blast furnace
Besi dan baja merupakan logam yang banyak digunakan dalam teknik; dan meliputi 95% dari seluruh produksi logam dunia. untuk penggunaan tertentu, besi dan baja merupakan satu-satunya logam yang memenuhi persyaratan teknis maupun ekonomis, namun di beberapa bidang lainnya logam ini mulai mendapat persaingan dari logam bukan besi dan bahan bukan logam. diperkirakan bahwa besi telah dikenal manusia disekitar tahun 1200 SM. Proses pembuatan baja diperkenalkan oleh Sir Henry Bessemer dari Inggris sekitar tahun 1800, sedang William Kelly dari Amerika pada waktu yang hampir bersamaan berhasil membuat besi malleable. hal ini menyebabkan timbulnay persengketaan mengenai masalah paten. Dalam sidang-sidang pengasilan terbukti bahwa WIlliam Key lebih dahulu mendapatkan hak paten. PEMBUATAN BESI KASAR Bahan utama besi dan paduannya adalah besi kasar, yang dihasilkan dalam tanur tinggi. Bijih besi yang dicampur dengan kokas dan batu gamping (batu kapur) dilebur dalam tanur ini. Komposisi kimia besi yang dihasilkan bergantung pada jenis bijih yang digunakan. Jenis bijih besi yang lazim digunakan adalah hematit, magnetit, siderit dan himosit. Hematit (Fe2O3) adalah bijih besi yang paling banyak dimanfaatkan karena kadar besinya tinggi, sedangkan kadar kotorannya relatif rendah. Meskipun pirit (FeS2) banyak ditemukan, jenis bijih ini tidak digunakan karena kadar sulfur yang tinggi sehingga diperlukan tahap pemurnian tambahan. Karena di alam ini besi berbentuk oksida dan karbonat, atau sulfida sehingga hampir semua proses produksinya diawali dengan reduksi dengan gas reduktor H2 atau CO. 1. Proses Reduksi Tidak Langsung (Indirect Reduction)
Pada proses ini menggunakan tungku tanur tinggi (blast furnace) dengan porsi 80% diproduksi dunia. Besi kasar dihasilkan dalam tanur tinggi. Diameter tanur tinggi sekitar 8m dan tingginya mencapai 60 m. Kapasitas perhari dari tanur tinggi berkisar antara 700 – 1600 Megagram besi kasar. Bahan baku yang terdiri dari campuran bijih, kokas, dan batu kapur, dinaikkan ke puncak tanur dengan pemuat otomatis, kemudian dimasukkan ke dalam hopper. Untuk menghasilkan 100 Megagram besi kasar diperlukan sekitar 2000 Megagram bijih besi, 800 Megagram kokas, 500 Megagram batu kapur dan 4000 Megagram udara panas. Bahan baku tersebut disusun secara berlapis-lapis. Udara panas dihembuskan melalui tuyer sehingga memungkinkan kokas terbakar secara efektif dan untuk mendorong terbentuknya karbon monoksida (CO) yang bereaksi dengan bijih besi dan kemudian menghasilkan besi dan gas karbon dioksida (CO2). Dengan digunakannya udara panas, dapat dihemat penggunaan kokas sebesar 30% lebih. Udara dipanaskan dalam pemanas mula yang berbentuk menara silindris, sampai sekitar 500*C. Kalor yang diperlukan berasal dari reaksi pembakaran gas karbon monoksida yang keluar dari tanur. Udara panas tersebut memasuki tanur melalui tuyer yang terletak tepat di atas pusat pengumpulan besi cair. Batu kapur digunakan sebagai fluks yang mengikat kotoran-kotoran yang terdapat dalam bijih-bijih, dan membentuk terak cair. Terak cair ini lebih ringan dari besi cair dna terapung diatasnya dan secara berkala disadap. Besi cair yang telah bebas dari kotoran-kotoran dialirkan kedalam cetakan setiap 5 – 6 jam. Disamping setiap Megagram besi dihasilkan pula 0,5 Megagram terak dan 6 Megagram gas panas. Terak dapat dimanfaatkan sebagai bahan bangunan (campuran beton) atau sebagai bahan isolasi panas. Gas panas dibersihkan dan digunakan untuk pemanas mula udara, untuk membangkitkan energi atau sebagai media pembakar dapur-dapur lainnya. Komposisi besi kasar dapat dikendalikan melalui pengaturan kondisi operasi dan pemilihan susunan campuran bahan baku. 2. Proses Reduksi Langsung (Direct Reduction) Pada proses reduksi langsung bijih besi bereaksi dengan gas atau bahan padat reduksi membentuk sponge iron.*Proses ini diterapkan di PT Krakatau Steel, CIlegon.* Disini bijih besi / pellet direaksikan dengan gas alam dalam dua unit pembuat sponge iron, yang masing-masing berkapasitas 1juta ton pertahun. *Sponge iron yang dihasilkan PT Krakatau Steel memiliki komposisi kimia : Fe : 88 – 91 %; C : 1,5 – 2,5%; SiO2 : 1,25 – 3,43%; Al2O3 : 0,61 – 1,63%; CaO : 0,2 – 2,1%; MgO : 0,31 – 1,62%; P : 0,014 – 0,027%; Cu : 0,001 – 0,004 %; Kotoran (oksida lainnya) : 0,1 – 0,5 % Tingkat metalisasi : 86 – 90 % Sponge Iron yang berbentuk butiran kemudian diolah lebih lanjut dalam dapur listrik. Disini sponge iron bersama-sama besi tua (scrap), dan paduan ferro dilebur dan diolah menjadi billet baja.
Untuk menghasilkan 63 megagram sponge iron diperlukan sekitar 100 megagram besi pellet. Proses ini sangat efektif untuk mereduksi oksida-oksida dan belerang sehingga dapat dimanfaatkan bijih besi berkadar rendah Besi diekstraksi dari oksida besi dengan reduktor karbon. Besi diolah dari bijihnya dalam suatu tungku yang disebut tanur tiup (blast furnance) (lihat Gambar). Tanur tiup berbentuk silinder raksasa dengan tinggi 30 m atau lebih dan diameter bagian tengah sekitar 8 m. Bahan yang digunakan pada pengolahan besi, selain bijih besi adalah kokas (C) dan batu kapur (CaCO3). Kokas berfungsi sebagai reduktor, sedangkan batu kapur berfungsi sebagai fluks, yaitu bahan yang akan bereaksi dengan pengotor dalam bijih besi dan memisahkan pengotor itu dalam bentuk cairan kental yang disebut terak (slag). Komposisi bahan-bahan tersebut bergantung pada pengotor dalam bijih besi. Bijih besi mengandung pengotor, baik yang bersifat asam seperti SiO 2 (pasir), Al2O3, dan P2O5, maupun pengotor yang bersifat basa seperti CaO, MgO, dan MnO. Akan tetapi, biasanya pengotor yang bersifat asam lebih banyak sehingga perlu ditambahkan fluks yang bersifat basa, yaitu CaCO3. Proses/reaksi yang terjadi pada pengolahan besi dalam garis besarnya adalah sebagai berikut. Bijih besi, kokas, dan batu kapur diumpankan dari puncak tanur, sementara dari bagian bawah ditiupkan udara panas. Kokas terbakar pada bagian bawah tanur dengan membebaskan kalor sehingga suhu di daerah itu dapat mencapai 2000°C.
Gambar. Pengolahan bijih besi yang menggunakan tanur tiup (blast furnance)
C(s) + O2(g) → CO2(g) + kalor ketika bergerak naik, gas CO2 yang baru terbentuk itu bereaksi lagi dengan kokas yang bergerak turun membentuk CO.
CO2(g) + C(s) → 2CO(g) Gas CO inilah yang akan mereduksi bijih besi secara bertahap (lihat gambar): (+3) (+3/+2) (+2) (0) Fe2O3 → Fe3O4 → FeO → Fe Reaksi totalnya dapat dituliskan sebagai berikut.
Fe2O3(s) + 3CO(g) → 2Fe(l) + 3CO2(g) Oleh karena suhu tanur sangat tinggi, besi yang terbentuk berupa cairan. Reaksi pembentukan terak yang menghilangkan pengotor adalah sebagai berikut. CaCO3(s) → CaO(s) + CO2(g) (800 – 900°C) CaO(s) + SiO2(s) → CaSiO3(l) (1200°C) 3CaO(s) + P2O5(g) → Ca3(PO4)2(l) (1200°C) Reaksi yang menghasilkan pengotor yang larut dalam besi cair. MnO + C → Mn + CO (14000C) SiO2 + 2C → Si + 2CO (14000C) P2O5 + 5C → 2P + 5CO (14000C) Mn, Si, P, C, dan S larut dalam besi cair. Besi cair turun ke dasar tanur dan dikeluarkan secara periodik. Adapun terak, karena massa jenisnya lebih kecil, mengapung di atas besi cair itu. Lapisan terak sekaligus berfungsi melindungi besi cair dari oksidasi kembali. Terak dikeluarkan dari saluran tersendiri dan dapat digunakan sebagai bahan dasar pembuatan jalan raya atau bahan pupuk. Besi yang dihasilkan dari tanur tiup disebut besi gubal (pig iron) atau besi kasar, mengandung kira-kira 95% besi, 3 – 4% karbon, dan sisanya pengotor lain seperti Mn, Si, P, dan S. Besi gubal bersifat keras tetapi rapuh. Pada umumnya, sebagian besar besi gubal langsung diproses untuk membuat baja. Sebagian lain dapat dialirkan ke dalam cetakan sehingga diperoleh besi tuang (cast iron). Besi tempa diperoleh dari besi gubal dengan mengurangi kadar karbon. Besi tempa lebih lunak dan tidak rapuh.
Baja merupakan salah satu bahan yang sangat banyak dipakai di seluruh dunia untuk keperluan kehidupan manusia, khususnya di dunia industri. Ditemukan buat pertama kali oleh orang Mesir lebih dari 4000 tahun yang lalu untuk perhiasan dan alat rumah tangga yang kemudian berkembang menjadi bahan berharga dan dimanfaatkan orang setiap hari saat ini.
Untuk menjadikan baja, banyak proses yang dilakukan, sehingga membutuhkan ilmu pengetahuan dan teknologi agar dapat dipakai dalam berbagai keperluan. A. Pembuatan Besi Kasar Besi kasar adalah hasil pengolahan dari bijih besi dengan melalui beberapa proses. Proses awal adalah dengan mengurangi senyawa-senyawa dan zat-zat lain yang terkandung dalam bijih besi dengan tahap sebagai berikut : Dibersihkan. Dipecah-pecah dan digiling sampai menjadi halus, sehingga partikel besi dapat dipisahkan dari bahan yang tidak diperlukan dengan menggunakan magnit. Dibentuk menjadi “pellet” (bulatan-bulatan kecil) dengan diameter + 14 mm. Untuk memudahkan dalam pembentukan “pellet” maka ditambahkan tanah liat, sehingga dapat dirol menjadi bentuk bulat. Setelah proses awal dilakukan, maka bijih besi diproses pada dapur tinggi. Dapur tinggi mempunyai konstruksi yang cukup besar dengan ketinggian mencapai 100 meter. Dinding luar terbuat dari baja dan bagian dalam dilapisi batu tahan api yang mampu menahan temperatur tinggi. Pada bagian atas dapur tinggi terdapat corong untuk memasukkan bahan baku, yaitu bijih besi, kokas dan batu kapur. Kokas adalah batu bara yang telah diproses (disuling kering) sehingga dapat menghasilkan panas yang tinggi. Batu kapur berfungsi untuk mengikat bahanbahan yang tidak diperlukan. Proses pada dapur tinggiadalah dengan meniupkan udara panas ke dalam dapur tinggi untuk membakar kokas dengan temperatur + 2000 ⁰ C. Cairan besi dan terak akan turun ke dasar dapur tinggi secara perlahan-lahan dan selanjutnya dituang ke kereta khusus. Hasil ini disebut besi kasar, yang kemudian dapat diproses lebih lanjut menjadi baja. B. Proses Pembuatan Baja
Besi kasar dari hasil proses dapur tinggi, kemudian diproses lanjut untuk dijadikan berbagai jenis baja. Ada beberapa proses yang dilakukan untuk merubah besi kasar menjadi baja : 1. Dapur Baja Oksigen (Proses Bassemer) Pada dapur baja oksigen dilakukan proses lanjutan dari besi kasar menjadi baja, yakni dengan membuang sebagian besar karbon dan kotoran-kotoran (menghilangkan bahan-bahan yang tidak diperlukan) yang masih ada pada besi kasar. Ke dalam dapur dimasukkan besi bekas, kemudian baru besi kasar, tapi sebagian fabrik baja banyak yang langsung dari dapur tinggi, sehingga masih dalam keadaan cair langsung disalurkan ke dapur Oksigen.
Kemudian, udara (oksigen) yang didinginkan dengan air dan kecepatan tinggi ditiupkan ke cairan logam. Ini akan bereaksi dengan cepat antara karbon dan kotoran-kotoran lain yang akan membentuk terak yang mengapung pada permukaan cairan. Dapur dimiringkan, maka cairan logam akan keluar melalui saluran yang kemudian ditampung dalam kereta-kereta tuang. Untuk mendapatkan spesifikasi baja tertentu, maka ditambahkan campuran lain sebagai bahan paduan. Hasil penuangan ini dapat langsung dilanjutkan dengan proses pengerolan untuk mendapatkan bentuk/profil yang diinginkan. 2. Dapur Baja Terbuka (Siemens Martin) Sama halnya dengan Dapur Baja Oksigen, maka dapur baja terbuka (Siemens Martin) juga merupakan dapur yang digunakan untuk memproses besi kasar menjadi baja. Dapur ini dapat menampung baja cair lebih dari 100 ton dengan proses mencapai temperatur + 1600 ⁰ C; wadah besar serta berdinding yang sangat kuat dan landai. Proses pembuatan dengan dapur ini adalah proses oksidasi kotoran yang terdapat pada bijih besi sehingga menjadi terak yang mengapung pada permukaan baja cair. Oksigen langsung disalurkan kedalam cairan logam melalui tutup atas. Apabila selesai tiap proses, maka tutup atas dibuka dan cairan baja disalurkan untuk proses selanjutnya untuk dijadikan bermacammacam jenis baja. 3. Dapur Baja Listrik Panas yang dibutuhkan untuk pencairan baja adalah berasal arus listrik yang disalurkan dengan tiga buah elektroda karbon dan dimasukkan/diturunkan mendekati dasar dapur. Penggunaan arus listrik untuk pemanasan tidak akan mempengaruhi atau mengkontaminasi cairan logam, sehingga proses dengan dapur baja listrik merupakan salah satu proses yang terbaik untuk menghasilkan baja berkualitas tinggi dan baja tahan karat (stainless steel). Dalam proses pembuatan, bahan-bahan yang dimasukkan adalah bahan-bahan yang benarbenar diperlukan dan besi bekas. Setelah bahan-bahan dimasukkan, maka elektroda-elektroda listrik akan memanaskan bahan dengan panas yang sangat tinggi (+ 7000 ⁰ C), sehingga besi bekas dan bahan-bahan lain yang dimasukkan dengan cepat dapat mencair. Adapun campuran-campuran lain (misalnya untuk membuat baja tahan karat) dimasukkan setelah bahan-bahan menjadi cair dan siap untuk dituang. C. Proses Pembentukan dan Bentuk-bentuk Produk Baja Pembentukan baja adalah tahap lanjutan dari proses pengolahan baja dengan berbagai jenis dapur baja. Baja yang telah cair dan ditambah dengan campuran lain (sesuai dengan kebutuhan/sifat-sifat baja yang diinginkan) dituang ke dalam cetakan yang berlubang dan didinginkan sehingga menjadi padat. Batangan baja yang masih panas dan berwarna merah dikeluarkan dari cetakan untuk disimpan sementara dalam dapur bentuk kotak serta dijaga panasnya dengan temperatur 1100 ⁰ C - 1300 ⁰ C menggunakan bahan bakar gas atau minyak. Penyimpanan tersebut adalah untuk meratakan suhu sebelum dilakukan proses pembentukan atau pengerolan. Proses pembentukan produk baja dilakukan dengan beberapa tahapan: 1. Proses Pengerolan Awal Proses ini adalah dengan cara melewatkan baja batangan diantara rol-rol yang berputar sehingga baja batangan tersebut menjadi lebih tipis dan memanjang. Proses pengerolan awal ini dimaksudkan agar struktur logam (baja) menjadi merata, lebih kuat dan liat, disamping membentuk sesuai ukuran yang diinginkan, seperti pelat tebal (bloom), batangan (billet) atau pelat (slab). 2. Proses Pengerolan Lanjut Proses ini adalah untuk merubah bentuk dasar pelat tebal, batangan menjadi bentuk lembaran, besi konstruksi (profil), kanal ataupun rel.
Ada tiga jenis pengerolan lanjut : • Pengerolan bentuk struktur/konstruksi • Pengerolan bentuk besi beton, strip dan profil • Pengerolan bentuk (pelat). a. Bentuk Struktur Pengerolan bentuk struktur/profiil adalah lanjutan pengerjaan dari pelat lembaran tebal (hasil pengerolan awal) yang kemudian secara paksa melewati beberapa tingkat pengerolan untuk mendapatkan bentuk dan ukuran yang diperlukan. b. Bentuk Strip, Besi Beton dan Profil Proses pembentukan ini tidak dilakukan langsung dari pelat tebal, tetapi harus dibentuk dulu menjadi batangan, kemudian dirol secara terus menerus dengan beberapa tingkatan rol dalam satu arah. Adapun hasil pengerolan adalah berbagai bentuk, yaitu : penampang bulat, bujur sangkar, segi-6, strip atau siku dan lain-lain sebagainya sesuai dengan disain rolnya. c. Bentuk Lembaran (Pelat) Pengerolan bentuk pelat akan menghasilkan baja lembaran tipis dengan cara memanaskan terlebih dahulu baja batangan kemudian didorong untuk melewati beberapa tingkat rol sampai ukuran yang diinginkan tercapai. (sumber: gudangmateri.com) 2. Paduan Baja Baja paduan adalah baja paduan dengan berbagai elemen dalam jumlah total antara 1,0% dan 50% berat untuk meningkatkan sifat mekanik. Baja Paduan dipecah menjadi dua kelompok: 1. Baja paduan rendah (low alloy steel) Baja paduan rendah biasanya digunakan untuk mencapai hardenability lebih baik, yang pada gilirannya akan meningkatkan sifat mekanis lainnya. Mereka juga digunakan untuk meningkatkan ketahanan korosi dalam kondisi lingkungan tertentu. Dengan menengah ke tingkat karbon tinggi, baja paduan rendah sulit untuk las. Menurunkan kandungan karbon pada kisaran 0,10% menjadi 0,30%, bersama dengan beberapa pengurangan elemen paduan, meningkatkan weldability dan sifat mampu bentuk baja dengan tetap menjaga kekuatannya. Seperti logam digolongkan sebagai baja paduan rendah kekuatan tinggi. Baja paduan rendah dikelompokan menjadi 3 yaitu: a. Baja Karbon Rendah (low carbon steel) Baja ini dengan komposisi karbon kurang dari 2%. Fasa dan struktur mikronya adalah ferrit dan perlit. Baja ini tidak bisa dikeraskan dengan cara perlakuan panas (martensit) hanya bisa dengan pengerjaan dingin. Sifat mekaniknya lunak, lemah dan memiliki keuletan dan ketangguhan yang baik. Serta mampu mesin (machinability) dan mampu las nya (weldability) baik. b. Baja Karbon Sedang ( medium carbon steel) Baja Mil memiliki komposisi karbon antara 0,2%-0,5% C (berat). Dapat dikeraskan dengan perlakuan panas dengan cara memanaskan hingga fasa austenit dan setelah ditahan beberapa saat didinginkan dengan cepat ke dalam air atau sering disebut quenching untuk memperoleh fasa ang keras yaitu martensit. Baja ini terdiri dari baja karbon sedang biasa (plain) dan baja mampu keras. Kandungan karbon yang relatif tinggi itu dapat meningkatkan kekerasannya. Namun tidak cocok untuk di las, dengan kata lain mampu las nya rendah. Dengan penambahan unsur lain seperti Cr, Ni, dan Mo lebih meningkatkan mampu kerasnya. Baja ini lebih kuat dari baja karbon rendah dan cocok untuk komponen mesin, roda kereta api, roda gigi (gear), poros engkol (crankshaft) serta komponen struktur yang memerlukan kekuatan tinggi, ketahanan aus, dan tangguh. c. Baja Karbon Tinggi (high carbon steel) Baja karbon tinggi memiliki komposisi antara 0,6- 1,4% C (berat). Kekerasan dan kekuatannya sangat tinggi, namun keuletannya kurang. baja ini cocok untuk baja perkakas,
dies (cetakan), pegas, kawat kekuatan tinggi dan alat potong yang dapat dikeraskan dan ditemper dengan baik. Baja ini terdiri dari baja karbon tinggi biasa dan baja perkakas. Khusus untuk baja perkakas biasanya mengandung Cr, V, W, dan Mo. Dalam pemaduannya unsurunsur tersebut bersenyawa dengan karbon menjadi senyawa yang sangat keras sehingga ketahanan aus sangat baik. 2. Baja Paduan Tinggi (high alloy steel) Baja paduan tinggi terdiri dari baja tahan karat atau disebut dengan stainless steel dan baja tahan panas. Baja ini memiliki ketahanan korosi yang baik, terutama pada kondisi atmosfer. Unsur utama yang meningkatkan korosi adalah Cr dengan komposisi paling sedikit 11%(berat). Ketahanan korosi dapat juga ditingkatkan dengan penambahan unsur Ni dan Mo. Baja tahan karat dibagi menjadi tiga kelas utama yaitu jenis martensitik, feritik, dan austenitik. jenis martensitik dapat dikeraskan dengan menghasilkan fasa martensit. baja tahan karat austenitik memiliki fasa y (austenit) FCC baik pada temperatur tinggi hingga temperatur kamar. Sedangkan jenis feritik terdiri dari fasa ferrit (α) BCC. Untuk jenis austenitik dan feritik dapat dikeraskan dengan pengerjaan dingin (cold working). Jenis Feritik dan Martensitik bersifat magnetis sedangkan jenis austenitik tidak magnetis.