6665 Core C3 Mark Scheme (Post standardisation) Question Number 1
(b)
(a)
Scheme
Marks
sin 2 θ cos 2 θ 1 + ≡ 2 2 cos θ cos θ cos 2 θ 2 2 Completion : 1 + tan θ ≡ sec θ (no errors seen)
M1
Use of 1 + tan 2 θ = sec 2 θ :
M1
Dividing by cos 2 θ :
2 (sec 2 θ − 1) + sec θ = 1
A1
(2)
[ 2 sec 2 θ + sec θ − 3 = 0 ] Factorising or solving: (2 sec θ + 3)(sec θ − 1) = 0 3
[ sec θ = –
or sec θ = 1 ]
2
θ =0 cos θ = –
M1
B1 2 3
;
M1 A1
θ1 = 131.8 °
A1√
θ 2 = 228.2 °
(6)
[A1ft for θ 2 = 360° – θ1 ]
[8]
1
6665 Core C3 Mark Scheme (Post standardisation) Question Number 2
Scheme
Marks
(a) (i) 6 sin x cos x + 2 sec 2 x tan 2 x
or 3 sin 2 x (ii)
M1A1A1 (3)
+ 2sec 2 x tan 2 x
[M1 for 6 sin x]
B1M1A1 (3)
1
3( x + ln 2 x) 2 (1 + ) x
[ B1 for 3( x + ln 2 x)2 ] (b)
Differentiating numerator to obtain 10x – 10 Differentiating denominator to obtain 2(x-1) Using quotient rule formula correctly: To obtain
dy ( x − 1) 2 (10 x − 10) − (5 x 2 − 10 x + 9)2( x − 1) = dx ( x − 1) 4 2( x − 1)[5( x − 1) 2 − (5 x 2 − 10 x + 9) ( x − 1) 4
Simplifying to form =
3
(a)
−
8 ( x − 1) 3
*
(c.s.o.)
5x + 1 3 − ( x + 2)( x − 1) x + 2 5 x + 1 − 3( x − 1) = ( x + 2)( x − 1) M1 for combining fractions even if the denominator is not lowest common =
2x + 4 = ( x + 2)( x − 1)
2( x + 2) 2 = ( x + 2)( x − 1) x −1
B1 M1
M1 A1 cso (4)
* M1 must have linear numerator
(b)
2 ⇒ xy − y = 2 ⇒ xy = 2 + y x −1 2+x f –1(x) = o.e. x 2 2 fg(x) = 2 (attempt) [ ] " g" − 1 x +4 1 2 and finding x2 = …; x =± 2 Setting 2 = 4 x +4 y=
M1A1 A1
(3)
M1 M1; A1 (3)
[10] 2
6665 Core C3 Mark Scheme (Post standardisation) Question Number
4
(a)
Scheme
f ′ (x) = 3 ex – 3e x
−
(c)
M1A1A1
1 2x
(3) M1
1 =0 2x
⇒ 6α e α = 1
Marks
⇒α =
1 6
e
−α
A1 cso
(*)
x1 = 0.0613..., x 2 = 0.1568.., x3 = 0.1425..., x 4 = 0.1445....
M1 A1
(2) (2)
[M1 at least x1 correct , A1 all correct to 4 d.p.] (d)
1 with suitable interval 2x e.g. f ′ (0.14425) = – 0.0007 Using f ′ (x) = 3 ex –
M1
f ′ (0.14435) = + 0.002(1) Accuracy (change of sign and correct values)
A1
(2)
[9]
3
6665 Core C3 Mark Scheme (Post standardisation) Question Number 5
Scheme
Marks
(a) cos 2A = cos2 A – sin2 A ( + use of cos2 A + sin2 A ≡ 1)
= (1 – sin2 A); – sin2 A = 1 – 2 sin2 A (b)
(*)
A1
2sin 2θ − 3cos 2θ − 3sin θ + 3 ≡ 4sin θ cos θ ; −3(1 − 2sin 2 θ ) − 3sin θ + 3
(2)
B1; M1
M1
≡ 4 sin θ cos θ + 6 sin 2 θ − 3 sin θ (*)
≡ sin θ (4 cos θ + 6 sin θ − 3) (c)
M1
A1
(4)
4 cos θ + 6 sin θ ≡ R sin θ cos α + R cos θ sin α Complete method for R (may be implied by correct answer) [ R 2 = 4 2 + 6 2 , R sin α = 4 , R cos α = 6 ] R=
A1
52 or 7.21
Complete method for α ; (d)
α = 0.588 (allow 33.7º)
sin θ ( 4 cos θ + 6 sin θ − 3 ) = 0
3
M1 A1
(4)
M1
θ =0 sin( θ + 0.588) =
M1
B1 = 0.4160..
(24.6º)
M1
52 θ + 0.588 = (0.4291), 2.7125 [or θ + 33.7 ° = (24.6º), 155.4°]
dM1
θ = 2.12
A1
cao
(5)
[15]
4
6665 Core C3 Mark Scheme (Post standardisation) Question Number 6.
Scheme
(a)
Marks
Translation ← by 1
M1
Intercepts correct
A1
x ≥ 0, correct “shape”
B1
y
0
–2
x
2
(2)
a
(b)
y
[provided not just original] 0
–3
3
x
b
(c)
a = – 2,
Reflection in y-axis
B1√
Intercepts correct
B1
(3)
B1 B1
(2)
b=–1
(d) Intersection of y = 5x with y = – x – 1 Solving to give x = –
M1A1 M1A1
1
(4)
6
[11] [Notes: (i) If both values found for 5x = – x – 1 and 5x = x – 3, or solved algebraically, can score 3 out of 4 for x = –
1 6
and x = – ¾;
required to eliminate x = – ¾ for final mark. (ii) Squaring approach: M1 correct method, 24x2 + 22x + 3 = 0 ( correct 3 term quadratic, any form) A1 Solving M1, Final correct answer A1.]
5
6665 Core C3 Mark Scheme (Post standardisation) Question Number 7
(a)
Scheme
(300 = 2500a); (b)
2800a 1+ a a = 0.12 (c.s.o) *
Setting p = 300 at t = 0 ⇒ 300 =
Marks M1 dM1A1 (3)
2800(0.12)e 0.2 t ; e 0.2 t = 16.2... 0.2 t 1 + 0.12e Correctly taking logs to 0.2 t = ln k
M1A1
t = 14
A1
(4)
B1
(1)
1850 =
M1
(13.9..)
(c) Correct derivation: (Showing division of num. and den. by e 0.2 t ; using a)
M1
(d) Using t → ∞ , e − 0.2t → 0, p→
A1
336 = 2800 0.12
(2)
[10]
6