Busquedas_ortega Canul Jonathan Aldair Ortega Canul.docx

  • Uploaded by: Jonathan Ortega
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Busquedas_ortega Canul Jonathan Aldair Ortega Canul.docx as PDF for free.

More details

  • Words: 985
  • Pages: 4
TECNOLÓGICO NACIONAL DE MÉXICO

Instituto Tecnológico Superior de Valladolid Alumno: Jonathan Aldair Ortega Canul.

Número de matrícula: 18070037

Asignatura: Matemáticas Discretas.

Docente: M.M Jorge Manuel Pool Cen.

Actividad: Busquedas.

Fecha: 19-noviembre-2018

TECNOLÓGICO NACIONAL DE MÉXICO

Iteración 1

Iteración 5

T = {a, b, c, d, e, f, g, h, i, j, z}

T= {d, e, f, g, i, j, z}

V=a L(a)=0

V= e L(e)=5

L(b)= min {∞, 0 + 3} = 3

L(f)= min {7, 5 + 4} = 7

L(e)= min {∞, 0 + 5} = 5

Iteración 6

L(h)= min {∞, 0 + 4} = 4

T = {d, f, g, i, j, z}

Iteración 2 T= {b, c, d, e, f, g, h, i, j, z} V= b L(b)=3 L(c)= min {∞, 3 + 2} = 5 L(e)= min {5, 3 + 5} = 5

V= i L(i)=6 L(f)= min {7, 6 + 4} = 7 L(j)= min {∞, 6 + 6} = 12 Iteración 7

L(f)= min {∞, 3 + 7} = 10

T= {d, f, g, j, z}

Iteración 3

V= f L(f)= 7

T= { c, d, e, f, g, h, i, j, z}

L(g)= min {11, 7 + 4} = 11

V=h L(h) =4

L(j)= min {12, 7 + 3} = 10

L(e)= min {5, 4 + 7} = 5

Iteración 8

L(i)= min {∞, 4 + 2} = 6

T= {d, g, j, z}

L(f)= min {10, 4 + 5} = 9 Iteración 4 T= {c, d, e, f, g, i, j, z} V= c L(c)= 5 L(d)= min {∞, 5 + 3} = 8 L(f)= min {9, 5 + 2} = 7 L(g)= min {∞, 5 + 6} = 11

V= d L(d)= 8 L(g)= min {11, 8 + 7} = 11 L(z)= min {∞, 8 + 2} = 10 Iteración 9 T= {g, j, z}

V= j L(j)= 10

L(g)= min {11, 10 + 4} = 11 L(z)= min {10, 10 + 5} = 10

TECNOLÓGICO NACIONAL DE MÉXICO

Iteración 10

Iteración 4

T= {g, z}

T= {d, e, f, g, i, j, z}

V=z L(z)= 10

V=f L(f)=4

L(g)= min {11, 10 + 6} = 11.

L(e)= min {5, 4 + 4} = 8

Resultados del 1 al 3.

L(h)= min {7, 4 + 5} = 7

1. {7; (a, b, c, f)} 2. {11; (a, b, c, g)} 3. {10; (a, b, c, d, z)}

L(i)= min {∞, 4 + 4} = 8 L(g)= min {8, 4 + 4} = 8 L(j)= min {∞, 4 + 3} = 7 Iteración 5 T= {d, e, g, i, j, z}

Búsqueda del 4. b, j

V= e L(e)= 5 L(h)= min {7, 5 + 7} = 7

Iteración 1

Iteración 6

T = {a, b, c, d, e, f, g, h, i, j, z}

T= {d, g, i, j, z}

V=b L(b)=0

V=d L(d)=5

L(a)= min {∞, 0 + 3} = 3

L(g)= min {8, 5 + 7} = 7

L(e)= min {∞, 0 + 5} = 5 L(f)= min {∞, 0 + 7} = 7 L(c)= min {∞, 0 + 2} = 2 Iteración 2

L(z)= min {∞, 5 + 2} = 7 Iteración 7 T= { g, i, j, z}

T = {a, c, d, e, f, g, h, i, j, z}

V=j L(j)= 7

V= c L(c)=2

L(i)= min {8, 7 + 6} = 8

L(f)= min {7, 2 + 2} = 4

L(g)= min {8, 7 + 4} = 8

L(d)= min {∞, 2 + 3} = 5

L(z)= min {7, 7 + 7} = 7

L(g)= min {∞, 2 + 6} = 8

Resultado de la búsqueda de b, j

Iteración 3 T = {a, d, e, f, g, h, i, j, z} V=a L(a)=3 L(e)= min {5, 3 + 5} = 5 L(h)= min {∞, 3 + 4} = 7

4. {7;(b, c, f, j)}

TECNOLÓGICO NACIONAL DE MÉXICO

Búsqueda del 5. h, d.

Iteración 6

Iteración 1

T = {b, d, e, g, j, z}

T = {a, b, c, d, e, f, g, h, i, j, z} V=h L(h)=0 L(a)= min {∞, 0 + 4} = 4 L(e)= min {∞, 0 + 7} = 7 L(f)= min {∞, 0 + 5} = 5 L(i)= min {∞, 0 + 2} = 2 Iteración 2 T = {a, b, c, d, e, f, g, i, j, z} V=i L(i)=2 L(f)= min {5, 2 + 4} = 5 L(j)= min {∞, 2+ 6} = 8 Iteración 3 T = {a, b, c, d, e, f, g, j, z} V=a L(a)=4 L(b)= min {∞, 4+ 3} = 7 L(e)= min {7, 4+ 5} = 7 Iteración 4 T = {b, c, d, e, f, g, j, z} V=f L(f)=5 L(b)= min {7, 5+ 7} = 7 L(e)= min {7, 5+ 4} = 7 L(j)= min {8, 5+ 3} = 8

V=b L(b)=7 L(e)= min {7, 7 + 5} = 7 Iteración 7 T= { d, e, g, j, z} V=e L(e)=7 No hay ninguno para evaluar por lo tanto e se elimina. Iteración 8 T= { d, g, j, z} V=j L(j)=8 L(g)= min {9, 8+ 4} = 9 L(z)= min {∞, 8+ 5} = 13 Iteración 9 T= {d, g, z} V=g L(g)= 9 L(d)= min {10, 9+ 7} = 10 L(z)= min {13, 9+ 6} = 13 Iteración 10 T= { d, z} V=d L(d)= 10 L(z)= min {13, 10 + 2} = 12 Resultado de la búsqueda del 5. h,d 5. {10;(h, f, c, d)}

L(g)= min {∞, 5+ 4} = 9 L(c)= min {∞, 5+ 3} = 7 Iteración 5 T = {b, c, d, e, g, j, z} V= c L(c)=7 L(b)= min {7, 7+ 2} = 7 L(g)= min {9, 7+ 6} = 9 L(d)= min {∞, 7+ 3} = 10

Respuesta del problema del par de la ruta mas corta es es: 1. {7; (a, b, c, f)} 4. {7;(b, c, f, j)}

Related Documents

Ortega
May 2020 16
Ortega
April 2020 17
Jonathan
June 2020 25
Jonathan
November 2019 41

More Documents from ""

Y La Paz De Dios.docx
October 2019 22
Simuladores.docx
November 2019 56
Documento Folleto 2
December 2019 59
May 2020 39
Vocabulario Sensorial
December 2019 48