FOR EDEXCEL
GCE Examinations Advanced Subsidiary
Core Mathematics C4 Paper J
MARKING GUIDE
This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for knowing and using a method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks.
Written by Shaun Armstrong
Solomon Press These sheets may be copied for use solely by the purchaser’s institute.
C4 Paper J – Marking Guide 1.
x(x − 2) = 0, x = 0, 2 ∴ crosses x-axis at (0, 0) and (2, 0) volume = π ∫ = π∫
2 0 2
0
(x2 − 2x)2 dx
M1
(x4 − 4x3 + 4x2) dx
A1
= π[ 15 x5 − x4 +
4 3
= π{( 32 − 16 + 5
2.
x3] 02
32 3
) − (0)} =
∫
1 u
∫
× (2u − 2) du =
16 15
π
dx = −2(1 − u) = 2u − 2 du
1
u = 1 − x 2 ⇒ x = (1 − u)2,
I =
M1 A1
(2 −
2 u
) du
= 2u − 2 lnu + c 1 2
= 2(1 − x ) − 2 ln1 − x + c
(a)
dy =0 dx
4 cos 2x − sec2 y
4.
(a)
(b)
5.
(a)
grad = 4 × ∴ y−
π 3
1 2
×
=
1 2
y−
π 3
=
1 2
y=
1 2
x+
A1
1 4
(x − x−
(6)
M1 A2 M1 A1
=
1 2
B1
π 6
)
M1
π 12
π 4
A1
dx dy −1 = 12 at 2 , = a(1 − 2t) dt dt dy a(1 − 2t ) = = 2 t (1 − 2t) 1 1 at − 2 dx 2
(8)
M1
M1 A1
y = 0 ⇒ t = 0 (at O) or 1 (at A) t = 1, x = a, y = 0, grad = −2 ∴ y − 0 = −2(x − a) at B, x = 0 ∴ y = 2a area = 12 × a × 2a = a2
B1 M1 A1 M1 M1 A1
(9)
dy = k y dx
∫
y
− 12
dy =
∫
k dx
M1
1 2
(b)
M1 A1
A1
dy = 4 cos 2x cos2 y dx (b)
(6)
M1 A1
1 2
3.
M1 A1
2 y = kx + c (0, 4) ⇒ 4 = c ∴ 2 y = kx + 4
M1 A1 M1 A1
(2, 9) ⇒ 6 = 2k + 4, k = 1 ∴ 2 y = x + 4, y = 12 (x + 4)
M1 A1 M1
y=
1 4
(x + 4)2
A1
Solomon Press C4J MARKS page 2
(9)
6.
(a)
1 3
V= (b)
πr2h =
2 πh × h =
1 3
3
V = 8 × 120 = 960 =
r h
, r=
h 3
M1
πh3
M1 A1
1 9
πh3 ∴ h =
3
B1 dh = dt
9 × 960 π
360
M1 A1 = 14.011
−3 6 1
−
−4 1 3
∴ r=
−4 1 3
+λ
1 5 −2
(b)
− 4 + λ = 3 + 2µ (1) 1 + 5λ = −7 − 3µ (2) 3 − 2λ = 9 + µ (3) 2 × (1) + (3): −5 = 15 + 5µ, µ = −4, λ = −1 sub. (2): 1 − 5 = −7 + 12, not true ∴ do not intersect 3 + 2µ −7 − 3µ 9+µ
, BC = OC − OB =
1 6 + 2µ 5 . −13 − 3µ −2 8 + µ
∴
=
1 5 −2
AB =
OC =
(b)
6 + 2µ −13 − 3µ 8+ µ
M1 A1 M1 A1
−7 8 4
M1 A1
M1 A1 A1
coeffs x2 ⇒
A1
=
∫0
(1 +
=
1 4
+ ln
16 9
⇒
3 = 3A
2 1− x
= ( 14 − 2 ln
(c)
B1 M1 A1 M1 A1
x(3x − 7) ≡ A(1 − x)(1 − 3x) + B(1 − 3x) + C(1 − x) x=1 ⇒ − 4 = − 2B ⇒ B=2 x = 13 ⇒ −2 = 23 C ⇒ C = −3 1 4
3 4
3 1 − 3x
−
+ ln
+ ln
1 4
1 4
A=1 1
) dx = [x − 2 ln1 − x + ln1 − 3x] 04
) − (0)
=
1 4
(10)
M1 A1
6 + 2µ − 65 − 15µ − 16 − 2µ = 0
= 0,
µ = −5 ∴ OC =
(a)
M1 A1
(a)
(c)
M1 A1
πh 2
dh = 0.58 cm s−1 (2dp) dt
∴
8.
1 9
=
dV dV = 120, = 13 πh2 dt dh dV dV dh dh = × , 120 = 13 πh2 , dt dh dt dt dh when h = 6, = 3.18 cm s−1 (2dp) dt
(i)
(ii)
7.
1 3
let radius = r, ∴ tan 30° =
+ ln
(13)
M1 A1 M1
4 9
M1 A1
f(x) = 1 + 2(1 − x)−1 − 3(1 − 3x)−1 (1 − x)−1 = 1 + x + x2 + x3 + … (1 − 3x)−1 = 1 + 3x + (3x)2 + (3x)3 + … = 1 + 3x + 9x2 + 27x3 + … ∴ f(x) = 1 + 2(1 + x + x2 + x3 + …) − 3(1 + 3x + 9x2 + 27x3 + …) = −7x − 25x2 − 79x3 + …
B1 M1 A1 M1 A1
(14)
Total
(75)
Solomon Press C4J MARKS page 3
Performance Record – C4 Paper J
Question no.
1
Topic(s)
integration
Marks
6
2
3
4
integration differentiation parametric equations
6
8
5
6
7
8
differential equation
connected rates
vectors
partial fractions, binomial series
9
10
13
14
9
Student
Solomon Press C4J MARKS page 4
Total
75