Bowen 2009 Prelim Am P2 Solutions

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Bowen 2009 Prelim Am P2 Solutions as PDF for free.

More details

  • Words: 1,292
  • Pages: 6
2009 prelims A-Math 4EX/5NA P2 Solutons 1ai

  60  2 x  30   60  ,120  ,420  ,480  x  15  ,45  ,195  ,225 .

1aii

1  3(1  sin 2 y )  4 sin y 3 sin 2 y  4 sin y  4  0 (3 sin y  2)(sin y  2)  0 2 sin y  or sin y  2 (NA) 3   41.8  x  41.8  ,138.2 

1bi

sec (90o + A) 

1 cos(90   A)

1 cos 90 cos A  sin 90  sin A 1   sin A = - cosecA 1bii sin 5 B  sin 3B  sin B 2 sin 3B cos 2 B  sin 3B  cos 5B  cos 3B  cos B 2 cos 3B cos 2 B  cos 3B sin 3B (2 cos 2 B  1)  cos 3B (2 cos 2 B  1)  tan 3B 2a AB  7 sin  , BC  4 cos  P  2(7 sin   4 cos  )  14 sin   8 cos 2b P  260 sin(  29.7  )  10 10 sin(  29.7  )  260    8.63 

2c



Max = 260 cm = 16.1 cm when   29.7   90    60.3 .

3 3a

dy  ln 2 x  1 dx ln 2 x  1  0

1 2e  0.184 d2y 1   2e > 0 dx 2 x  min pt. dy  0.2 dt dx 1  0.2  dt ln 2  1 = 0.118 units2. dy  2 sec 2 2 x dx 2   cos 2 4 4 x

3b

4a

grad of normal = 

4b

1   1   c 4 8   c  1 32 x   y   1 4 32 dy 2 x  3  2 x  dx (2 x  3) 2 3  (2 x  3) 2 0  no turning pt.

1 4

1 2

1

5a 5b

5c

YPZ  PXY (angles in alt seg) PZY  XZP (common angle) PZ YZ  (similar ∆s) PX PY  PZ  PY  PX  YZ YZ  XZ  PZ 2 (tan-sec thm)

 PX  YZ     PY  2 YZ  XZ  PX    YZ 2  PY 

2

2

6a

XZ  PX     YZ  PY  Let f ( x)  x 3  3x 2  2 x  k 2 f (3)  f (2) 2(k  6)  k  16

6b

k  4 x  0, s  3.

x  1, p  6. x 3 : q  5. x2 : 6  5  r  r  1 7a

6 2 3



 2  2 3 2  3  2  2 3 3 2 2   23  2 3  3 2  2

2 3

=

6

3 2 3  2  3    3  2  3  2  3  2 2 3 2 33 23 2 2 3  2 3 3

 2 4 3  2 3 3

7b

 

3(3 x ) 2  9 3 x  6  0 (3 x ) 2  3(3 x )  2  0 (3 x  1)(3 x  2)  0

3 x = 1 or 3 x =2 lg 2 x = 0 or x = lg 3 = 0.631

8a

8b

9a

2

2

Perpendicular height of isos ∆ = 13x   5 x  = 12x. 1  10 x  12 x  h  3840 2 64 h 2 x 1 A = 2h(13x )  h(10 x )  10 x 12 x  2 2304 =  60 x 2 x dA 2304   2  120 x  0 dx x 3 x  19.2 x  2.68 d 2 A 4608  3  120 > 0 dx 2 x  min A = 1290 cm2  1  Tr 1 10 C r (2 x 2 )10 r   3   3x 

r

r

 1  C r (2)     x 205r  3 20  5r  5 r 5 5  1 coeff. = 10 C 5 (2) 5     3 896 = 27 6 (1  ax)  1  6ax  6C 2 a 2 x 2  ... 10  r

10

9b

(1  bx )(1  ax) 6  (1  bx)(1  6ax  6C 2 a 2 x 2  ...) x : 6a  b  0 x 2 : 15a 2  6ab   a2 

1 9

1 a   , b  2 3

7 3

10a

Centre = mid-pt = (0, -1) 32 Radius = 2 2 2 ( x  0) 2  ( y  1) 2  8 x2  y2  2y  7  0

10b

11a

( x  4) 2  ( y  1) 2  5 y   x 2  8 x  11  5 dy x4  dx  x 2  8 x  11 dy 1 1 x  3,   or dx 4 2 1 3  (3)  c 2 3 c 2 x 3 y  2 2 y  a(1  x) n lg y  lg a  n lg(1  x ) plot lg y against lg(1 + x) lg(1 + x) lg y

0.301 0.5416

Gradient = normal ( x  4) 2  ( y  1) 2  5 centre = (4, 1) to circ = (3, 3) gradient = -2 dy 1   dx 2 1 3  (3)  c 2 3 c 2 x 3 y  2 2

0.477 0.683

0.602 0.782

0.699 0.860

0.778 0.924

lg y

lg y  lg a  n lg(1  x )

lg(1 + x)

From graph, gradient = n = 0.8, Y-intercept = lg a = 0.3, a = 2.

11b

12

2 1  xy    2   2 5x  2 2 y 3  x 5x 2 ( x  k )  2( x  k )  1  4 x  0 x 2  ( 2k  6) x  k 2  2 k  1  0

13 13ai

(2k  6) 2  4(k 2  2k  1) < 0  16k  32 < 0 2
  (   ) 2  2  = 2 2  2 36  4  4 8 13aii (   ) 3   3  3 2   3 2   3  3   3  (   ) 3  3 (   )  6 3  3(2)(6)  180 13b    New sum = 2 2  =8  1  new product = 4 4 1 new eqn: x 2  8 x   0 4

Related Documents