Bernoulli Numbers

  • Uploaded by: Anonymous 0U9j6BLllB
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Bernoulli Numbers as PDF for free.

More details

  • Words: 944
  • Pages: 3
ABOUT BERNOULLI’S NUMBERS Prof. Mihàly Bencze Department of Mathematics Áprily Lajos College Braşov, Romania Florentin Smarandache, Ph D Full Professor Chair of Department of Math & Sciences University of New Mexico 200 College Road Gallup, NM 87301, USA E-mail: [email protected]

Abstract. Many methods to compute the sum of the first n natural numbers of the same powers (see [4]) are well known. In this article we present a simple proof of the method from [3]. 2000 MSC: 11B68 Introduction. The Bernoulli’s numbers are defined by −1 (1) Bn = Cn0+1 B0 + Cn1+1 B1 + ... + Cnn+−11 Bn −1 ) ( n +1 where B0 = 1 . It is known that Bn +1 = 0 if n ≥ 1 . By calculation we find that: 1 1 1 1 1 5 B1 = − , B2 = , B4 = − , B6 = , B8 = − , B10 = , (2) 2 6 30 42 30 66 691 7 3617 43867 174611 B12 = − , B14 = , B16 = − , B18 = , B20 = − , 2730 6 510 798 330 854513 236364091 , etc. B22 = , B24 = − 138 2730 Let Snk = 1k + 2 k + ... + n k the sum of the first n natural numbers which have the same power. Theorem. 1 ⎛ k +1 1 1 k ⎞ k −1 2 k (3) Snk = ⎜⎝ n + Ck +1n + Ck +1 B2 n + ... + Ck +1 Bn n ⎟⎠ k +1 2 Proof: (1) can be written as:

1

n

∑C

(4)

i n +1

Bi = 0, n ≥ 1 .

i=0

k

If P(x) = ∑ Cki +1 Bi x k +1−i , i=0

then k ⎛ k +1−i ⎞ − n k +1−i = ∑ Cki +1 Bi ⎜ ∑ Ckj+1−i n k +1−i − j ⎟ . i =0 i =0 ⎝ j =1 ⎠ k −1 Let At be the coefficients of n , where t ∈ {0,1,..., k} . k

P (n + 1) − P(n) = ∑ Cki +1 Bi

(( n + 1)

k +1−i

)

t t ⎞ t +1 i +1 ⎛ i At = ∑ Cki +1Cki ++1− B = C i i k +1 ⎜ ∑ Ci +1 Bi ⎟ . ⎝ i=0 ⎠ i=0

If n ≥ 1 , then At = 0 , only A0 = Ck1 +1 . Because of these P(n + 1) − P(n) = Ck1 +1n k . Using this n −1

1 n −1 1 P(n) , (P(i + 1) − P(i)) = ∑ k + 1 i=0 k +1 i=0 1 because P(0) = 0 . Then Snk = P(n) + n k . From here one obtains (3). k +1 Note. From the previous result we can also find the formula 1 Snk = P(n + 1) . k +1 Using this, we find the following equalities: 1 1 1 2 S n0 = n, S n1 = n ( n + 1) , Sn2 = n ( n + 1)( 2n + 1) , Sn3 = n 2 ( n + 1) , 2 6 4 1 1 2 S n4 = n ( n + 1)( 2n + 1) ( 3n 2 + 3n − 1) , S n5 = n 2 ( n + 1) ( 2n 2 + 2n − 1) , 30 12 1 S n6 = n ( n + 1)( 2n + 1) ( 3n 4 + 6n3 − 3n + 1) , 42 1 2 2 S n7 = n ( n + 1) ( 3n 4 + 6n3 − n 2 − 4n + 2 ) , 24 1 S n8 = n ( n + 1)( 2n + 1) ( 5n6 + 15n5 + 5n 4 − 15n3 − n 2 + 9n − 3) , 90 1 S n9 = ( 2n10 + 10n9 + 15n8 − 14n 6 + 10n 4 − 3n 2 ) , 20 1 S n10 = ( 6n11 + 33n10 + 55n9 − 66n 7 + 66n5 − 33n3 + 5n ) , 66 1 S n11 = ( 2n12 + 12n11 + 22n10 − 33n8 + 44n6 − 33n 4 + 10n 2 ) , 24 1 S n12 = 210n13 + 1365n12 + 3630n11 − 4935n9 + 115n8 + ( 2730 +9640n 7 + 1960n 6 − 5899n 5 + 35n 4 + 4550n 3 + 1382n 2 − 691n ) , etc.

∑ik =

2

Problems: 1) Using the mathematical induction on the base of (1), we prove that B2 n +1 = 0, if n ≥ 1 .

2) Prove that Snk is divisible by n(n + 1) . 3) Prove that Sn2 k +1 is divisible by n 2 (n + 1)2 . 4) Determine those natural numbers n, k n(n + 1)(2n + 1) . 5) Detach in parts the sums Sn9 , Sn10 Sn11 , Sn12 . 6) Using (2), (3), compute the sums Sn13 ,..., Sn21 .

for which Sn2 k

is divisible

REFERENCES

[1] [2] [3] [4] [5]

M. Kraitchik – Recherches sur la théorie des nombres – Paris, 1924. Mihály Bencze – Osszegekrol – A Matematika Tanitasa, 1/1983. Z. I. Borevici, I. R. Safarevici – Teoria numerelor – Ed. Ştiinţifică şi Enciclopedică, Bucharest, România, 1985. Sándor József – Veges osszegekrol – Matematikai Lapok, Cluj-Napoca, 9/1987, România. Mihály Bencze – A Bernoulli szamok egyik alkalmazasa – Matematikai Lapok, Kolozsvar 7/1989, pp. 237-238, România.

[Published in “Octogon Mathematical Journal”, Braşov, Vol. 7, No. 1, 151-3, 1999.]

3

Related Documents

Bernoulli Numbers
November 2019 35
Bernoulli
October 2019 42
Bernoulli
December 2019 41
Bernoulli
June 2020 19
Bernoulli
October 2019 44
Bernoulli
May 2020 26

More Documents from "jega"