National Renewable Energy Laboratory
Biomass Gasification Overview Presented by Richard L. Bain January 28, 2004 Operated for the U.S. Department of Energy by Midwest Research Institute • Battelle
Office of the Biomass Program Goals Reduce U.S. dependence upon foreign sources of petroleum Realization of the Industrial Biorefinery
Mission To foster research and development on advanced technologies to transform our abundant biomass resources into clean, affordable, and domestically-produced biofuels, biopower, and high-value bioproducts for improving the economic development and enhancing the energy supply options of the U.S.
The Unique Role of Biomass While the growing need for sustainable electric power can be met by other renewables…
Biomass is the only renewable that can meet our demand for carbon-based liquid fuels and chemicals
Research Focus for the Biorefinery Advanced Biomass R&D
Sugar Platform
Sugar Feedstocks
Residues
Biomass
Combined Heat & Power
Fuels, Chemicals, & Materials
Clean Gas
Thermochemical Platform
Systems Integration
Conditioned Gas
Integrated Industrial Biorefineries
Thermochemical Platform Costs for SynGas Intermediate Impact of Overcoming Technical Barriers 20 Reference: Hamelink and Faaij (2001)
18
Cost of Production ($/GJ)
16 14
Without Integrated Demonstrations
Pioneer Plant Costs
12 10 8 With Integrated Demonstrations
6 4 2 0 Base 550 tpd Nth plant
Feed Handling
Thermochemical Conversion
Gas Conditioning
Sensors & Controls
Process Integration
Performance Specific Program Goals Ye a r Minim um Synga s Se lling Price ($/GJ, LHV) Corre sponding H2 cost ($/kg) j product, e .g., m e tha nol ($/ga l) Fe e dstock cost ($/dry ton de live re d) Pla nt size (dry tons/da y)
2003
2005
2010
2015
2020
2025
2030
9
8.3
6
5.6
5.1
4.7
4.3
2.16
1.98
1.26
1.17
1.08
0.99
0.90
1.30
1.20
0.90
0.70
0.65
0.60
0.54
30
30
30
30
30
30
30
550
550
2,000
2,000
2,000
2,000
4,000
Feed Preparation/Gasification: 10% reduction in product cost by 2010 Gas Cleanup: 20% reduction in product cost by 2010 System Integration: 10% reduction in product cost by 2010
Strategic Fit
Biomass Thermochemical Conversion For Fuels and Chemicals
Biomass
Gasification
Cleanup
Pyrolysis
Conversion or Collection
Other Conversion *
Separation
Synthesis
PRODUCTS • Hydrogen • Alcohols • FT Gasoline • FT Diesel • Olefins • Oxochemicals • Ammonia • SNG
Purification
• Hydrogen • Olefins • Oils • Specialty Chem
Purification
• Hydrogen • Methane • Oils • Other
* Examples: Hydrothermal Processing, Liquefaction, Wet Gasification
Basic Definitions Biomass is plant matter such as trees, grasses, agricultural crops or other biological material. It can be used as a solid fuel, or converted into liquid or gaseous forms for the production of electric power, heat, chemicals, or fuels.
Black Liquor is the lignin-rich by-product of fiber extraction from wood in Kraft (or sulfate) pulping. The industry burns black liquor in Tomlinson boilers that 1) feed back-pressure steam turbines supplying process steam and electricity to mills, 2) recover pulping chemicals (sodium and sulfur compounds) for reuse.
Representative Biomass & Black Liquor Compositions Poplar
Corn Stover
Chicken Litter
Black Liquor
Proximate (w t% as rece ived) Ash Volatile Ma tter Fix ed Carbon Moisture
1.16 81.99 13.05 4.80
4.75 75.96 13.23 6.06
18.65 58.21 11.53 11.61
52.01 35.26 6.11 9.61
HHV, Dry (Btu/lb)
8382
7782
6310
4971
47.05 5.71 0.22 0.05 41.01 <0.01 1.16
43.98 5.39 0.62 0.10 39.10 0.25 4.75
32.00 5.48 6.64 0.96 34.45 1.14 19.33
32.12 2.85 0.24 4.79 0.71 0.07 51.91
1.20 --0.05 0.01 1.08 0.29 0.18 0.18
0.82 0.25 0.14 0.77 2.72 2.79 0.87 1.59 14
<0.01 0.05 <0.01 8.65 0.82 0.05 <0.01 <0.01
Ultimate, w t% as rece ive d Carbon Hydrogen Nitrogen Sulfur Oxygen (by diff) Chlorine Ash
Ele mental Ash Ana lysis, w t% of fuel a s re ceive d Si Fe Al Na K Ca Mg P As (ppm)
0.05 --0.02 0.02 0.04 0.39 0.08 0.08
Representative Biomass and Coal Properties
Biomass 1 Name Classification Proximate Analysis, wt% Dry Moisture Volatile Matter Fixed Carbon Ash Ultimate Analysis, wt % Dry C H N Cl O S Ash H/C Atomic Ratio HHV, Dry, Btu/lb
Wood
Biomass 2
Coal 1
Red Corn Cob Grundy, IL. No 4 HvBb
Coal 2
Tar Sands
Rosebud, MT sub B
Athabasca Bitumen
25-60 77-87 13-21 0.1-2
16 ca. 80 -4
8.16 40.6 45.47 13.93
19.84 39.02 49.08 9.16
50-53 5.8-7.0 0-0.3 .001-0.1 38-44 0-0.1 0.1-2
45 5.8 2.4 -42.5 0 4
68.58 4.61 1.18 0.12 6.79 4.76 13.93
68.39 4.64 0.99 0.02 16.01 0.79 9.16
1.4-1.6 8,530- 9,050
1.5 7,340
0.8 12,400
0.81 11,684
83.6 10.3 0.4 -0.2 5.5
1.47 17,900
Pyrolysis
Basic Definitions
Thermal conversion (destruction) of organics in the absence of oxygen • In the biomass community, this commonly refers to lower temperature thermal processes producing liquids as the primary product • Possibility of chemical and food byproducts •
Gasification • Thermal conversion of organic materials at elevated temperature and reducing conditions to produce primarily permanent gases, with char, water, and condensibles as minor products • Primary categories are partial oxidation and indirect heating
Thermochemical Conversion Of Biomass and Black Liquor
Product
Bio-Oil Changing World Technologies
High Pressure
Syngas Dry Ash
Gas Product: PNNL Wet Gasification (CH4/H2)
GTI (O2) Carbona (O2) HTW O2) Foster Wheeler (O2)
10-25 MPa
1- 3 MPa
Slag
Chemrec (O2) Noell
2 – 3 MPa
Feed: Biomass Feed: Biomass
Low Pressure 0.2 MPa
ENSYN Dynamotive BTG Fortum
Low (300-600°C)
MTCI-also Black Liquor FERCO (Indirect) MTCI (Indirect) Pearson (Indirect) TUV (Indirect) For CHP:TPS (Air) Carbona (Air) Lurgi (Air) Foster Wheeler (Air) EPI (Air) Prime Energy (Air)
Medium (700-850°C) Temperature
Feed: Black Liquor
Chemrec (Air)
High (900-1200°C)
Technical Barrier Areas Biomass Residues Dedicated Crops
Feed Processing & Handling
Gasification & Pyrolysis
Hydrogen & Bioproducts
Fuels & Chemicals
Export Electricity
Gas Conditioning & Separation
Syngas Utilization
Heat & Power Generation
Biorefinery Residues
Critical Issues
Feed Processing and Handling Gasification / Conversion Gas Cleanup and Catalytic Conditioning Syngas Utilization Process Integration Process Control, Sensors, and Optimization
Biomass Thermochemical Conversion Primary Technical Barriers Gasification • Feed Pretreatment - Feeder reliability - Feed modification • Gasification - Tar & Heteroatom chemistry - Gasifier Design • Gas Cleanup & Conditioning - Catalytic Conversion - Condensing Cleanup - Non-condensing Cleanup • Syngas Utilization - Cleanliness requirements - Gas composition • Process Integration • Sensors and Controls
Pyrolysis • Oil Handling - Toxicity - Stability - Storage - Transportation • Oil Properties - Ash - Acidity • Oil Commercial Properties - Commercial Specifications - Use in Petroleum Refineries
Black Liquor Gasification • Containment - Metals - Refractories - Vessel design - Bed behavior/agglomeration • Mill Integration - Steam - Power - Causticizing • Fuels Chemistry - Carbon management - Tars - Sulfur management - Alkali management - Halogen management • Sensors and Controls
Representative Gasification Pathways Biomass
Feed Preparation & Handling
Low Pressure Gasification
Shift Conversion
Compression
Oxygen
High Pressure Gasification
Hot Gas Cleanup
Reforming
Compression
LP Indirect Gasification
Cold Gas Cleanup
Compression & Reforming
LP Indirect Gasification
Catalytic Conditioning & Reforming
Compression
CO2
Product
Acid Gas Removal
Synthesis
Biomass
Biomass Cyclone
Freeboard
Gas, Tar, Water
Gas, Tar, Water
Ash
Pyrolysis C + CO2 = 2CO C + H2O = CO + H2 C + O2 = CO2 4H + O2 = 2H2O
Pyrolysis
C + O2 = CO2 4H + O2 = 2H2O
Reduction
Fluid Bed
Combustion
C + CO2 = 2CO C + H2O = CO + H2
Combustion
Biomass
Reduction
Air
Plenum Air/Steam
Ash
Ash
Air
Fluid-Bed Gasifier
Downdraft Gasifier
Updraft Gasifier
Flue Gas
Secondary Cyclone
Primary Cyclone
Gasifier
Fly Ash
Char
Biomass Furnace
Biomass
Recycle Gas N2 or Steam Air/Steam
Air
Bottom Ash
Circulating Fluid-Bed Gasifier
Entrained Flow Gasifier
Community Power Corporation’s BioMax 15 Modular Biopower System
FERCO GASIFIER- BURLINGTON, VT 350 TPD
Carbona Project: Skive, Denmark TAR CRACKER GASIFIER
STACK GAS COOLER
BIOMASS
ASH
FUEL FEEDING
GAS COOLER GAS TANK
HEAT RECOVERY POWER AIR
HEAT GAS ENGINE(S)
ASH
Typical Gas Heating Values Gasifier
Inlet Gas
Product Gas Type
Product Gas HHV 3
MJ/Nm Partial Oxidation Partial Oxidation Indirect
Air Oxygen Steam
Producer Gas Synthesis Gas Synthesis Gas Natural Gas Methane
7 10 15 38 41
Gas composition versus reactor type Gas ifie r
FERCO
Carbona
Prince ton
IGT
M ode l Type
Indire ct CFB
Air FB
Indire ct FB
PFB
Age nt
s te am
air
s te am
O2/s te am
Be d M ate rial
olivine
s and
none
alum ina
w ood chips
w ood pe lle ts
black liquor
w ood chips
H2
26.2
21.70
29.4
19.1
CO
38.2
23.8
39.2
11.1
CO2
15.1
9.4
13.1
28.9
2
41.6
0.2
27.8
CH4
14.9
0.08
13.0
11.2
C2+
4
0.6
4.4
2.0
16.3
5.4
17.2
9.2
Fe e d Gas Com pos ition
N2
GCV , M J/Nm 3
Gas composition versus reactor type Gas ifie r
USEPA
IGT
Dow ndraft
Updraft
PFB
air
air
air
O2/s te am
s ilica
s ilica
none
none
alum ina
w ood chips
w ood chips
w ood chips
w ood chips
w ood chips
H2
31.5
9 - 11
16
10
19.12
CO
22.7
15 - 17
21.5
14.8
11.07
CO2
27.4
18
14.4
12.8
28.88
2.8
Diff
44.4
28.9
27.77
CH4
11.2
5-7
3.3
4.9
11.21
C2+
4
3
NA
NA
1.95
Type Age nt Be d M ate rial Fe e d
Te ch Univ
Fre e Univ
Univ of
V ie nna
of Brus s e ls
Zaragos a
Indire ct FB
Air FB
s te am
Gas Com pos ition
N2
Gasifier Types-Advantages and Disadvantages G asifier
A dvantages
D isadvantages
Updraft
M ature for heat Sm all scale applications Can handle high m oisture No carbon in ash
Feed size lim its High tar yields Scale lim itations Producer gas Slagging potential
Dow ndraft
Sm all scale applications Low particulates Low tar
Feed size lim its Scale lim itations Producer gas M oisture sensitive
Fluid Bed
Large scale applications Feed characteristics Direct/indirect heating Can produce syngas
M edium tar yield Higher particle loading
Circulating Fluid Bed
Large scale applications Feed characteristics Can produce syngas
M edium tar yield Higher particle loading
Entrained Flow
Can be scaled Potential for low tar Can produce syngas
Large am ount of carrier gas Higher particle loading Potentially high S/C Particle size lim its
Typical Gas, Contaminant Yields Hybrid Poplar 33.99 36.67 17.91 12.56 4.41 1.35 0.31 0.93 64-72 290 max
Switchgrass 24.31 39.47 14.97 13.77 5.86 0.96 0.20 0.62 323-396 760 max
Mixed Woods 31.82 31.59 17.96 11.73 4.50 1.06 0.24 1.01 36-63 339-369
-
0
486 max
4 max
+
10 max 2060 max 37
208 max 2320 max 1442-1472
7 max 2480 max ND
H2, vol % CO CO2 CH4 C2H4 Benzene Toluene H2/CO H2S, ppmv Ammonia, ppmv Cl cond, ppm-m/v K cond, ppm-m/v Tot org. C cond ppm-m/v Cyanide, ppm-m/v
Primary Processes Vapor Phase
CO, CO2, H2O
Light HCs, Aromatics, & Oxygenates
Primary Vapors
Tertiary Processes
Secondary Processes Olefins, Aromatics CO, H2, CO2, H2O
Low P Primary Liquids
Liquid Phase
High P
Condensed Oils (phenols, aromatics)
Low P Solid Phase
Biomass
High P
Charcoal
Coke
Pyrolysis Severity
Soot
PNA’s, CO, H2, CO2, H2O, CH4
CO, H2, CO2, H2O
Mixed Oxygenates 400
o
Phenolic Ethers
C
500
o
C
Alkyl Phenolics 600
o
C
Heterocyclic Ethers 700
o
C
Larger PAH
PAH 800
o
C
900
o
C
C o n v e n tio n a l F la s h P y r o ly s is (4 5 0 - 5 0 0 oC )
H i- T e m p e r a tu r e F la s h P y r o ly s is (6 0 0 - 6 5 0 oC )
C o n v e n tio n a l S te a m G a s ific a tio n (7 0 0 - 8 0 0 oC )
H i- T e m p e r a tu r e S te a m G a s ific a tio n (9 0 0 - 1 0 0 0 oC )
A c id s A ld e h y d e s K e to n e s F u ra n s A lc o h o ls C o m p le x O x y g e n a te s P h e n o ls G u a ia c o ls S y r in g o ls C o m p le x P h e n o ls
Benzenes P h e n o ls C a te c h o ls N a p h th a le n e s B ip h e n y ls P h e n a n th r e n e s B e n z o fu r a n s B e n z a ld e h y d e s
N a p h th a le n e s A c e n a p h th y le n e s F lu o r e n e s P h e n a n th r e n e s B e n z a ld e h y d e s P h e n o ls N a p h th o fu r a n s B e n z a n th r a c e n e s
N a p h th a le n e * A c e n a p h th y le n e P h e n a n th r e n e F lu o r a n th e n e P y re n e A c e p h e n a n th r y le n e B e n z a n th r a c e n e s B e n z o p y re n e s 226 M W PAH s 276 M W PAH s
* A t th e h ig h e s t s e v e r ity , n a p h th a le n e s s u c h a s m e th y l n a p h th a le n e a r e s tr ip p e d to s im p le n a p h th a le n e .
Chemical Components in biomass tars (Elliott, 1988)
Gasification Applications • Heat • District heating • Plant steam • Institutional heating • Combined heat and power • Pulp and paper industry • District heating/electricity • Electricity only • Cofiring - ash segregation • Integrated gasification combined cycle • Synthesis gas • Oxygenates - methanol, ethanol, DME, etc. • Fischer-Tropsch Liquids • Hydrogen • Methane • Chemicals
Biorefinery Utilities Applications
Synthesis Gas - Examples of Conversion Processes • Oxygenates • Methanol, DME, Mobil MTG • Mixed alcohols • Snamprogetti/Topsoe, Lurgi, Dow, IFP/Idemitsu • Modified Fischer Tropsch - ethanol • Dow, Pearson Technologies • Biochemical (fermentation) • Mississippi State University, University of Arkansas • Hydrocarbon fuels • Methane • Fischer Tropsch • Iron based - Sasol Synthoil • Cobalt based - Shell middle distillate synthesis (SMDS) • Hydrogen • Methane steam reforming • High and low temperature shift • H2 separation
Fe, Co, Ru
Rh
Ethanol
MTO MTG
se
sis
Aldehydes Alcohols
Methanol U ect Dir
, Co
H2
e th yn
) os 3 ) 4 (Bu Ox CO ) 3P 3) 3 o( CO Ph HC o( )(P HC h(CO R
(K2O, Al2O3, CaO)
zeolites
Cu/ZnO
hom Co ologa tion
3
ThO2 or ZrO2
H2O WGS Purify
NH3
Ag
Syngas CO + H2
Isosynthesis
N2 over Fe/FeO
Formaldehyde
Acetic Acid ca CH rbon yla 3O H Co + Ction ,R O h, Ni
Fischer-Tropsch
d l 2O pe /A do nO li3 /Z 3 ka r 2O Cu l 2O Al /C ; A O nO O/ Zn u/Z /Co C O Cu oS 2 M
i-C4
MTBE isobutylene acidic ion exchange
Mixed Alcohols
Olefins Gasoline
Al2O3
Waxes Diesel
DME M100 M85 DMFC
Olefins Gasoline
BIOMASS
FEED PREP
GASIFICATION
CLEANUP & CONDITIONING
Ethanol From Biomass
SYNGAS
BIOCONVERSION
Thermochemical Syngas – Biochemical Ethanol SEPARATION
ETHANOL
Fischer Tropsch Synthesis Low T FTS Slurry (Co) or Tubular (Fe) Reactor
Air, Oxygen, Steam
Coal, Natural Gas, or Biomass
Gasifier
Waxes (> C20) Hydrocracking
Gas Cleanup and Conditioning Particulate Removal Wet Scrubbing Catalytic Tar Conversion Sulfur Scrubbing WGS etc.
Clean syngas H 2 and CO
CFB or FFB(Fe) Reactor
High T FTS )1)
CO + 3H2 Æ CH4 + H2O (Methanation)
)2)
nCO + (2n+1)H2 Æ CnH2n+2 + nH2O (Paraffins)
)3)
nCO + 2nH2 Æ CnH2n + nH2O (Olefins)
)4)
nCO + 2nH2 Æ CnH2n+1OH + (n-1)H2O (Alcohols)
Diesel
Olefins (C3 - C11) Oligomerization Isomerization Hydrogenation
Gasoline
Simplified Methanol Synthesis Process Flow Diagram
Steam, O2 Natural Gas
Desulphurization
Steam Reforming BioSyngas
syngas (CO/CO2/H2) Compressor Purge Gas
Cooling and Distillation
Methanol Converter
syngas recycle loop CO + 2H2 Æ CH3OH
∆Hr = -90.64 kJ/mol
CO2 + 3H2 Æ CH3OH + H2O CO + H2O Æ CO2 + H2
∆Hr = -49.67 kJ/mol ∆Hr = -41.47 kJ/mol
Preferred Stoichiometry: (H2 – CO2)/(CO + CO2) = 2
Methanol
Heat and Power - Prime Movers Steam turbines Extracting - for CHP Non extracting - electricity only Small to large scale IC engines 5 kW to 2 MW Control of NOx and CO Turbines Microturbines Gas Turbines - GT and IGCC applications Stirling engines Fuel cells
Why Biomass + Fuel Cells? Good temperature and pressure match Attractive fuel gas characteristics Allows penetration of fuel cells into markets without natural gas distribution networks High efficiency maximizes biomass conversion to electricity - reduces biomass demand for energy production Fossil carbon substitution
Fuel Cells are "Reverse" Electrolysis
Fuel Cell Schematic Electrolyte (Ion conductor) Depleted fuel Out
Depleted Oxidant Out O2 +
PEMS
H2
H
PAFC
H2
H+
MCFC SOFC
H2 CO2 H2O H2 H2 O
H2O O2 H2O O2
CO3=
O=
80ºC 200ºC
650ºC
CO2 O2
Fuel In
1000ºC Oxidant In
Anode
Cathode
Cyclone
Gas Cleanup Product Gas
Freeboard
Exhaust Isothermal Pre-reformer
Ash
Compressor
Fluid Bed Biomass Plenum
Cooling Air
HRSG
Air/Steam
Fluid-Bed Gasifier
Carbonate Fuel Cells
A
C
Process Water A.C. Output
DC/AC Inverter Air Burner
Research and Development Areas (not all-inclusive)
• Feed characterization • Materials handling • Storage • Conveying • Moisture control • Comminution • Feeding • Gasification • Kinetics • Phase equilibria • CFD modeling • Gas cleanup • Tar, ammonia, water • Particulates, ash • Residual carbon control • Integrated process specific species • Gas separations • Process integration • Prime mover systems • Catalytic syngas conversion • Sensors and controls • LCA and TE modeling
NREL Facilities
MBMS
Engine Testing
Gasification (TCUF) TMBMS
Emissions Monitoring
Thermochemical Process Development Unit (TCPDU) Base Configuration Thermal Cracker
Biomass Feed
Blower Coalescing Filter
Scrubber
Hopper/Feeder
Wet scrubbed Syngas
Settling Tank Controller
8-in. Fluidized Bed Reactor Cyclones
Aqueous Effluent
Superheated Steam Char
TCPDU Process Conditions and Product Gas Composition TCPDU process parameters 11-Feb-03 to 28-Feb-03 steam feed rate (kg/h) 20.0 ± 0.2 biomass feed rate (kg/h) 10.5 ± 0.9 fluid bed T (ºC) 615 ± 1 thermal cracker T (ºC) 775 ± 2 product gas flow rate (kg/h) 8.2 ± 0.8 material balance 98.9±10% Averaged mass spectrum (TMBMS) of tars from indirect wood gasification 78
1e+5
8e+4
78 - benzene 91,92 - toluene 94 - phenol 104 - styrene 108 - cresol 116 - indene 128 - naphthalene
142 152 166 178 192 202 216
- methylnaphthalenes - acenaphthalene - flourene - anthracene/phenanthrene - methylanthracene? - pyrene/flouranthene - benzo(a)flourene
6e+4
128
91,92
4e+4
94
116
104 108
2e+4
142 152 166 178
192 202 216
0 75
100
125
150
175
200
Average gas composition from indirect wood gasification in TCPDU 2/11 to 2/28/03 GC analysis of Port 3 (vol. %, N2- and steam-free) hydrogen 26.9 ± 1.4 methane 15.6 ± 0.2 carbon monoxide 26.7 ± 1.4 carbon dioxide 23.5 ± 0.8 ethylene 4.1 ± 0.1 ethane 0.68 ± 0.07 acetylene 0.47 ± 0.04 propylene 0.32 ± 0.04 1-butene 0.16 ± 0.04 1.0 ± 0.1 H2/CO ratio Tar concentrations by TMBMS (ppmv, w/ steam and N2) benzene 1732 ± 165 toluene 715 ± 89 cresol 216 ± 44 naphthalene 327 ± 33 phenanthrene 72 ± 7
Experimental Approach 5 cm bench-scale reformer – March, 2001
30 cm pilot-scale reformer – April 2002 Gas Flow Rate
0.35-0.4 kg/hr
7-18 kg/hr
WHSV (weight of feed/hr / weight of catalyst) 1.6 hr-1
0.16-0.48 hr-1
Temperature 700-900°C
850°C
25000
CO
2
(/1 0 )
20000
Difference Mass Spectrum (catalyst outlet-inlet) showing destruction of biomass gasifier tars
15000
Intensity (arb.)
10000
5000
0
p y re n e
-5 0 0 0
to lu e n e
n a p h th a le n e
-1 0 0 0 0
-1 5 0 0 0
benzene -2 0 0 0 0 50
75
100
125
150
m /z
175
200
225
Project Status RFP issued
Response received
1/03
4/03
Revise scope to reduce cost; Contract placed
6/03 Tar Reformer
Cyclones
Expected Installation delivery complete
11/03 12/03 Scrubber
Catalyst testing
2/04-9/04
o
o
850 C
100
o
o
o
825 C
750 C
775 C
800 C
benzene
Methane and benzene breakthrough vs. time-on-stream for temperature ramp experiments with NREL-1 catalyst.
60
m ethane
40
20
0
0
1
2
3
4
5
6
7
tim e-on-stream (h)
105
o
o
850 C
825 C
o
o
o
750 C
775 C
800 C
2000
100
1500
90 1000
85
benzene slip (rt. axis)
500
80
0
75
0
1
2
3
4
time-on-srteam (h)
5
6
7
benzene slip (ppmv)
total tar
95
% conversion
% conversion
80
Total tar conversion and benzene slip for NREL-1Catalyst during temperature ramp experiments
NREL-1 Tem perature Ram p
100
% conversion
80 60
m ethane benzene toluene naphthalene phenan./anthr. cresol
40 20 0
750
775
800
825
850
2FBR tem perature ( o C) Steady State conversion of several tar species and methane for NREL-1 catalyst