FOR EDEXCEL
GCE Examinations Advanced Subsidiary
Core Mathematics C4 Paper H
MARKING GUIDE
This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for knowing and using a method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks.
Written by Shaun Armstrong
Solomon Press These sheets may be copied for use solely by the purchaser’s institute.
C4 Paper H – Marking Guide 1.
= 1 + ( 32 )(4x) +
(a)
( 32 )( 12 ) 2
2
(4x)2 +
( 32 )( 12 )( − 12 ) 3×2
(4x)3 + …
3
= 1 + 6x + 6x − 4x + …
2.
u = 1 + sin x ⇒
B1
du = cos x dx
x = 0 ⇒ u = 1, x = I =
2
∫1
A3
1 4
x <
(b)
⇒ u=2
π 2
B1 A1
= [ 14 u4] 12 = 4−
3.
=
M1 15 4
M1 A1
x + 11 ( x + 4)( x − 3)
(a)
≡
A x+4
+
x + 11 ( x + 4)( x − 3) 2
∫0
=
(
≡
2 x−3
−
2 x−3 1 x+4
−
A = −1 B=2
M1 A1 A1
1 x+4
) dx
= [2 lnx − 3 − lnx + 4] 02 = (0 − ln 6) − (2 ln 3 − ln 4) 2 = ln 27
4.
(6)
B x−3
x + 11 ≡ A(x − 3) + B(x + 4) x = −4 ⇒ 7 = −7A ⇒ x=3 ⇒ 14 = 7B ⇒
(b)
(5)
M1
u3 du
1 4
M1
M1 A1 M1 M1 A1
π
= π ∫ π2 (2 sin x + cosec x)2 dx
(8)
M1
6
=π
π 2 π 6 π 2 π 6
∫
= π∫
(4 sin2 x + 4 + cosec2 x) dx
A1
(2 − 2 cos 2x + 4 + cosec2 x) dx
M1
π
= π[6x − sin 2x − cot x] 2π
M1 A2
6
= π{(3π + 0 + 0) − (π − = π(2π +
5.
(a)
3 2
3)=
1 2
2x − 3y − 3x
3 2
−
3 )}
M1
π(4π + 3 3 )
A1
dy dy − 2y =0 dx dx
M1 A2
dy 2x − 3y = 3x + 2 y dx (b)
grad = 5 ∴ y + 2 = 5(x − 2)
M1 A1
[ y = 5x − 12 ]
Solomon Press C4H MARKS page 2
(8)
M1 M1 A1
(8)
6.
(a)
= =
(b)
1× 6 + 5 × 3 + (−1) × (−6) 27 27 × 81
7.
(a)
(b)
27 9
=
sin (∠AOB) =
area =
(c)
M1 A1
1 + 25 + 1 × 36 + 9 + 36
1 2
= 3 3 = 9
1 3
3
M1 A1
2 3
M1 A1
1 − ( 13 3)2 = 2 3
× 3 3 ×9×
=
= OA × sin (∠AOB) = 3 3 ×
27 2 2 3
2
M1 A1
= 3 2
M1 A1
dx dy = 2t − 1, = 4 × (1 − t ) − 42t × (−1) = 4 2 (1 − t ) (1 − t ) dt dt dy 4 = (2t − 1)(1 − t )2 dx
t = −1, x = 2, y = −2, grad = − 13
M1
3y + 6 = −x + 2 x + 3y + 4 = 0
A1
t(t − 1) + 3 ×
4t 1− t
+4=0
M1
−t(t − 1) + 12t + 4(1 − t) = 0 t3 − 2t2 − 7t − 4 = 0 t = −1 is a solution ∴ (t + 1) is a factor (t + 1)(t2 − 3t − 4) = 0 (t + 1)(t + 1)(t − 4) = 0 t = −1 (at P) or t = 4 ∴ Q (12, − 163 )
(a)
M1 A1
∴ y + 2 = − (x − 2)
2
8.
B1 M1
M1
1 3
(c)
∫
1 P
dP =
∫
k dt
P 300
= kt,
P 300
A1 M1 M1 A1 M1 A1
= ekt,
A1 M1
P = 300ekt
M1 A1
(b)
t = 1, P = 360 ⇒ 360 = 300ek k = ln 65 = 0.182 (3sf)
M1 A1
(c)
P = 300e0.1823t when t = 2, P = 432; when t = 3, P = 518 model does not seem suitable as data diverges from predictions
B1 B1
(d)
∫
1 P
dP =
∫
(0.4 − 0.25 cos 0.5t) dt
lnP = 0.4t − 0.5 sin 0.5t + c t = 0, P = 300 ⇒ ln 300 = c ln
(e)
P 300
(14)
M1
lnP = kt + c t = 0, P = 300 ⇒ ln 300 = c lnP = kt + ln 300 ln
(10)
= 0.4t − 0.5 sin 0.5t
M1 A1
[ P = 300e0.4t − 0.5 sin 0.5t ]
second model: t = 1, 2, 3 ⇒ P = 352, 438, 605 the second model seems more suitable as it fits the data better
M1 A1 M1 A1 B1
(16)
Total
(75)
Solomon Press C4H MARKS page 3
Performance Record – C4 Paper H
Question no.
1
2
3
Topic(s)
binomial series
integration
partial fractions
Marks
5
6
8
4
integration differentiation
8
Student
Solomon Press C4H MARKS page 4
5
8
6
7
8
vectors
parametric equations
differential equations
10
14
16
Total
75