C3 June 05 Ms

  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View C3 June 05 Ms as PDF for free.

More details

  • Words: 1,082
  • Pages: 6
6665 Core C3 Mark Scheme (Post standardisation) Question Number 1

(b)

(a)

Scheme

Marks

sin 2 θ cos 2 θ 1 + ≡ 2 2 cos θ cos θ cos 2 θ 2 2 Completion : 1 + tan θ ≡ sec θ (no errors seen)

M1

Use of 1 + tan 2 θ = sec 2 θ :

M1

Dividing by cos 2 θ :

2 (sec 2 θ − 1) + sec θ = 1

A1

(2)

[ 2 sec 2 θ + sec θ − 3 = 0 ] Factorising or solving: (2 sec θ + 3)(sec θ − 1) = 0 3

[ sec θ = –

or sec θ = 1 ]

2

θ =0 cos θ = –

M1

B1 2 3

;

M1 A1

θ1 = 131.8 °

A1√

θ 2 = 228.2 °

(6)

[A1ft for θ 2 = 360° – θ1 ]

[8]

1

6665 Core C3 Mark Scheme (Post standardisation) Question Number 2

Scheme

Marks

(a) (i) 6 sin x cos x + 2 sec 2 x tan 2 x

or 3 sin 2 x (ii)

M1A1A1 (3)

+ 2sec 2 x tan 2 x

[M1 for 6 sin x]

B1M1A1 (3)

1

3( x + ln 2 x) 2 (1 + ) x

[ B1 for 3( x + ln 2 x)2 ] (b)

Differentiating numerator to obtain 10x – 10 Differentiating denominator to obtain 2(x-1) Using quotient rule formula correctly: To obtain

dy ( x − 1) 2 (10 x − 10) − (5 x 2 − 10 x + 9)2( x − 1) = dx ( x − 1) 4 2( x − 1)[5( x − 1) 2 − (5 x 2 − 10 x + 9) ( x − 1) 4

Simplifying to form =

3

(a)



8 ( x − 1) 3

*

(c.s.o.)

5x + 1 3 − ( x + 2)( x − 1) x + 2 5 x + 1 − 3( x − 1) = ( x + 2)( x − 1) M1 for combining fractions even if the denominator is not lowest common =

2x + 4 = ( x + 2)( x − 1)

2( x + 2) 2 = ( x + 2)( x − 1) x −1

B1 M1

M1 A1 cso (4)

* M1 must have linear numerator

(b)

2 ⇒ xy − y = 2 ⇒ xy = 2 + y x −1 2+x f –1(x) = o.e. x 2 2 fg(x) = 2 (attempt) [ ] " g" − 1 x +4 1 2 and finding x2 = …; x =± 2 Setting 2 = 4 x +4 y=

M1A1 A1

(3)

M1 M1; A1 (3)

[10] 2

6665 Core C3 Mark Scheme (Post standardisation) Question Number

4

(a)

Scheme

f ′ (x) = 3 ex – 3e x



(c)

M1A1A1

1 2x

(3) M1

1 =0 2x

⇒ 6α e α = 1

Marks

⇒α =

1 6

e

−α

A1 cso

(*)

x1 = 0.0613..., x 2 = 0.1568.., x3 = 0.1425..., x 4 = 0.1445....

M1 A1

(2) (2)

[M1 at least x1 correct , A1 all correct to 4 d.p.] (d)

1 with suitable interval 2x e.g. f ′ (0.14425) = – 0.0007 Using f ′ (x) = 3 ex –

M1

f ′ (0.14435) = + 0.002(1) Accuracy (change of sign and correct values)

A1

(2)

[9]

3

6665 Core C3 Mark Scheme (Post standardisation) Question Number 5

Scheme

Marks

(a) cos 2A = cos2 A – sin2 A ( + use of cos2 A + sin2 A ≡ 1)

= (1 – sin2 A); – sin2 A = 1 – 2 sin2 A (b)

(*)

A1

2sin 2θ − 3cos 2θ − 3sin θ + 3 ≡ 4sin θ cos θ ; −3(1 − 2sin 2 θ ) − 3sin θ + 3

(2)

B1; M1

M1

≡ 4 sin θ cos θ + 6 sin 2 θ − 3 sin θ (*)

≡ sin θ (4 cos θ + 6 sin θ − 3) (c)

M1

A1

(4)

4 cos θ + 6 sin θ ≡ R sin θ cos α + R cos θ sin α Complete method for R (may be implied by correct answer) [ R 2 = 4 2 + 6 2 , R sin α = 4 , R cos α = 6 ] R=

A1

52 or 7.21

Complete method for α ; (d)

α = 0.588 (allow 33.7º)

sin θ ( 4 cos θ + 6 sin θ − 3 ) = 0

3

M1 A1

(4)

M1

θ =0 sin( θ + 0.588) =

M1

B1 = 0.4160..

(24.6º)

M1

52 θ + 0.588 = (0.4291), 2.7125 [or θ + 33.7 ° = (24.6º), 155.4°]

dM1

θ = 2.12

A1

cao

(5)

[15]

4

6665 Core C3 Mark Scheme (Post standardisation) Question Number 6.

Scheme

(a)

Marks

Translation ← by 1

M1

Intercepts correct

A1

x ≥ 0, correct “shape”

B1

y

0

–2

x

2

(2)

a

(b)

y

[provided not just original] 0

–3

3

x

b

(c)

a = – 2,

Reflection in y-axis

B1√

Intercepts correct

B1

(3)

B1 B1

(2)

b=–1

(d) Intersection of y = 5x with y = – x – 1 Solving to give x = –

M1A1 M1A1

1

(4)

6

[11] [Notes: (i) If both values found for 5x = – x – 1 and 5x = x – 3, or solved algebraically, can score 3 out of 4 for x = –

1 6

and x = – ¾;

required to eliminate x = – ¾ for final mark. (ii) Squaring approach: M1 correct method, 24x2 + 22x + 3 = 0 ( correct 3 term quadratic, any form) A1 Solving M1, Final correct answer A1.]

5

6665 Core C3 Mark Scheme (Post standardisation) Question Number 7

(a)

Scheme

(300 = 2500a); (b)

2800a 1+ a a = 0.12 (c.s.o) *

Setting p = 300 at t = 0 ⇒ 300 =

Marks M1 dM1A1 (3)

2800(0.12)e 0.2 t ; e 0.2 t = 16.2... 0.2 t 1 + 0.12e Correctly taking logs to 0.2 t = ln k

M1A1

t = 14

A1

(4)

B1

(1)

1850 =

M1

(13.9..)

(c) Correct derivation: (Showing division of num. and den. by e 0.2 t ; using a)

M1

(d) Using t → ∞ , e − 0.2t → 0, p→

A1

336 = 2800 0.12

(2)

[10]

6

Related Documents

C3 June 05 Ms
December 2019 9
C3 June 05
December 2019 6
C2 June 05 Ms
December 2019 10
C3 Jan 06 Ms
December 2019 11
C3 Jan 07 Ms
December 2019 7
2006 June Ms
May 2020 7