Body Composition Assessment

  • Uploaded by: Michael Zanovec
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Body Composition Assessment as PDF for free.

More details

  • Words: 1,248
  • Pages: 16
Nutrition & Health  Assessment  Lab

1.

To identify health risks associated with excessively  high or low levels of total body fat high or low levels of total body fat

2.

To formulate dietary recommendations and  exercise prescriptions

3.

To assess the effectiveness of nutrition and  exercise interventions in altering body  composition 

4.

To monitor changes over time

1

y

Some techniques are better than others

y

For the best results: ‚ consider validity/reliability issues ‚ choose population‐specific prediction           equations/norm charts for interpretation ‚ use same method for pre‐post comparisons

The sum of all 6 components = total body weight

These six components can be “grouped” g p to create two component systems

2

The most simple model  divides the body into fat divides the body into fat  and fat‐free mass y This is the basis for most  body composition  techniques y

‚ ‚ ‚ ‚

Fat

Underwater weighing BMI Skinfold thickness measurements Bioelectrical impedance

Fat Bone mineral

Fat‐free  body

Bone‐ free  lean  tissue

2-C

3-C

BMI, WHR, SKF, BIA

DXA

3

y

KNOW THESE CONVERSIONS!!!

Weight / height g g 2

lbs / 2.2 lbs. 2 2 = Kg

‚ Kg/m2  ‚ Lbs/in2 * 703

inches * 2.54 = cm

y

BMI is a quick and easy way to determine if  one’s weight is appropriate for their height

y

Strong evidence suggests that a BMI ≥ Strong evidence suggests that a BMI ≥ 25  25 2 kg/m greatly increases possible health  risks

y y

Correlates well (r = 0.70) with HW SEE = 5% BF

70 Women

Body Fat (%)

60

Men

50 40 30 20 10 0

0

10

20

30

Body Mass Index

40

50

60

(kg/m2)

Adapted from: Gallagher et al. Am J Clin Nutr 2000;72:694.

4

Underweight

< 18.5

Normal

18.5 ‐ 24.9

Overweight

25 ‐ 29.9 

Class 1 Obesity    Class 2 Obesity    Class 3 Obesity    (morbid obesity)

30 ‐ 34.9 35 ‐ 39.9 > 40   

y

BMI (in kg/m2) is currently used in epidemiological  studies to express weight adjusted for height and to studies to express weight adjusted for height and to  classify obesity.

y

Cut points of 25 and 30 are used to define overweight  and obesity in adults.

y

The 85th and 95th gender‐ and age‐specific percentiles  are used to classify children and adolescents as at risk  for overweight and overweight.

National Institutes of Health, 1998

5

y

There is considerable variability  in body composition for any in body composition for any  given BMI

y

BMI assumes that after  adjusting weight for height, all  individuals have the same  relative fatness regardless of  l ti f t dl f age, gender, race, and level of  physical activity (or body build)

6

BMI--for BMI for--Age Percentiles Overweight (≥ 95th) At risk for overweight (85th – <95th) Healthy weight (>5th – <85th)

Underweight (≤ 5th)

y

Gallagher et al. (1996) equation ‚ % BF = (1.46 (1 46 * BMI) + (0.14 (0 14 * Age) – (11.6 (11 6 * gender) – 10 ‚ SEM = 5.7%

y

Zanovec et al. (2009) equation  ‚ % BF = (1.54 * BMI) – (16.35 * gender) – (0.99 * race) – 4.94 4 94 ‚ R2 = 0.81; SEM = 4.1%

Note:

For gender: female = 0, male = 1 race: white = 0, black = 1

7

Distribution of fat can be a better indicator of disease risk than total fat

Android ‐ describes excess  fat in the abdominal region z Gynoid ‐ excess fat in the hips  and thighs z

z Android obesity is associated 

with increased risk for:  hypertension, CAD, Type II  diabetes, hyperlipidemia,  premature death

8

y

How much is too much? Very high health risk: Young

Males   Females y

> .94 > .82

60‐69 yrs.

> 1.03 > .90

Example Example: Waist =  Hips =

32 inches 40 inches

WHR = 

.80

40 inches 40 inches

1.0

y

Compared to WHR, WC provides a more accurate  indirect measure of visceral fat and is not greatly indirect measure of visceral fat and is not greatly  influenced by age, gender, standing height, and  degree of overall adiposity

y

The National Cholesterol Education Program (NCEP,  2001) recommends using WC cutoff values of >40 in. ) g for men and >35 in. for women to evaluate  obesity as a risk factor for CHD and metabolic  diseases

9

z

Technique based on the assumption that ~50% of all fat in the body  is subcutaneous fat

z

There are 9 standardized sites for skinfold measurements

z

%BF estimated from skinfolds correlates well with hydrostatic  weighing (r > 0.8)

z

SKF prediction is ~3‐5% compared with H2O weighing (w/ trained  tech; appropriate equations)

z

Greatest source of error is site location and technique 

10

y

Take all measurements on the right side

y

Grasp the SKF firmly between the thumb and index  Grasp the SKF firmly between the thumb and index finger of your left hand at a distance 1 cm above  the marked site

y

Place the jaws of the caliper halfway between the  crest  and base of the fold

y

Take the SKF measurement 4 sec after the  pressure is released

y

Read the dial to the nearest 0.5 mm

y

Take a minimum of 2 measurements at each site  and a third measurement if >10% difference

y

Take SKF measurements in a rotational order  (triceps, calf, triceps, calf, etc.)

y

Two‐site Skinfold test ‐ easiest ‚ Triceps and calf

y

Calculating % BF (Slaughter et al., 1988) ‚ Males: % BF = 0.735 (Σ SF) + 1 ‚ Females: % BF = 0.610 (Σ SF) + 5.1 ‚ SEE = 3.8%

y

Most appropriate for White and Black boys  and girls ages 8‐17

y

Note: for males >18, use (‐5.5) instead of  (+1)

11

z Involves low dosage energy beams used to  

scan the body th b d z Assumes a three compartment model: (fat, 

bone mineral, and non‐bone lean tissue) z Each compartment has a different density z Errors are reported to be 1.2 to 4.8%

12

DXA partitions the body into two separate 2C models: 1. Soft tissue and bone mineral 2. Fat and lean

When the dual-energy Xray beams pass over an area that does contain bone, DXA can analyze the area for soft tissue mass and bone mineral

mass

13

Lean individual 4.4% fat

Obese individual 45.9% fat

z Assumes that tissues high in water content 

(lean (lean mass) conduct current better than  mass) conduct current better than those low in water (fat mass) Muscle is ~73% H2O z Fat is ~13‐15% H2O z

TANITA – foot-to-foot

XITRON – hand-to-foot

14

y

The following conditions help ensure accuracy of  measurement: ‚ No alcohol 48 hours before the test ‚ Avoid intense exercise 12 hours before the test ‚ Avoid eating or drinking (especially caffeinated products) 4  hours before the test hours before the test ‚ Empty bladder 30 minutes before test

1.

Subtract fat‐free mass (FFM) estimated from BIA  from total body weight (kg) from total body weight (kg)

2.

Divide your answer (fat‐mass) by total weight and  multiply by 100 SEE = 5.1%

15

y

Compare % BF of class subject predicted  f from BMI, BIA, and measured by DXA d db ‚ Does the predicted value fall within the CI created  using the standard error of the measurement (SEM)? ‚ 68% CI = ± 1 SD or 2*SEM ‚ 95% CI = ± 2 SD or 2*SEM

FYI: For interactive body composition  tutorials,  go to http://nutrition.uvm.edu/bodycomp/

y

16

Related Documents


More Documents from ""