and Strain Using Hertz Theory Brendan Donohue Advisor: Prof Surya Kalidindi Graduate Seminar
16 October 2009
Contributions to the Field Tabor, 1951
Hertz, 1882 Load-displacement relationships of quadratic surfaces in elastic contact
Mesarovic & Fleck, 1998
Johnson, 1985
Comprehensive work on Collection of macroindentation, load analytical, experimental displacement results, theory relationships, hardness
Comprehensive FEM studies. Elastic-plastic behavior, friction, hardening, mesh quality, numerical errors.
Hill, 1950
Sneddon, 1965
Oliver & Pharr, 1992
Flow line predictions of plastic deformation for wedge indenter
Analytical expressions of load-displacement using integral transforms, theory of elasticity
Nanoindentation, modulus from unloading stiffness
** 1980 Myer proposes new hardness definition to correct size effect in Brinell Hardness
Load HB (Myer) Projected Area
Local Properties Radovic et al., 2004
Modulus from unloading segment Basis: Hertz theory Limitations: friction, ansotropy, contact area Pyrex Glass
ALA4 Aluminum
4140 Steel
Displacement (nm)
51.20
901.32
52.08
1452.7 6
53.43
962.36
Load (mN)
0.35
79.96
0.16
79.94
0.81
9.12
Modulus (GPa)
62.33
61.208
77.38
74.02
216
187.55
Bell et al., 1992
Hertz Theory Hertz Theory (1882): Provides a link between linear elasticity and deflections of quadratic surfaces in contact
Linear Elastic Solids
Quadratic Surfaces •Each body regarded as elastic half space with elliptical contact shape
Load
Modulus Poisson’s Ratio
•Frictionless contact, only normal pressures transmitted
Separation of Surfaces
•Dimensions of contact small compared to size of body and curvature of surfaces
Curvature of Surface
Displacement Contact Area
Quadratic Surfaces R1 R1
y1 x1
z1 z2
R2
R2
x2
Each body traced out by quadratic surfaces
z
X
1 2 1 2 z1 x1 + y1 2R1 2R1 1 2 -1 2 z2 x2 y2 2R2 2R 2 Separation between bodies
Y
(
z1 - z2
1
1
) (
+ 2R1 2R2
X+ 2
1
1
)
Y + 2R1 2R2
Axisymmetric Bodies, Circular Contact
y2
1 2 z1 - z2 * r 2R
1 1 1 + * R R1 R2
2
Linear Elastic Solids d ds
a Y +r X
z
u
X
p(r )
po 2 2 1/ 2 a (a - r ) 2p po 2 2 2 2 ( ) uz r a r r cos + )d ( * 4aE 0
∫
Displacement Boundary Condition:
4aE
2R
z1
ht
a
Pressure Distribution and Displacement:
ppo ( 2 2 ) 1 2 r ht + * 2a - r *
+
R1
z2
+ *
R2 *
po 2E h t po 2aE* pa pR
*
3PR a * 4E 3
3P po 2 2pa
Elastic Contact •
Assumptions: linear elastic, isotropic material, frictionless contact
a 2Ri hc - h
1 hc he 2
2 c
4 * 1/ 2 3/ 2 P E Ri he 3
a Ri he
For Purely Elastic Contact, Spherical Indenter and Flat Surface
Ri +
a
*
hc
2
hc << Ri hC
Ri R ht he
Complete Load/Unload Indenter Surface
Fully Unloaded Surface
Fully Loaded Surface
Preloaded Surface
1 (1- n ) (1- n ) + * E Es Ei 1 1 1 + * R Ri Rs 2 s
ht
hc
Ri
a
4 * P E hea 3 4 * *1/ 2 3/ 2 P E R he 3
Rs
hp
he
3PR a * 4E 3
*
*
a R he
2 i
i indenter s sample Displacement Must Be Purely Elastic
Unloading segment is assumed purely elastic
Inelastic Contact Assume unloading segment is purely elastic
he ht - hp
ht
a Ri he
ing
ad Lo
in g
* Ri R
hp
ad
Load, P
1 1 1 + * R Ri -Rs
Rs finite
he
Un lo
3/ 2 4 * *1/ 2 P E R ( ht - hp ) 3
Displacement, h
The assumption is valid for the case of a spherical indenter on a flat surface, 1/R s ≈ 0
State of the Field Most analyses use Hertz theory as foundation
Characterize local mechanical properties: Yield point, modulus Characterize local anisotropy
Challenges Surface preparation
Friction Valid Definition of Indentation Stress and Strain
Suggestions Make use of finite elements Impose magnitude of friction, hardening, flow stress, elastic modulus
Requires a sound definition of Indentation Stress and Strain
Strain Definition Pathak, et al. 2008
Physically unrealizable modulus determined Completely Elastic
Post-Elastic
ht a a * a Ri R
ht a a * a Ri R
Indentation Stress-Strain • •
How to construct an indentation stress-stain curve? For each point (Pi , hti ) on the unloading curve, compute the regression to get effective radius and plastic displacement
•
-1
3 Pi i1 N N
2
N i 2 ht Pi 3 i1 N i h t i1
Compute the contact depth and contact radius
hc •
1 4 * E 3 h pi
N 2 3 2 2 P 3 i R* i1N 2 3 P i i1
1 (ht + hp ) 2
a 2hc Ri - hc2
* 3 PR a3 4E *
Compute the indentation stress and strain using Hooke’s law
P 2 pa
4 a 4 he e * E 3p Ri 3p a
Indentation Maps Mesarovic & Fleck, 2000
Park & Pharr, 2004
Stress-Strain Behavior 3PR a * 4E 3
a 2Ri hc - h Meyer Stress (GPa)
Using Finite Elements:
t 4 ht 3p a
*
t 4 a 3p Ri
2 c
1.40
Versus Meyer Stress
P pa 2
Modulus and Yield Strength are imposed Raw data is load and displacement How do SS curve differ with definitions of ‘a’ and strain??
1.20 1.00
E * 370 GPa
0.80 0.60 0.40 0.20
0.00 0.000
a 2hc Ri - hc2
E * 179 GPa
(
a 3PR
t
t
)
1/ 3
*
4E*
4ht 3pa
E * 560 GPa a 2hc Ri - hc2 4a t 3pRi
4ht 3pa
0.010
0.020
0.030
Indentation Strain
0.040
0.050
0.060
Stress Contours ht (nm) aFEM (um)
aQ (um)
aE (um)
Q (GPa)
E (GPa)
0.63
0.089
0.10
0.088
0.426
0.552
0.73
0.108
0.111
0.093
0.429
0.608
ht 0.63nm
ht 0.73nm 0.479
a 2.4a
0.425
a 2.4a
Conclusions Significant difficulties exist in determining local behavior with nanoindentation
Not all definitions of strain are equal Finite element modeling of indetation useful in critically examining Hertz’ theory and generating indentation Stress Strain curves
Draft Slide
n 12 he 2(ht - hc )
R1
XY
z1
c z1 - z2 z2
R2
Spherical Geometry
Pure Elastic Behavior
ht he, hp 0 1 hc 2 he