"BEAMTAB" --- BEAM END CONNECTION USING BEAM TAB (SINGLE PLATE) Program Description: "BEAMTAB" is a spreadsheet program written in MS-Excel for the purpose of analysis of steel beam end connections using a beam tab (single plate) field bolted to the beam web and shop welded to either the column flange, column web, or girder web. The connections may be subjected to end shear reaction and/or axial load. Specifically, all applicable "limit states" for the end connection analysis pertaining to the beam tab (single plate), bolts, beam web, and either column flange or web, or girder web are checked. This program is a workbook consisting of four (4) worksheets, described as follows:
Worksheet Name
Description
Doc Beam Tab(Col Flg) Beam Tab(Col Web) Beam Tab(Girder)
This documentation sheet Beam tab bolted to beam web and welded to column flange Beam tab bolted to beam web and welded to column web Beam tab bolted to beam web and welded to girder web
Program Assumptions and Limitations: 1. This program follows the procedures and guidelines of the AISC 9th Edition Allowable Stress (ASD) Manual (1989) and the AISC 9th Edition Manual Vol. II - Connections (1992). 2. This program uses the database of member dimensions and section properties from the "AISC Shapes Database", Version 3.0 (2001) as well as the AISC 9th Edition (ASD) Manual (1989). 3. This program automatically calculates the beam tab height, 'Hp', and the beam tab width, 'Wp', based on the applicable input data. 4. This program assumes that the a beam tab connected (welded) to a column flange is a rigid connection, while a beam tab connected (welded) to a column web or girder web is a flexible connection. The applicable connection design eccentricity, based on either a rigid or flexible connection, is determined from the criteria in the AISC Connections Manual. 5. This program assumes that the tension capacity for any "limit state" is reduced by the presence of shear. For allowable bolt tension in the presence of shear, the "interaction" (combined stresses) is handled directly by the AISC Code equations. For other "limit states" in combined stresses such as bolt bearing, gross and net shear and tension, and block shear and tension tearout, the effect of "interaction" is handled by use of the formula, P/Ra+(R/Rv)^2=1, as suggested from the following reference: "Combined Shear and Tension Stress" - by Subhash C. Goel, AISC Journal, 3rd Qtr.-1986. Thus, the reduction factor applied to the tension "limit state" capacity is = (1-R/Rv)^2. where: R = actual shear end reaction Rv = allowable shear capacity for the particular "limit state" considered 6. This program contains numerous “comment boxes” which contain a wide variety of information including explanations of input or output items, equations used, data tables, etc. (Note: presence of a “comment box” is denoted by a “red triangle” in the upper right-hand corner of a cell. Merely move the mouse pointer to the desired cell to view the contents of that particular "comment box".)
"BEAMTAB.xls" Program Version 1.3
AISC BEAM END CONNECTION (ASD) Using Beam Tab (Single Plate) Bolted to Beam Web and Welded to Column Flange Subjected to Shear and/or Axial Load Job Name: Subject: Job Number: Originator: Checker: Input Data: Beam and Column Data: Beam Size = Column Size = Beam Yield Stress, Fyb = Column Yield Stress, Fyc =
W16x26 W14x68 50 50
Connection Loading: Beam End Reaction (Shear), R = Beam Axial Force, P =
16.00 0.00
tf=0.72 d=14 ksi ksi
kips
9.0000
in.
Beam Tab Width, Wp = Beam Tab Thickness, tp = Beam Tab Yield Stress, Fyp = Diameter of Bolts, db =
4.5000 0.3750 36 0.750
in.
Hp=9
S1=3 S1=3
5/16 5/16
in.
P=0 k R= 16 k s=0.5 Wp=4.5
ksi
General Nomenclature
in.
tw=0.25
c=0
tf=0.345
in.
dc1=0
d=15.7
in.
Vertical Edge Distance, ED1 =
1.5000
in.
Dist. to 1st Row of Bolts, D2 = Bolt Horizontal Spacing, S2 = Horizontal Edge Distance, ED2 = Beam Setback Distance, s = Length of Flange Cope(s), c = Depth of Top Flange Cope, dc1 = Depth of Bottom Flange Cope, dc2 = Fillet Weld Size at Beam Tab, ω =
3.0000 0.0000 1.5000 0.5000 0.0000 0.0000 0.0000 5/16
in.
Member Properties: Beam: A= 7.68 d = 15.700 tw = 0.250 bf = 5.500 tf = 0.345 k = 0.7470
ED2=1.5 S2=0 D2=3 D1=3
kips
Connection Data and Parameters: Beam Tab Height, Hp =
ASTM Bolt Desig. (A325 or A490) = A325 Bolt Type (N, X, or SC) = N Bolt Hole Type in Beam Tab = Short-Slot Total No. of Bolts in Beam Tab, Nb = 3 Number of Vertical Rows, Nr = 1 Dist. from Top/Beam to Bolts, D1 = 3.0000 Bolt Vertical Spacing, S1 = 3.0000
Face of Col. Flange tp=0.375 ED1=1.5
in.
bf=5.5
dc2=0 c=0
in. in.
Beam and Cope Nomenclature
in. in. in. in.
Max. Shear Capacity of Connection: R(max) = 24.26 kips A= d= tw = bf = tf = k=
Column: 20.00 14.000 0.415 10.000 0.720 1.3100
in.^2 in. in. in. in. in. (continued)
2 of 57
08/25/2009 03:42:07
"BEAMTAB.xls" Program Version 1.3
Results: General Parameters: Bolt and Material Data: dhy1 = 0.94 dhx1 = 1.0000 dh2 = 0.81 Ab = Fup = Fub = Fuc =
0.4418 58.0 65.0 65.0
in. in. in. in.^2 ksi ksi ksi
Beam Tab to Beam Connection: Bolt Shear (includes eccentricity): n= 3 bolts b = 3.000 in. eb = 1.000 in. C = 2.615 Pr = 16.00 kips θ = 0.000 deg. Co = N.A. C(max) = N.A. A= N.A.
dhy1 = db+3/16 (Short-Slot hole for 0.75 in. bolts in plate) dhx1 = db+1/4 (Short-Slot hole for 0.75 in. bolts in plate) dh2 = db+1/16 (Standard hole for 0.75 in. bolts in beam web) Ab = π*db^2/4 Fup = 58 for Fyp = 36 (for plate) Fub = 65 for Fyb = 50 (for beam) Fuc = 65 for Fyc = 50 (for column) (assuming "rigid" support provided at column flange) (using AISC Table XI, page 4-62) n = Nb/Nr (number of bolts in a vertical row) b = S1 eb = ABS(2*(Nb/Nr)/3-D2) (interpolated from Table XI) Pr = SQRT(R^2+P^2) (total resultant load taken by bolts) θ = 90-(ATAN(R/P)) (angle from vertical) Co = "C" coefficient from AISC Table XI C(max) = n A = C(max)/Co >= 1.0
Ca/Co = Ca = vb = fv = Fv = Vb = Rbr =
N.A. N.A. 6.12 13.85 21.00 9.28 24.26
Rbv =
24.26
kips
Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co vb = Pr/(C or Ca) fv = vb/Ab Fv = Allow. shear stress from AISC Table J3.2, page 5-73 (for N bolts) Vb = Fv*Ab Rbr = Vb*(C or Ca) (resultant) Rbv = Rbr*COSθ (vertical) Rbv >= R, O.K.
Rba =
0.00
kips
Rba = Rbr*SINθ (axial)
kips/bolt ksi ksi kips/bolt kips
Beam Tab Checks: Bolt Bearing Capacity of Plate (for Vertical): C1 = 0 C1 = Spacing increment from AISC Table J3.4, page 5-76 in. C2 = 0 C2 = Edge distance increment from AISC Table J3.6, page 5-76 in. Rpe = 19.58 kips Rpe = (1.2*Fup*db*tp)*(Nr) (C2 is not applicable for ED1 >= 1.5*db) Rps = 39.15 kips Rps = (1.2*Fup*db*tp)*(Nb-Nr) (C1 is not applicable for S1 >= 3*db) Rpv =
58.73
kips
Rpv = Rpe+Rps <= (1.2*Fup*db*tp)*Nb)
Rpv >= R, O.K.
Bolt Bearing Capacity of Plate (for Axial): C1 = N.A. C1 = Spacing increment (not applicable for all edge bolts) in. C2 = 0.13 C2 = Edge distance increment from AISC Table J3.6, page 5-76 in. Rpe = 58.73 kips Rpe = (1.2*Fup*db*tp)*(Nb/Nr) (C2 is not applicable for ED2 >= 1.5*db) Rps = 0.00 Rps = not applicable, since all edge bolts for bearing due to axial load kips Rpa = 54.37 kips Rpa = (Rpe+Rps)*(1-(R/Rpv)^2) <= (1.2*Fup*db*tp)*(Nb)*(1-(R/Rpv)^2) (Ref.: "Comb. Shear & Tension Stress" by: S.C. Goel, AISC Journal, 3rd Qtr.-1986) (continued)
3 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
Beam Tab Checks (continued): Gross Shear Capacity of Plate: Avg = 3.375 in.^2 Rvg = 48.60 kips
Avg = Hp*tp Rvg = 0.40*Fyp*Avg
Rvg >= R, O.K.
Net Shear Capacity of Plate: Avn = 2.320 ksi Rvn = 40.37 kips
Avn = (Hp-(Nb/Nr)*dhy1)*tp Rvn = 0.30*Fup*Avn
Rvn >= R, O.K.
Gross Tension Capacity of Plate: Atg = 3.375 in.^2 Rtg = 65.00 kips
Atg = Hp*tp Rtg = (0.60*Fyp*Atg)*(1-(R/Rvg)^2)
Net Tension Capacity of Plate: Atn = 2.250 in.^2 Rtn = 55.00 kips
Atn = Atg-(Nb/Nr*(dhy1+1/16)*tp) <= 0.85*Atg Rtn = (0.50*Fup*Atn)*(1-(R/Rvn)^2) <= (0.60*Fyp*Atg)*(1-(R/Rvn)^2)
Block Shear ("L-shaped") Capacity of Plate: Av = 1.934 in.^2 Av = ((ED1+(Nb/Nr-1)*S1)-((Nb/Nr-1)*dhy1+dhy1/2))*tp At = 0.375 in.^2 At = (ED2+(Nr-1)*S2-((Nr-1)*dhx1+dhx1/2))*tp Rbs = 44.52 kips Rbs = 0.30*Fup*Av+0.50*Fup*At Rbs >= R, O.K. Tension Tear-Out ("L-shaped") Capacity of Plate: Av = 0.375 in.^2 Av = (ED2+(Nr-1)*S2-((Nr-1)*dhx1+dhx1/2))*tp At = 1.934 in.^2 At = ((ED1+(Nb/Nr-1)*S1)-((Nb/Nr-1)*dhy1+dhy1/2))*tp Rto = 54.51 kips Rto = (0.30*Fup*Av+0.50*Fup*At)*(1-(R/Rbs)^2) Tension Tear-Out ("U-shaped") Capacity of Plate: Av = 0.750 in.^2 Av = 2*(ED2+(Nr-1)*S2-((Nr-1)*dhx1+dhx1/2))*tp At = 1.547 in.^2 At = ((Nb/Nr-1)*S1-(Nb/Nr-1)*dhy1)*tp Rto = 57.91 kips Rto = (0.30*Fup*Av+0.50*Fup*At) Gross Bending in Plate: e = 4.000 in. M = 64.00 in.-kips Sg = 5.06 in.^3 fbg = 12.64 ksi Fbg = 21.60 ksi Rbg = 27.34 kips
e = D2+eb (eccentricity for plate bending at support) M = R*e (eccentric moment at face of support) Sg = tp*Hp^2/6 fbg = M/Sg Fbg = 0.60*Fyp Rbg = (Fbg*Sg/e)*(1-(P/Rtg)) Rbg >= R, O.K.
Net Bending in Plate: e = 1.000 M = 16.00 Sn = 3.56 fbn = 4.49 Fbn = 21.60 Rbn = 76.95
e = eb (eccentricity for plate bending at holes) M = R*e (eccentric moment at face of support) Sn = tp*Hp^2/6-S1^2*(Nb/Nr)*((Nb/Nr)^2-1)*(tp*(dhy1+1/16))/(6*Hp) fbn = M/Sn Fbn = 0.60*Fyp Rbn = (Fbn*Sn/e)*(1-(P/Rtn)) Rbn >= R, O.K.
in. in.-kips in.^3 ksi ksi kips
(continued)
4 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
Beam Tab Checks (continued): Axial Compression Capacity of Plate: Acg = 3.38 Acg = Hp*tp in.^2 Lc = 3.00 Lc = Max. of D2 or S2 in. K= 1.20 (assumed effective length factor for plate supported on one edge) r = 0.108 in. r = tp/(SQRT(12)) KL/r = 33.26 KL/r = K*Lc/r Cc = 126.10 Cc = SQRT(2*p^2*29000/Fyp) Fa = 19.71 ksi If KL/r <= Cc: Fa = --(1-(K*Lc/r )^2/(2*Cc^2))*Fyp/(5/3+3*(K*Lc/r)/(8*Cc)-(K*Lc/r)^3/(8*Cc^3)) --If K*L/r > Cc: Fa = 12*p^2*29000/(23*(K*Lc/r)^2) Rc = 66.51 kips Rc = Fa*Acg Beam Checks for Uncoped Flanges: Bolt Bearing Capacity of Beam Web (for Vertical): C1 = 0 C1 = Spacing increment (C1 = 0 for Standard holes in web) in. C2 = N.A. C2 = Edge distance increment (not applicable for uncoped beam) in. Rpe = 14.63 kips Rpe = 1.2*Fub*db*tw*(Nr) (for Nr edge bolts, edge dist., C2 are N.A.) Rps = 29.25 kips Rps = 1.2*Fub*db*tw*(Nb-Nr) (C1 is not applicable for S1 >= 3*db) Rpv = 43.88 kips Rpv = Rpe+Rps <= 1.2*Fub*db*tw*(Nb) Rpv >= R, O.K. Bolt Bearing Capacity of Beam Web (for Axial): C1 = 0 C1 = Spacing increment (C1 = 0 for Standard holes in web) in. C2 = 0 C2 = Edge distance increment (C2 = 0 for Standard holes in web) in. Rpe = 43.88 kips Rpe = 1.2*Fub*db*tw*(Nb/Nr) (C2 is not applicable for D2-s >= 1.5*db) Rps = 0.00 Rps = not applicable, since all edge bolts for bearing due to axial load) kips Rpa = 38.04 kips Rpa = (Rpe+Rps)*(1-(R/Rpv)^2) <= 1.2*Fub*db*tw*(Nb)*(1-(R/Rpv)^2) Gross Shear Capacity of Beam Web: ho = N.A ho = not applicable for uncoped beam in. Avg = 3.925 in.^2 Avg = d*tw Rvg = 78.50 kips Rvg = 0.40*Fyb*Avg
Rvg >= R, O.K.
Net Shear Capacity of Beam Web: Avn = 3.316 in.^2 Rvn = 64.65 kips
Avn = (d-Nb/Nr*dh2)*tw Rvn = 0.30*Fub*Avn <= 0.40*Fyb*Avg
Rvn >= R, O.K.
Gross Tension Capacity of Beam: Atg = 7.680 in.^2 Rtg = 220.83 kips
Atg = A Rtg = (0.60*Fyb*Atg)*(1-(R/Rvg)^2)
Net Tension Capacity of Beam: Atn = 6.528 in.^2 Rtn = 199.17 kips
Atn = Atg-(Nb/Nr*(dh2+1/16))*tw <= 0.85*Atg Rtn = (0.50*Fub*Atn)*(1-(R/Rvn)^2) <= (0.60*Fyb*Atg)*(1-(R/Rvn)^2)
(continued)
5 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
Beam Checks for Uncoped Flanges (continued): Block Shear ("L-shaped") Capacity of Beam Web: Av = N.A. Av = not applicable for uncoped beam in.^2 At = N.A. At = not applicable for uncoped beam in.^2 Rbs = N.A. Rbs = not applicable for uncoped beam kips Tension Tear-Out ("L-shaped") Capacity of Beam Web: Av = N.A. Av = not applicable for uncoped beam in.^2 At = N.A. At = not applicable for uncoped beam in.^2 Rto = N.A. Rto = not applicable for uncoped beam kips Tension Tear-Out ("U-shaped") Capacity of Beam Web: Av = 1.047 in.^2 Av = 2*((D2-s)+(Nr-1)*S2-((Nr-1)*dh2+dh2/2))*tw At = 1.094 in.^2 At = ((Nb/Nr-1)*S1-(Nb/Nr-1)*dh2)*tw Rto = 55.96 kips Rto = 0.30*Fub*Av+0.50*Fub*At Web Buckling (Flexure) Capacity Not Applicable for Uncoped Beam ho = N.A. ho = d-dc1 in. e= N.A. e = c+s in. yc = N.A. yc = (bf*tf^2/2+(ho-tf)*tw*(tf+(ho-tf)/2))/((ho-tf)*tw+bf*tf) in. In = N.A. In=bf*tf^3/12+bf*tf*(yc-tf/2)^2+tw*(ho-tf)^3/12+(ho-tf)*tw*(tf+(ho-tf)/2-yc)^2 in.^4 Sn = N.A. Sn = In/(ho-yc) in.^3 c/ho = N.A. c/ho = ratio for evaluating plate buckling coefficient (k) k= N.A. If c/ho <= 1.0, then k = 2.2*(ho/c)^1.65, else k = 2.2*(ho/c) c/d = N.A. c/d = ratio for evaluating adjustment factor (f) of plate buckling model f= N.A. If c/d <= 1.0, then f = 2*(c/d), else f = 1+(c/d) Fbc = N.A. Fbc = Min. of: (15,700*f*k*(tw/ho)^2 or 0.60*Fy)*(1-P/(0.60*Fy*Atg)) ksi Rwb = N.A. Rwb = Fbc*Sn/e kips
(continued)
6 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
Beam Tab to Column Connection: Plate to Column Welding: (using AISC Table XIX, page 4-75) ew =
4.000
in.
ew = D2+eb (eccentricity for weld design)
L=
9.000
in.
L = Hp
kL = aL = a= k= C1 = C= Pr =
0.375 4.000 0.444 0.000 1.0 0.871 16.00
in.
kL = tp aL = ew a = (aL)/L k = 0 (for Special Case) C1 = 1.0 for E70XX electrode (interpolated from Table XIX) Pr = SQRT(R^2+P^2) (total resultant load taken by 2 welds)
θ= Co = C(max) = A= Ca/Co = Ca =
0.000 N.A. N.A. N.A. N.A. N.A.
deg.
ω(req'd) =
0.128
in. (size)
ω(req'd) =(Pr/((C or Ca)*C1*L))/16
ω(recom'd) =
0.2813
in.
ω(recom'd) = ((0.40*Fyp*Hp*tp)/((C or Ca)*C1*L))/16 <= 0.75*tp
ω(min) =
0.1875
in.
ω(min) = Min. fillet weld size from AISC Table J2.4, page 5-67
Rwr =
39.20
kips
Rwr = ω*16*(C or Ca)*C1*L (ω = actual weld size used)
Rwv =
39.20
kips
Rwv = Rwr*COSθ (vertical)
Rwa =
0.00
kips
Rwa = Rwr*SINθ (axial)
in.
kips
θ = 90-(ATAN(R/P)) (angle from vertical) Co = "C" coefficient from AISC Table XIX C(max) = 0.928*(2) A = C(max)/Co >= 1.0 Ca/Co = A/(SINq+A*COSq) >= 1.0 Ca = (Ca/Co)*Co
Column Checks: Gross Shear Capacity of Flange at Plate: Av = 6.480 in.^2 Av = Hp*tfc Rv = 129.60 kips Rv = 0.40*Fyc*Av
Weld used >= weld req'd., O.K.
Rwv >= R, O.K.
Rv >= R, O.K.
Gross Tension Capacity of Flange at Plate: At = 6.480 in.^2 At = Hp*tfc Rt = 191.44 kips Rt = (0.60*Fyc*At)*(1-(R/Rv)^2) Local Web Yielding: N = 9.000 Rwy = 168.11 Web Crippling: N = 9.000 Rwc = 100.57
in. kips
in. kips
(Criteria is assumed for beam near column end per AISC Eqn. K1-3) N = Hp Rwy = 0.66*Fyc*twc*(N+2.5*kc) (Criteria is for beam near column end per AISC Eqn. K1-5) N = Hp Rwc = 34*twc^2*(1+3*(N/d)*(twc/tfc)^1.5)*SQRT(Fyc*tfc/twc)
Comments:
7 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
8 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
9 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
10 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
11 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3 Version 1.3
SUMMARY OF CHECKS: Row No.: Results: Beam Tab to Beam Connection: 82 Rbv >= R, O.K. 83 N.A. Beam Tab Checks: 91 Rpv >= R, 98 N.A. 106 Rvg >= R, 110 Rvn >= R, 114 N.A. 119 N.A. 123 Rbs >= R, 129 N.A. 133 N.A. 141 Rbg >= R, 149 Rbn >= R,
Stress Ratio: 0.660 N.A.
O.K. O.K. O.K.
O.K.
O.K. O.K.
164 N.A. Beam Checks for Uncoped Flanges: 172 Rpv >= R, O.K. 180 N.A.
0.272 N.A. 0.329 0.396 N.A. N.A. 0.359 N.A. N.A. 0.585 0.208 N.A. 0.365 N.A.
184 188 192 197 208 214 218
Rvg >= R, O.K. Rvn >= R, O.K. N.A. N.A. N.A. N.A. N.A.
0.204 0.247 N.A. N.A. N.A. N.A. N.A.
231
N.A.
N.A.
Beam Tab to Column Connection: 270 Weld used >= weld req'd., O.K. 0.3125 0.128 271 Weld used >= weld recom'd., O.K. 0.3125 0.281 272 Weld used >= weld min., O.K. 0.3125 0.188 274 Rwv >= R, O.K. 275 N.A. Column Checks: 280 Rv >= R, O.K. 284 N.A. 288 N.A. 293 N.A.
0.408 0.900 0.600 0.408 N.A. 0.123 N.A. N.A. N.A.
12 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
SR = 0.660 SR = N.A.
SR = 0.272
SR = N.A.
13 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
SR = 0.329
SR = 0.396
SR = N.A.
SR = N.A.
SR = 0.359
SR = N.A.
SR = N.A.
SR = 0.585
SR = 0.208
14 of 57
08/25/2009 03:42:08
"BEAMTAB.xls" Program Version 1.3
SR = N.A.
SR = 0.365
SR = N.A.
SR = 0.204
SR = 0.247
SR = N.A.
SR = N.A.
15 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
SR = N.A.
SR = N.A.
SR = N.A.
SR = N.A.
16 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
SR = 0.408 SR = 0.900 SR = 0.600 SR = 0.408 SR = N.A.
SR = 0.123
SR = N.A.
SR = N.A.
SR = N.A.
17 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
18 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
19 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
20 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
21 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
AISC BEAM END CONNECTION (ASD) Using Beam Tab (Single Plate) Bolted to Beam Web and Welded to Column Web Subjected to Shear and/or Axial Load Job Name: Subject: Job Number: Originator: Checker: Input Data: Beam and Column Data: Beam Size = Column Size = Beam Yield Stress, Fyb = Column Yield Stress, Fyc =
W16x26 W14x68 50 50
Connection Loading: Beam End Reaction (Shear), R = Beam Axial Force, P =
15.00 0.00
tw=0.415 bf=10 ksi ksi
kips
9.0000
in.
Beam Tab Width, Wp = Beam Tab Thickness, tp = Beam Tab Yield Stress, Fyp = Diameter of Bolts, db =
4.5000 0.3750 36 0.750
in.
Hp=9
S1=3 S1=3
5/16 5/16
in.
P=0 k R= 15 k s=0.5 Wp=4.5
ksi
General Nomenclature
in.
tw=0.25
c=0
tf=0.345
in.
dc1=0
d=15.7
in.
Vertical Edge Distance, ED1 =
1.5000
in.
Dist. to 1st Row of Bolts, D2 = Bolt Horizontal Spacing, S2 = Horizontal Edge Distance, ED2 = Beam Setback Distance, s = Length of Flange Cope(s), c = Depth of Top Flange Cope, dc1 = Depth of Bottom Flange Cope, dc2 = Fillet Weld Size at Plate, ω =
3.0000 0.0000 1.5000 0.5000 0.0000 0.0000 0.0000 5/16
in.
Member Properties: Beam: A= 7.68 d = 15.700 tw = 0.250 bf = 5.500 tf = 0.345 k = 0.7470
ED2=1.5 S2=0 D2=3 D1=3
kips
Connection Data and Parameters: Beam Tab Height, Hp =
ASTM Bolt Desig. (A325 or A490) = A325 Bolt Type (N, X, or SC) = N Bolt Hole Type in Beam Tab = Short-Slot Total No. of Bolts in Beam Tab, Nb = 3 Number of Vertical Rows, Nr = 1 Dist. from Top/Beam to Bolts, D1 = 3.0000 Bolt Vertical Spacing, S1 = 3.0000
Face of Column Web tp=0.375 ED1=1.5
in.
bf=5.5
dc2=0 c=0
in. in.
Beam and Cope Nomenclature
in. in. in. in.
Max. Shear Capacity of Connection: R(max) = 16.42 kips A= d= tw = bf = tf = k=
Column: 20.00 14.000 0.415 10.000 0.720 1.3100
in.^2 in. in. in. in. in. (continued)
22 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
Results: General Parameters: Bolt and Material Data: dhy1 = 0.94 dhx1 = 1.0000 dh2 = 0.81 Ab = Fup = Fub = Fuc =
0.4418 58.0 65.0 65.0
in. in. in. in.^2 ksi ksi ksi
Beam Tab to Beam Connection: Bolt Shear (includes eccentricity): n= 3 bolts b = 3.000 in. eb = 3.000 in. C = 1.770 Pr = 15.00 kips θ = 0.000 deg. Co = N.A. C(max) = N.A. A= N.A.
dhy1 = db+3/16 (Short-Slot hole for 0.75 in. bolts in plate) dhx1 = db+1/4 (Short-Slot hole for 0.75 in. bolts in plate) dh2 = db+1/16 (Standard hole for 0.75 in. bolts in beam web) Ab = π*db^2/4 Fup = 58 for Fyp = 36 (for plate) Fub = 65 for Fyb = 50 (for beam) Fuc = 65 for Fyc = 50 (for column) (assuming "flexible" support provided at column web) (using AISC Table XI, page 4-62) n = Nb/Nr (number of bolts in a vertical row) b = S1 eb = Max. of: ABS(2*(Nb/Nr)/3-D2) or D2 (interpolated from Table XI) Pr = SQRT(R^2+P^2) (total resultant load taken by bolts) θ = 90-(ATAN(R/P)) (angle from vertical) Co = "C" coefficient from AISC Table XI C(max) = n A = C(max)/Co >= 1.0
Ca/Co = Ca = vb = fv = Fv = Vb = Rbr =
N.A. N.A. 8.47 19.18 21.00 9.28 16.42
Rbv =
16.42
kips
Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co vb = Pr/(C or Ca) fv = vb/Ab Fv = Allow. shear stress from AISC Table J3.2, page 5-73 (for N bolts) Vb = Fv*Ab Rbr = Vb*(C or Ca) (resultant) Rbv = Rbr*COSθ (vertical) Rbv >= R, O.K.
Rba =
0.00
kips
Rba = Rbr*SINθ (axial)
kips/bolt ksi ksi kips/bolt kips
Beam Tab Checks: Bolt Bearing Capacity of Plate (for Vertical): C1 = 0 C1 = Spacing increment from AISC Table J3.4, page 5-76 in. C2 = 0 C2 = Edge distance increment from AISC Table J3.6, page 5-76 in. Rpe = 19.58 kips Rpe = (1.2*Fup*db*tp)*(Nr) (C2 is not applicable for ED1 >= 1.5*db) Rps = 39.15 kips Rps = (1.2*Fup*db*tp)*(Nb-Nr) (C1 is not applicable for S1 >= 3*db) Rpv =
58.73
kips
Rpv = Rpe+Rps <= (1.2*Fup*db*tp)*Nb)
Rpv >= R, O.K.
Bolt Bearing Capacity of Plate (for Axial): C1 = N.A. C1 = Spacing increment (not applicable for all edge bolts) in. C2 = 0.13 C2 = Edge distance increment from AISC Table J3.6, page 5-76 in. Rpe = 58.73 kips Rpe = (1.2*Fup*db*tp)*(Nb/Nr) (C2 is not applicable for ED2 >= 1.5*db) Rps = 0.00 Rps = not applicable, since all edge bolts for bearing due to axial load kips Rpa = 54.89 kips Rpa = (Rpe+Rps)*(1-(R/Rpv)^2) <= (1.2*Fup*db*tp)*(Nb)*(1-(R/Rpv)^2) (Ref.: "Comb. Shear & Tension Stress" by: S.C. Goel, AISC Journal, 3rd Qtr.-1986) (continued)
23 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
Beam Tab Checks (continued): Gross Shear Capacity of Plate: Avg = 3.375 in.^2 Rvg = 48.60 kips
Avg = Hp*tp Rvg = 0.40*Fyp*Avg
Rvg >= R, O.K.
Net Shear Capacity of Plate: Avn = 2.320 ksi Rvn = 40.37 kips
Avn = (Hp-(Nb/Nr)*dhy1)*tp Rvn = 0.30*Fup*Avn
Rvn >= R, O.K.
Gross Tension Capacity of Plate: Atg = 3.375 in.^2 Rtg = 65.96 kips
Atg = Hp*tp Rtg = (0.60*Fyp*Atg)*(1-(R/Rvg)^2)
Net Tension Capacity of Plate: Atn = 2.250 in.^2 Rtn = 56.24 kips
Atn = Atg-(Nb/Nr*(dhy1+1/16)*tp) <= 0.85*Atg Rtn = (0.50*Fup*Atn)*(1-(R/Rvn)^2) <= (0.60*Fyp*Atg)*(1-(R/Rvn)^2)
Block Shear ("L-shaped") Capacity of Plate: Av = 1.934 in.^2 Av = ((ED1+(Nb/Nr-1)*S1)-((Nb/Nr-1)*dhy1+dhy1/2))*tp At = 0.375 in.^2 At = (ED2+(Nr-1)*S2-((Nr-1)*dhx1+dhx1/2))*tp Rbs = 44.52 kips Rbs = 0.30*Fup*Av+0.50*Fup*At Rbs >= R, O.K. Tension Tear-Out ("L-shaped") Capacity of Plate: Av = 0.375 in.^2 Av = (ED2+(Nr-1)*S2-((Nr-1)*dhx1+dhx1/2))*tp At = 1.934 in.^2 At = ((ED1+(Nb/Nr-1)*S1)-((Nb/Nr-1)*dhy1+dhy1/2))*tp Rto = 55.49 kips Rto = (0.30*Fup*Av+0.50*Fup*At)*(1-(R/Rbs)^2) Tension Tear-Out ("U-shaped") Capacity of Plate: Av = 0.750 in.^2 Av = 2*(ED2+(Nr-1)*S2-((Nr-1)*dhx1+dhx1/2))*tp At = 1.547 in.^2 At = ((Nb/Nr-1)*S1-(Nb/Nr-1)*dhy1)*tp Rto = 57.91 kips Rto = (0.30*Fup*Av+0.50*Fup*At) Gross Bending in Plate: e = 6.000 in. M = 90.00 in.-kips Sg = 5.06 in.^3 fbg = 17.78 ksi Fbg = 21.60 ksi Rbg = 18.23 kips
e = D2+eb (eccentricity for plate bending at support) M = R*e (eccentric moment at face of support) Sg = tp*Hp^2/6 fbg = M/Sg Fbg = 0.60*Fyp Rbg = (Fbg*Sg/e)*(1-(P/Rtg)) Rbg >= R, O.K.
Net Bending in Plate: e = 3.000 M = 45.00 Sn = 3.56 fbn = 12.63 Fbn = 21.60 Rbn = 25.65
e = eb (eccentricity for plate bending at holes) M = R*e (eccentric moment at face of support) Sn = tp*Hp^2/6-S1^2*(Nb/Nr)*((Nb/Nr)^2-1)*(tp*(dhy1+1/16))/(6*Hp) fbn = M/Sn Fbn = 0.60*Fyp Rbn = (Fbn*Sn/e)*(1-(P/Rtn)) Rbn >= R, O.K.
in. in.-kips in.^3 ksi ksi kips
(continued)
24 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
Beam Tab Checks (continued): Axial Compression Capacity of Plate: Acg = 3.38 Acg = Hp*tp in.^2 Lc = 3.00 Lc = Max. of D2 or S2 in. K= 1.20 (assumed effective length factor for plate supported on one edge) r = 0.108 in. r = tp/(SQRT(12)) KL/r = 33.26 KL/r = K*Lc/r Cc = 126.10 Cc = SQRT(2*p^2*29000/Fyp) Fa = 19.71 ksi If KL/r <= Cc: Fa = --(1-(K*Lc/r )^2/(2*Cc^2))*Fyp/(5/3+3*(K*Lc/r)/(8*Cc)-(K*Lc/r)^3/(8*Cc^3)) --If K*L/r > Cc: Fa = 12*p^2*29000/(23*(K*Lc/r)^2) Rc = 66.51 kips Rc = Fa*Acg Beam Checks for Uncoped Flanges: Bolt Bearing Capacity of Beam Web (for Vertical): C1 = 0 C1 = Spacing increment (C1 = 0 for Standard holes in web) in. C2 = N.A. C2 = Edge distance increment (not applicable for uncoped beam) in. Rpe = 14.63 kips Rpe = 1.2*Fub*db*tw*(Nr) (for Nr edge bolts, edge dist., C2 are N.A.) Rps = 29.25 kips Rps = 1.2*Fub*db*tw*(Nb-Nr) (C1 is not applicable for S1 >= 3*db) Rpv = 43.88 kips Rpv = Rpe+Rps <= 1.2*Fub*db*tw*(Nb) Rpv >= R, O.K. Bolt Bearing Capacity of Beam Web (for Axial): C1 = 0 C1 = Spacing increment (C1 = 0 for Standard holes in web) in. C2 = 0 C2 = Edge distance increment (C2 = 0 for Standard holes in web) in. Rpe = 43.88 kips Rpe = 1.2*Fub*db*tw*(Nb/Nr) (C2 is not applicable for D2-s >= 1.5*db) Rps = 0.00 Rps = not applicable, since all edge bolts for bearing due to axial load) kips Rpa = 38.75 kips Rpa = (Rpe+Rps)*(1-(R/Rpv)^2) <= 1.2*Fub*db*tw*(Nb)*(1-(R/Rpv)^2) Gross Shear Capacity of Beam Web: ho = N.A ho = not applicable for uncoped beam in. Avg = 3.925 in.^2 Avg = d*tw Rvg = 78.50 kips Rvg = 0.40*Fyb*Avg
Rvg >= R, O.K.
Net Shear Capacity of Beam Web: Avn = 3.316 in.^2 Rvn = 64.65 kips
Avn = (d-Nb/Nr*dh2)*tw Rvn = 0.30*Fub*Avn <= 0.40*Fyb*Avg
Rvn >= R, O.K.
Gross Tension Capacity of Beam: Atg = 7.680 in.^2 Rtg = 221.99 kips
Atg = A Rtg = (0.60*Fyb*Atg)*(1-(R/Rvg)^2)
Net Tension Capacity of Beam: Atn = 6.528 in.^2 Rtn = 200.74 kips
Atn = Atg-(Nb/Nr*(dh2+1/16))*tw <= 0.85*Atg Rtn = (0.50*Fub*Atn)*(1-(R/Rvn)^2) <= (0.60*Fyb*Atg)*(1-(R/Rvn)^2)
(continued)
25 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
Beam Checks for Uncoped Flanges (continued): Block Shear ("L-shaped") Capacity of Beam Web: Av = N.A. Av = not applicable for uncoped beam in.^2 At = N.A. At = not applicable for uncoped beam in.^2 Rbs = N.A. Rbs = not applicable for uncoped beam kips Tension Tear-Out ("L-shaped") Capacity of Beam Web: Av = N.A. Av = not applicable for uncoped beam in.^2 At = N.A. At = not applicable for uncoped beam in.^2 Rto = N.A. Rto = not applicable for uncoped beam kips Tension Tear-Out ("U-shaped") Capacity of Beam Web: Av = 1.047 in.^2 Av = 2*((D2-s)+(Nr-1)*S2-((Nr-1)*dh2+dh2/2))*tw At = 1.094 in.^2 At = ((Nb/Nr-1)*S1-(Nb/Nr-1)*dh2)*tw Rto = 55.96 kips Rto = 0.30*Fub*Av+0.50*Fub*At Web Buckling (Flexure) Capacity Not Applicable for Uncoped Beam ho = N.A. ho = d-dc1 in. e= N.A. e = c+s in. yc = N.A. yc = (bf*tf^2/2+(ho-tf)*tw*(tf+(ho-tf)/2))/((ho-tf)*tw+bf*tf) in. In = N.A. In=bf*tf^3/12+bf*tf*(yc-tf/2)^2+tw*(ho-tf)^3/12+(ho-tf)*tw*(tf+(ho-tf)/2-yc)^2 in.^4 Sn = N.A. Sn = In/(ho-yc) in.^3 c/ho = N.A. c/ho = ratio for evaluating plate buckling coefficient (k) k= N.A. If c/ho <= 1.0, then k = 2.2*(ho/c)^1.65, else k = 2.2*(ho/c) c/d = N.A. c/d = ratio for evaluating adjustment factor (f) of plate buckling model f= N.A. If c/d <= 1.0, then f = 2*(c/d), else f = 1+(c/d) Fbc = N.A. Fbc = Min. of: (15,700*f*k*(tw/ho)^2 or 0.60*Fy)*(1-P/(0.60*Fy*Atg)) ksi Rwb = N.A. Rwb = Fbc*Sn/e kips
(continued)
26 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
Beam Tab to Column Connection: Plate to Column Welding: (using AISC Table XIX, page 4-75) ew =
6.000
in.
ew = D2+eb (eccentricity for weld design)
L=
9.000
in.
L = Hp
kL = aL = a= k= C1 = C= Pr =
0.375 6.000 0.667 0.000 1.0 0.614 15.00
in.
kL = tp aL = ew a = (aL)/L k = 0 (for Special Case) C1 = 1.0 for E70XX electrode (interpolated from Table XIX) Pr = SQRT(R^2+P^2) (total resultant load taken by 2 welds)
θ= Co = C(max) = A= Ca/Co = Ca =
0.000 N.A. N.A. N.A. N.A. N.A.
deg.
ω(req'd) =
0.170
in. (size)
ω(req'd) =(Pr/((C or Ca)*C1*L))/16
ω(recom'd) =
0.2813
in.
ω(recom'd) = ((0.40*Fyp*Hp*tp)/((C or Ca)*C1*L))/16 <= 0.75*tp
ω(min) =
0.1875
in.
ω(min) = Min. fillet weld size from AISC Table J2.4, page 5-67
Rwr =
27.63
kips
Rwr = ω*16*(C or Ca)*C1*L (ω = actual weld size used)
Rwv =
27.63
kips
Rwv = Rwr*COSθ (vertical)
Rwa =
0.00
kips
Rwa = Rwr*SINθ (axial)
in.
kips
θ = 90-(ATAN(R/P)) (angle from vertical) Co = "C" coefficient from AISC Table XIX C(max) = 0.928*(2) A = C(max)/Co >= 1.0 Ca/Co = A/(SINq+A*COSq) >= 1.0 Ca = (Ca/Co)*Co
Column Checks: Gross Shear Capacity of Web at Plate: Av = 3.735 in.^2 Av = Hp*twc Rv = 74.70 kips Rv = 0.40*Fyc*Av
Weld used >= weld req'd., O.K.
Rwv >= R, O.K.
Rv >= R, O.K.
Gross Tension Capacity of Web at Plate: At = 3.735 in.^2 At = Hp*twc Rt = 107.53 kips Rt = (0.60*Fyc*At)*(1-(R/Rv)^2)
Comments:
27 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
28 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
29 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3
30 of 57
08/25/2009 03:42:09
"BEAMTAB.xls" Program Version 1.3 Version 1.3
SUMMARY OF CHECKS: Row No.: Results: Beam Tab to Beam Connection: 82 Rbv >= R, O.K. 83 N.A. Beam Tab Checks: 91 Rpv >= R, 98 N.A. 106 Rvg >= R, 110 Rvn >= R, 114 N.A. 119 N.A. 123 Rbs >= R, 129 N.A. 133 N.A. 141 Rbg >= R, 149 Rbn >= R,
Stress Ratio: 0.913 N.A.
O.K. O.K. O.K.
O.K.
O.K. O.K.
164 N.A. Beam Checks for Uncoped Flanges: 172 Rpv >= R, O.K. 180 N.A.
0.255 N.A. 0.309 0.372 N.A. N.A. 0.337 N.A. N.A. 0.823 0.585 N.A. 0.342 N.A.
184 188 192 197 208 214 218
Rvg >= R, O.K. Rvn >= R, O.K. N.A. N.A. N.A. N.A. N.A.
0.191 0.232 N.A. N.A. N.A. N.A. N.A.
231
N.A.
N.A.
Beam Tab to Column Connection: 270 Weld used >= weld req'd., O.K. 0.3125 0.170 271 Weld used >= weld recom'd., O.K. 0.3125 0.281 272 Weld used >= weld min., O.K. 0.3125 0.188 274 Rwv >= R, O.K. 275 N.A. Column Checks: 280 Rv >= R, O.K. 284 N.A.
0.543 0.900 0.600 0.543 N.A. 0.201 N.A.
31 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
SR = 0.913 SR = N.A.
SR = 0.255
SR = N.A.
32 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
SR = 0.309
SR = 0.372
SR = N.A.
SR = N.A.
SR = 0.337
SR = N.A.
SR = N.A.
SR = 0.823
SR = 0.585
33 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
SR = N.A.
SR = 0.342
SR = N.A.
SR = 0.191
SR = 0.232
SR = N.A.
SR = N.A.
34 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
SR = N.A.
SR = N.A.
SR = N.A.
SR = N.A.
35 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
SR = 0.543 SR = 0.900 SR = 0.600 SR = 0.543 SR = N.A.
SR = 0.201
SR = N.A.
36 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
37 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
38 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
39 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
AISC BEAM END CONNECTION (ASD) Using Beam Tab (Single Plate) Bolted to Beam Web and Welded to Girder Web Subjected to Shear and/or Axial Load Job Name: Subject: Job Number: Originator: Checker: Input Data: Beam and Girder Data: Beam Size = Girder Size = Beam Yield Stress, Fyb = Girder Yield Stress, Fyg =
W16x26 W24x55 50 50
ksi ksi
Connection Loading: Beam End Reaction (Shear), R = Beam Axial Force, P =
15.00 0.00
Connection Data and Parameters: Beam Tab Height, Hp =
9.0000
in.
Beam Tab Width, Wp = Beam Tab Thickness, tp = Beam Tab Yield Stress, Fyp = Diameter of Bolts, db =
4.5000 0.3750 36 0.750
in.
Hp=9
ASTM Bolt Desig. (A325 or A490) = A325 Bolt Type (N, X, or SC) = N Bolt Hole Type in Beam Tab = Short-Slot Total No. of Bolts in Beam Tab, Nb = 3 Number of Vertical Rows, Nr = 1 Dist. from Top/Beam to Bolts, D1 = 3.0000 Bolt Vertical Spacing, S1 = 3.0000
ED2=1.5 S2=0 D2=3 D1=3
S1=3 S1=3
kips
P=0 k R= 15 k
kips
5/16 5/16
s=0.5 Wp=4.5
in.
General Nomenclature
ksi
(Girder not shown for clarity)
in.
tw=0.25
c=4
tf=0.345
dc1=1.5
d=15.7 in. in.
Vertical Edge Distance, ED1 =
1.5000
in.
Dist. to 1st Row of Bolts, D2 = Bolt Horizontal Spacing, S2 = Horizontal Edge Distance, ED2 = Beam Setback Distance, s = Length of Flange Cope(s), c = Depth of Top Flange Cope, dc1 = Depth of Bottom Flange Cope, dc2 = Fillet Weld Size at Beam Tab, ω =
3.0000 0.0000 1.5000 0.5000 4.0000 1.5000 0.0000 5/16
in.
Member Properties: Beam: A= 7.68 d = 15.700 tw = 0.250 bf = 5.500 tf = 0.345 k = 0.7470
Face of Girder Web tp=0.375 ED1=1.5
bf=5.5
dc2=0 c=0
in. in.
Beam and Cope Nomenclature
in.
(Girder not shown for clarity)
in. in. in. in.
Max. Shear Capacity of Connection: R(max) = 16.42 kips A= d= tw = bf = tf = k=
Girder: 16.30 23.600 0.395 7.010 0.505 1.1100
in.^2 in. in. in. in. in. (continued)
40 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
Results: General Parameters: Bolt and Material Data: dhy1 = 0.94 dhx1 = 1.0000 dh2 = 0.81 Ab = Fup = Fub = Fug =
0.4418 58.0 65.0 65.0
in. in. in. in.^2 ksi ksi ksi
Beam Tab to Beam Connection: Bolt Shear (includes eccentricity): n= 3 bolts b = 3.000 in. eb = 3.000 in. C = 1.770 Pr = 15.00 kips θ = 0.000 deg. Co = N.A. C(max) = N.A. A= N.A.
dhy1 = db+3/16 (Short-Slot hole for 0.75 in. bolts in plate) dhx1 = db+1/4 (Short-Slot hole for 0.75 in. bolts in plate) dh2 = db+1/16 (Standard hole for 0.75 in. bolts in beam web) Ab = π*db^2/4 Fup = 58 for Fyp = 36 (for plate) Fub = 65 for Fyb = 50 (for beam) Fug = 65 for Fyg = 50 (for girder) (assuming "flexible" support provided at girder web) (using AISC Table XI, page 4-62) n = Nb/Nr (number of bolts in a vertical row) b = S1 eb = Max. of: ABS(2*(Nb/Nr)/3-D2) or D2 (interpolated from Table XI) Pr = SQRT(R^2+P^2) (total resultant load taken by bolts) θ = 90-(ATAN(R/P)) (angle from vertical) Co = "C" coefficient from AISC Table XI C(max) = n A = C(max)/Co >= 1.0
Ca/Co = Ca = vb = fv = Fv = Vb = Rbr =
N.A. N.A. 8.47 19.18 21.00 9.28 16.42
Rbv =
16.42
kips
Ca/Co = A/(SINθ+A*COSθ) >= 1.0 Ca = (Ca/Co)*Co vb = Pr/(C or Ca) fv = vb/Ab Fv = Allow. shear stress from AISC Table J3.2, page 5-73 (for N bolts) Vb = Fv*Ab Rbr = Vb*(C or Ca) (resultant) Rbv = Rbr*COSθ (vertical) Rbv >= R, O.K.
Rba =
0.00
kips
Rba = Rbr*SINθ (axial)
kips/bolt ksi ksi kips/bolt kips
Beam Tab Checks: Bolt Bearing Capacity of Plate (for Vertical): C1 = 0 C1 = Spacing increment from AISC Table J3.4, page 5-76 in. C2 = 0 C2 = Edge distance increment from AISC Table J3.6, page 5-76 in. Rpe = 19.58 kips Rpe = (1.2*Fup*db*tp)*(Nr) (C2 is not applicable for ED1 >= 1.5*db) Rps = 39.15 kips Rps = (1.2*Fup*db*tp)*(Nb-Nr) (C1 is not applicable for S1 >= 3*db) Rpv =
58.73
kips
Rpv = Rpe+Rps <= (1.2*Fup*db*tp)*Nb)
Rpv >= R, O.K.
Bolt Bearing Capacity of Plate (for Axial): C1 = N.A. C1 = Spacing increment (not applicable for all edge bolts) in. C2 = 0.13 C2 = Edge distance increment from AISC Table J3.6, page 5-76 in. Rpe = 58.73 kips Rpe = (1.2*Fup*db*tp)*(Nb/Nr) (C2 is not applicable for ED2 >= 1.5*db) Rps = 0.00 Rps = not applicable, since all edge bolts for bearing due to axial load kips Rpa = 54.89 kips Rpa = (Rpe+Rps)*(1-(R/Rpv)^2) <= (1.2*Fup*db*tp)*(Nb)*(1-(R/Rpv)^2) (Ref.: "Comb. Shear & Tension Stress" by: S.C. Goel, AISC Journal, 3rd Qtr.-1986) (continued)
41 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
Beam Tab Checks (continued): Gross Shear Capacity of Plate: Avg = 3.375 in.^2 Rvg = 48.60 kips
Avg = Hp*tp Rvg = 0.40*Fyp*Avg
Rvg >= R, O.K.
Net Shear Capacity of Plate: Avn = 2.320 ksi Rvn = 40.37 kips
Avn = (Hp-(Nb/Nr)*dhy1)*tp Rvn = 0.30*Fup*Avn
Rvn >= R, O.K.
Gross Tension Capacity of Plate: Atg = 3.375 in.^2 Rtg = 65.96 kips
Atg = Hp*tp Rtg = (0.60*Fyp*Atg)*(1-(R/Rvg)^2)
Net Tension Capacity of Plate: Atn = 2.250 in.^2 Rtn = 56.24 kips
Atn = Atg-(Nb/Nr*(dhy1+1/16)*tp) <= 0.85*Atg Rtn = (0.50*Fup*Atn)*(1-(R/Rvn)^2) <= (0.60*Fyp*Atg)*(1-(R/Rvn)^2)
Block Shear ("L-shaped") Capacity of Plate: Av = 1.934 in.^2 Av = ((ED1+(Nb/Nr-1)*S1)-((Nb/Nr-1)*dhy1+dhy1/2))*tp At = 0.375 in.^2 At = (ED2+(Nr-1)*S2-((Nr-1)*dhx1+dhx1/2))*tp Rbs = 44.52 kips Rbs = 0.30*Fup*Av+0.50*Fup*At Rbs >= R, O.K. Tension Tear-Out ("L-shaped") Capacity of Plate: Av = 0.375 in.^2 Av = (ED2+(Nr-1)*S2-((Nr-1)*dhx1+dhx1/2))*tp At = 1.934 in.^2 At = ((ED1+(Nb/Nr-1)*S1)-((Nb/Nr-1)*dhy1+dhy1/2))*tp Rto = 55.49 kips Rto = (0.30*Fup*Av+0.50*Fup*At)*(1-(R/Rbs)^2) Tension Tear-Out ("U-shaped") Capacity of Plate: Av = 0.750 in.^2 Av = 2*(ED2+(Nr-1)*S2-((Nr-1)*dhx1+dhx1/2))*tp At = 1.547 in.^2 At = ((Nb/Nr-1)*S1-(Nb/Nr-1)*dhy1)*tp Rto = 57.91 kips Rto = (0.30*Fup*Av+0.50*Fup*At) Gross Bending in Plate: e = 6.000 in. M = 90.00 in.-kips Sg = 5.06 in.^3 fbg = 17.78 ksi Fbg = 21.60 ksi Rbg = 18.23 kips
e = D2+eb (eccentricity for plate bending at support) M = R*e (eccentric moment at face of support) Sg = tp*Hp^2/6 fbg = M/Sg Fbg = 0.60*Fyp Rbg = (Fbg*Sg/e)*(1-(P/Rtg)) Rbg >= R, O.K.
Net Bending in Plate: e = 3.000 M = 45.00 Sn = 3.56 fbn = 12.63 Fbn = 21.60 Rbn = 25.65
e = eb (eccentricity for plate bending at holes) M = R*e (eccentric moment at face of support) Sn = tp*Hp^2/6-S1^2*(Nb/Nr)*((Nb/Nr)^2-1)*(tp*(dhy1+1/16))/(6*Hp) fbn = M/Sn Fbn = 0.60*Fyp Rbn = (Fbn*Sn/e)*(1-(P/Rtn)) Rbn >= R, O.K.
in. in.-kips in.^3 ksi ksi kips
(continued)
42 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
Beam Tab Checks (continued): Axial Compression Capacity of Plate: Acg = 3.38 Acg = Hp*tp in.^2 Lc = 3.00 Lc = Max. of D2 or S2 in. K= 1.20 (assumed effective length factor for plate supported on one edge) r = 0.108 in. r = tp/(SQRT(12)) KL/r = 33.26 KL/r = K*Lc/r Cc = 126.10 Cc = SQRT(2*p^2*29000/Fyp) Fa = 19.71 ksi If KL/r <= Cc: Fa = --(1-(K*Lc/r )^2/(2*Cc^2))*Fyp/(5/3+3*(K*Lc/r)/(8*Cc)-(K*Lc/r)^3/(8*Cc^3)) --If K*L/r > Cc: Fa = 12*p^2*29000/(23*(K*Lc/r)^2) Rc = 66.51 kips Rc = Fa*Acg Beam Checks for Top Flange Coped Only: Bolt Bearing Capacity of Beam Web (for Vertical): C1 = 0 C1 = Spacing increment (C1 = 0 for Standard holes in web) in. C2 = 0 C2 = Edge distance increment (C2 = 0 for Standard holes in web) in. Rpe = 14.63 kips Rpe = 1.2*Fub*db*tw*(Nr) (C2 is not applicable for D1-dc1 >= 1.5*db) Rps = 29.25 kips Rps = 1.2*Fub*db*tw*(Nb-Nr) (C1 is not applicable for S1 >= 3*db) Rpv = 43.88 kips Rpv = Rpe+Rps <= 1.2*Fub*db*tw*(Nb) Rpv >= R, O.K. Bolt Bearing Capacity of Beam Web (for Axial): C1 = 0 C1 = Spacing increment (C1 = 0 for Standard holes in web) in. C2 = 0 C2 = Edge distance increment (C2 = 0 for Standard holes in web) in. Rpe = 43.88 kips Rpe = 1.2*Fub*db*tw*(Nb/Nr) (C2 is not applicable for D2-s >= 1.5*db) Rps = 0.00 Rps = not applicable, since all edge bolts for bearing due to axial load) kips Rpa = 38.75 kips Rpa = (Rpe+Rps)*(1-(R/Rpv)^2) <= 1.2*Fub*db*tw*(Nb)*(1-(R/Rpv)^2) Gross Shear Capacity of Beam Web for Top Flange Coped: ho = 14.200 in. ho = d-dc1 Avg = 3.550 in.^2 Avg = ho*tw Rvg = 71.00 kips Rvg = 0.40*Fyb*Avg
Rvg >= R, O.K.
Net Shear Capacity of Beam Web for Top Flange Coped: Avn = 2.941 in.^2 Avn = (ho-Nb/Nr*dh2)*tw Rvn = 57.34 kips Rvn = 0.3*Fub*Avn <= 0.40*Fyb*Avg
Rvn >= R, O.K.
Gross Tension Capacity of Beam for Top Flange Coped: Atg = 5.494 in.^2 Atg = A-(bf*tf+(dc1-tf)*tw) Rtg = 157.46 kips Rtg = (0.60*Fyb*Atg)*(1-(R/Rvg)^2) Net Tension Capacity of Beam for Top Flange Coped: Atn = 4.670 in.^2 Atn = Atg-(Nb/Nr*(dh2+1/16))*tw <= 0.85*Atg Rtn = 141.38 kips Rtn = (0.50*Fub*Atn)*(1-(R/Rvn)^2) <= (0.60*Fyb*Atg)*(1-(R/Rvn)^2)
(continued)
43 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
Beam Checks for Top Flange Coped Only (continued): Block Shear ("L-shaped") Capacity of Beam Web for Top Flange Coped: Av = 1.367 in.^2 Av = ((D1-dc1)+(Nb/Nr-1)*S1-((Nb/Nr-1)*dh2+dh2/2))*tw At = 0.523 in.^2 At = ((D2-s)+(Nr-1)*S2-((Nr-1)*dh2+dh2/2))*tw Rbs = 43.67 kips Rbs = 0.30*Fub*Av+0.50*Fub*At Rbs >= R, O.K. Tension Tear-Out ("L-shaped") Capacity of Beam Web for Top Flange Coped: Av = 0.523 in.^2 Av = ((D2-s)+(Nr-1)*S2-((Nr-1)*dh2+dh2/2))*tw At = 1.367 in.^2 At = ((D1-dc1)+(Nb/Nr-1)*S1-((Nb/Nr-1)*dh2+dh2/2))*tw Rto = 48.19 kips Rto = (0.30*Fub*Av+0.50*Fub*At)*(1-(R/Rbs)^2) Tension Tear-Out ("U-shaped") Capacity of Beam Web for Top Flange Coped: Av = 1.047 in.^2 Av = 2*((D2-s)+(Nr-1)*S2-((Nr-1)*dh2+dh2/2))*tw At = 1.094 in.^2 At = ((Nb/Nr-1)*S1-(Nb/Nr-1)*dh2)*tw Rto = 55.96 kips Rto = (0.30*Fub*Av+0.50*Fub*At) Web Buckling (Flexure) Capacity for Top Flange Coped: ho = 14.200 in. ho = d-dc1 e = 4.500 in. e = c+s yc = 4.760 in. yc = (bf*tf^2/2+(ho-tf)*tw*(tf+(ho-tf)/2))/((ho-tf)*tw+bf*tf) In = 117.23 in.^4 In=bf*tf^3/12+bf*tf*(yc-tf/2)^2+tw*(ho-tf)^3/12+(ho-tf)*tw*(tf+(ho-tf)/2-yc)^2 Sn = 12.42 in.^3 Sn = In/(ho-yc) c/ho = 0.282 c/ho = ratio for evaluating plate buckling coefficient (k) k = 17.795 If c/ho <= 1.0, then k = 2.2*(ho/c)^1.65, else k = 2.2*(ho/c) c/d = 0.255 c/d = ratio for evaluating adjustment factor (f) of plate buckling model f = 0.510 If c/d <= 1.0, then f = 2*(c/d), else f = 1+(c/d) Fbc = 30.00 ksi Fbc = Min. of: (15,700*f*k*(tw/ho)^2 or 0.60*Fy)*(1-P/(0.60*Fy*Atg)) Rwb = 82.78 kips Rwb = Fbc*Sn/e Rwb >= R, O.K.
(continued)
44 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
Beam Tab to Girder Connection: Plate to Girder Welding: (using AISC Table XIX, page 4-75) ew =
6.000
in.
ew = D2+eb (eccentricity for weld design)
L=
9.000
in.
L = Hp
kL = aL = a= k= C1 = C= Pr =
0.375 6.000 0.667 0.000 1.0 0.614 15.00
in.
kL = tp aL = ew a = (aL)/L k = 0 (for Special Case) C1 = 1.0 for E70XX electrode (interpolated from Table XIX) Pr = SQRT(R^2+P^2) (total resultant load taken by 2 welds)
θ= Co = C(max) = A= Ca/Co = Ca =
0.000 N.A. N.A. N.A. N.A. N.A.
deg.
ω(req'd) =
0.170
in. (size)
ω(req'd) =(Pr/((C or Ca)*C1*L))/16
ω(recom'd) =
0.2813
in.
ω(recom'd) = ((0.40*Fyp*Hp*tp)/((C or Ca)*C1*L))/16 <= 0.75*tp
ω(min) =
0.1875
in.
ω(min) = Min. fillet weld size from AISC Table J2.4, page 5-67
Rwr =
27.63
kips
Rwr = ω*16*(C or Ca)*C1*L (ω = actual weld size used)
Rwv =
27.63
kips
Rwv = Rwr*COSθ (vertical)
Rwa =
0.00
kips
Rwa = Rwr*SINθ (axial)
in.
kips
θ = 90-(ATAN(R/P)) (angle from vertical) Co = "C" coefficient from AISC Table XIX C(max) = 0.928*(2) A = C(max)/Co >= 1.0 Ca/Co = A/(SINq+A*COSq) >= 1.0 Ca = (Ca/Co)*Co
Girder Checks: Gross Shear Capacity of Web at Plate: Av = 3.555 in.^2 Av = Hp*twg Rv = 71.10 kips Rv = 0.40*Fyg*Av
Weld used >= weld req'd., O.K.
Rwv >= R, O.K.
Rv >= R, O.K.
Gross Tension Capacity of Web at Plate: At = 3.555 in.^2 At = Hp*twg Rt = 101.90 kips Rt = (0.60*Fyg*At)*(1-(R/Rv)^2)
Comments:
45 of 57
08/25/2009 03:42:10
"BEAMTAB.xls" Program Version 1.3
46 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3
47 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3
48 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3 Version 1.3
SUMMARY OF CHECKS: Row No.: Results: Beam Tab to Beam Connection: 82 Rbv >= R, O.K. 83 N.A. Beam Tab Checks: 91 Rpv >= R, 98 N.A. 106 Rvg >= R, 110 Rvn >= R, 114 N.A. 119 N.A. 123 Rbs >= R, 129 N.A. 133 N.A. 141 Rbg >= R, 149 Rbn >= R,
Stress Ratio: 0.913 N.A.
O.K. O.K. O.K.
O.K.
O.K. O.K.
164 N.A. Beam Checks for Top Flange Coped Only: 172 Rpv >= R, O.K. 180 N.A.
0.255 N.A. 0.309 0.372 N.A. N.A. 0.337 N.A. N.A. 0.823 0.585 N.A. 0.342 N.A.
184 188 192 197 208 214 218
Rvg >= R, O.K. Rvn >= R, O.K. N.A. N.A. Rbs >= R, O.K. N.A. N.A.
0.211 0.262 N.A. N.A. 0.343 N.A. N.A.
231
Rwb >= R, O.K.
0.181
Beam Tab to Girder Connection: 270 Weld used >= weld req'd., O.K. 0.3125 0.170 271 Weld used >= weld recom'd., O.K. 0.3125 0.281 272 Weld used >= weld min., O.K. 0.3125 0.188 274 Rwv >= R, O.K. 275 N.A. Girder Checks: 280 Rv >= R, O.K. 284 N.A.
0.543 0.900 0.600 0.543 N.A. 0.211 N.A.
49 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3
SR = 0.913 SR = N.A.
SR = 0.255
SR = N.A.
50 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3
SR = 0.309
SR = 0.372
SR = N.A.
SR = N.A.
SR = 0.337
SR = N.A.
SR = N.A.
SR = 0.823
SR = 0.585
51 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3
SR = N.A.
SR = 0.342
SR = N.A.
SR = 0.211
SR = 0.262
SR = N.A.
SR = N.A.
52 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3
SR = 0.343
SR = N.A.
SR = N.A.
SR = 0.181
53 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3
SR = 0.543 SR = 0.900 SR = 0.600 SR = 0.543 SR = N.A.
SR = 0.211
SR = N.A.
54 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3
55 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3
56 of 57
08/25/2009 03:42:11
"BEAMTAB.xls" Program Version 1.3
57 of 57
08/25/2009 03:42:11