FOR EDEXCEL
GCE Examinations Advanced Subsidiary
Core Mathematics C4 Paper G
MARKING GUIDE
This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for knowing and using a method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks.
Written by Shaun Armstrong
Solomon Press These sheets may be copied for use solely by the purchaser’s institute.
C4 Paper G – Marking Guide 1.
2x + 2y2 + 2x × 2y
dy dy + =0 dx dx
M2 A2
dy 2x + 2 y2 =− 4 xy + 1 dx 2.
M1 A1
u = x2, u′ = 2x, v′ = e−x, v = −e−x I = −x2 e−x − ∫ −2x e−x dx = −x2 e−x +
∫
u = 2x, u′ = 2, v′ = e−x, v = −e−x I = −x2 e−x − 2x e−x − ∫ −2e−x dx
2x e−x dx
(a)
(1 + ax)n = 1 + nax +
⇒ a=
−4 n
(1 + 8 x)
∴ k=
− 165
x 0 y 2.7183
4.
1 2
(ax)2 + …
, sub. ⇒
=…+
16 n2
×
= 24
n ( n −1) 2
B1
= 24
M1 A1
n = − 12 , a = 8 ( − 12 )( − 32 )( − 52 ) 3× 2
M1 A1
(8x)3 + …
M1
× 512 = −160 0.75 2.0786
1.5 1.0733
A1 2.25 0.5336
3 0.3716
× 1.5 × [2.7183 + 0.3716 + 2(1.0733)] = 3.93 (3sf)
=
(b)
× 0.75 × [2.7183 + 0.3716 + 2(2.0786 + 1.0733 + 0.5336)] = 3.92 (3sf)
(a)
(b)
=
1 2
B1 M1 A1 M1 A1 B2
AB = (4j + k) − (9i − 8j + 2k) = (−9i + 12j − k) ∴ r = (9i − 8j + 2k) + λ(−9i + 12j − k) at C, 2 − λ = −1, λ = 3
M1 A1 M1 A1
∴ OC = (9i − 8j + 2k) + 3(−9i + 12j − k) = (−18i + 28j − k)
A1
AC = 3(−9i + 12j − k), AC = 3 81 + 144 + 1 = 45.10 ∴ distance = 200 × 45.10 = 9020 m = 9.02 km (3sf)
M1 A1 M1 A1
Solomon Press
(8)
B2
curve must be above top of trapezia in some places and below in others hence position of ordinates determines whether estimate is high or low
C4G MARKS page 2
(7)
B1
(a)
(c)
5.
− 12
n ( n−1) 2
a n ( n−1) 2
8(n − 1) = 24n, (b)
A1
2
∴ an = −4,
M1 A1 A2 M1 A1
= −x2 e−x − 2x e−x − 2e−x + c
3.
(6)
(9)
(9)
6.
(a)
(b)
7.
(a)
1 P
∫
∫
dP =
0.05e−0.05t dt
M1
lnP = −e−0.05t + c t = 0, P = 9000 ⇒ ln 9000 = −1 + c, c = 1 + ln 9000 lnP = 1 + ln 9000 − e−0.05t t = 10 ⇒ lnP = 1 + ln 9000 − e−0.5 = 9.498 P = e9.498 = 13339 = 13300 (3sf)
M1 A1 M1 A1 M1 A1
t → ∞, lnP → 1 + ln 9000 ∴ P → e1 + ln 9000 = 9000e = 24465 = 24500 (3sf)
M1 M1 A1
x = 2 ⇒ t = 1, dx = 3t2 dt
B1
2
∫1
∴ area =
x=9 ⇒ t=2
M1
2 t
2
∫1
× 3t2 dt =
6t dt
A1
= [3t2] 12 = 3(4 − 1) = 9 (b)
= π∫
2
2 t
( )2 × 3t2 dt = π ∫
1
2
M1 A1 12 dt
1
M1
= π[12t] 12 = 12π(2 − 1) = 12π (c)
t=
2 y
2 y
8.
(a)
(b)
8
∴ x = ( )3 + 1 = 8 , x −1
∴ y3 =
y=
3
M1 A1
+1
y3
M1
2 x −1
M1 A1
du = cos x dx
u = sin x ⇒
6 cos x
I =
∫
cos 2 x (2 − sin x)
=
∫
(1 − u 2 )(2 − u )
6
6 (1 + u )(1 − u )(2 − u )
≡
dx =
6 cos x
∫
(1 − sin 2 x)(2 − sin x)
dx
du A 1+ u
(c)
6 2
(1 − u )(2 − u )
≡
1 1+ u
x = 0 ⇒ u = 0, x = I =
1 2
∫0
(
1 1+ u
+
3 1− u
π 6
−
M1 M1 A1
B 1− u
+
C 2−u
+
+
3 1− u
2 2−u
2 2−u
−
⇒ u=
M1 A1 A1 A1
1 2
M1
) du 1
= [ln1 + u − 3 ln1 − u + 2 ln2 − u] 02
M1 A2
= (ln 32 − 3 ln 12 + 2 ln 32 ) − (0 + 0 + 2 ln 2)
M1
= 3 ln
3 2
(11)
B1
6 ≡ A(1 − u)(2 − u) + B(1 + u)(2 − u) + C(1 + u)(1 − u) u = −1 ⇒ 6 = 6A ⇒ A=1 u=1 ⇒ 6 = 2B ⇒ B=3 u=2 ⇒ 6 = −3C ⇒ C = −2 ∴
(10)
+ 3 ln 2 − 2 ln 2
= 3 ln 3 − 3 ln 2 + ln 2 = 3 ln 3 − 2 ln 2
M1 A1
(15)
Total
(75)
Solomon Press C4G MARKS page 3
Performance Record – C4 Paper G
Question no. Topic(s)
1
2
differentiation integration
Marks
6
7
3
4
5
6
7
8
binomial series
trapezium rule
vectors
differential equation
parametric equations
partial fractions, integration
8
9
9
10
11
15
Student
Solomon Press C4G MARKS page 4
Total
75