Introduction to Acoustics
Bruel & Kjaer Norcross, Georgia www.bkhome.com
Agenda
2
z
Introduction to Theory and Terminology
z
The Decibel
z
Frequency of Sound
z
Measuring Sound
z
Applications of Acoustics
www.bksv.com
Sound
3
www.bksv.com
Sound and Noise
4
www.bksv.com
Terminology of Sound Active Intensity
RMS Peak
Statistical analysis Fast Slow Impulse
Free Field/Pressure Field Percentile level
Sound Pressure dB Logarithmic scales Pascal
Weighting Leq
RMS
L10 L90
Constant percentage bandwidth
1/1 and 1/3 Octave Analysis Noise Dose
5
www.bksv.com
Basic Parameters of Sound (cont.)
Receiver
Sound Pressure Level
p2 Lp = 10 log10 2 po
po = 2 ×10−5 N / m2 = 20µPa
Path
Sound Intensity Level
Source
Sound Power Level
I I0 2 Io = 1pW / m
Li = 10 log10
Lw = 10 log10 Wo = 1pW
6
www.bksv.com
W Wo
Pressure vs. Power
Pressure p [N/m2 = Pa]
Analogy
Lp [dB]
Temperature t [°C]
Power P [W]
Power P [W] Sound Source Electrical Heater 7
www.bksv.com
Sound Levels Under Free-field Conditions Example: r = 1.5 m
W p2 Ι= = 2 ρc 4πr
Sound Power = 0.01 Watt
Sound Power
Sound Intensity
W = 0.01 Watt
Ι=
p=
Ι L Ι = 10 log10 dB Ι0
p2 Lp = 10 log10 2 dB p0
L W = 10 log10
LW
W dB W0
0.01 = 10 log10 −12 dB 10 = 100 dB
Sound Pressure
W 0.01 = 2πr 2 2π ⋅ 1.5 2 = 0.000707 W m2
Ι ⋅ ρc = 0.000707 ⋅ 400
= 0.532 Pascal
7.07 ⋅ 10 − 4 = 10 log10 dB 10 −12 L Ι = 88.5 dB
= 10 log10
0.532 2
(20 ⋅ 10 )
−6 2
dB
Lp = 88.5 dB
LI = Lp under free-field conditions 8
www.bksv.com
Sound Pressure Propagation
Pressure [Pa] 100 000 Pascal
Time 9
www.bksv.com
Range of Sound Pressure Levels Sound Pressure, p [Pa] 100 10 1 0.1 0.01 0.001 0.000 1 0.000 01 10
www.bksv.com
Sound Pressure Level, Lp 140 120 100 80 60 40 20 0
[dB]
Converting Pascals to Decibels
Lp = 20 log
⎛ p⎞ ⎜⎜ ⎟⎟ ⎝ p0 ⎠
dB re 20 µPa
(p0 = 20 µPa = 20 × 10-6 Pa)
Ex. 1: p = 1 Pa
Ex. 2: p = 31.7 Pa 1
Lp = 20 log 20 × 10 −6
11
Lp = 20 log
317 . 20 × 10 −6
= 20 log 50 000
= 20 log 1.58 × 10-6
= 94 dB
= 124 dB
www.bksv.com
Human Perception of dBs Change in Sound Level (dB)
12
www.bksv.com
Change in Perceived Loudness
3
Just perceptible
5
Noticeable difference
10
Twice (or 1/2) as loud
15
Large change
20
Four times (or 1/4) as loud
Types of Sound Sources Point source
Line source r: Lp 2r: Lp − 3 dB
Plane source r: Lp 2r: Lp − 6 dB r: Lp 13
www.bksv.com
2r: Lp
Anechoic and Reverberant Enclosures
14
www.bksv.com
Pressure Field
z
Loudspeaker
z
z
15
Microphone
www.bksv.com
Enclosure
Sound Fields Lp
Near field
Far field Free field
Reverberant field
6 dB
Distance, r A1
16
www.bksv.com
2 × A1
Frequency Range of Different Sound Sources
1
10 17
www.bksv.com
100
1000
10 000
Frequency [Hz]
Wavelength and Frequency
c λ= f λ
λ
Wavelength, λ [m] 20
10
10
20
5
50
2
100
1
200
0.2
500
Frequency, f [Hz] 18
www.bksv.com
1k
0.1
2k
0.05
5k
10 k
Why Make a Frequency Analysis
B
C Amplitude
Amplitude
A A
B
E D C
Time
E D
19
www.bksv.com
Sound
Frequency
1/1 and 1/3 Octave Filters L B = 1/1 Octave
1/1 Octave f2 = 2 × f1 Frequency f2 = 1410 [Hz]
f1 = 708
B = 0 .7 × f0 ≈ 70%
f0 = 1000
L 1/3 Octave
B = 1/3 Octave
f2 = f1 = 891
20
www.bksv.com
f2 = 1120 f0 = 1000
Frequency [Hz]
3
2 × f1 = 1.25 × f1
B = 0 .2 3 × f 0 ≈ 2 3 %
Third-octave and Octave Passband
21
Band No.
Nominal Centre Frequency Hz
Third-octave Passband Hz
1 2 3 4 5 6
1.25 1.6 2 2.5 3.15 4
1.12 – 1.41 1.41 – 1.78 1.78 – 2.24 2.24 – 2.82 2.82 – 3.55 3.55 – 4.47
27 28 29 30 31 32
500 630 800 1000 1250 1600
447 – 562 562 – 708 708 – 891 891 – 1120 1120 – 1410 1410 – 1780
40 41 42 43
10 K 1.25 K 16 K 20 K
8910 – 11200 11.2 – 14.1 14.1 – 17.8 K 17.8 – 22.4 K
www.bksv.com
Octave Passband Hz
1.41 – 2.82 2.82 – 5.62 355 – 708 780 – 1410
11.2 – 22.4 K
Auditory Field 140 dB 120
Threshold of Pain
Sound Pressure Level
100 80
Music
60
Speech
40 20 0 20
22
Limit of Damage Risk
www.bksv.com
Threshold in Quiet 50
100
200
500 1k 2k Frequency [Hz]
5k
10k
20 k
Equal Loudness Contours for Pure Tones 130 120 110 100 90 80 70 60
120
Sound pressure level, Lp
100
(dB re 20 µPa)
80 60
50 40 30
40 20
20 10
0
Phon 20 Hz
23
www.bksv.com
100 Hz
1 kHz Frequency
10 kHz
40 dB Equal Loudness Contours and A-Weight L p
z
40 dB Equal Loudness Contour normalized to 0 dB at 1kHz
(dB) 40
40
20 0
Lp z
20 Hz
1 kHz
10 kHz
1 kHz
10 kHz
(dB) 0
40 dB Equal Loudness Contour inverted -20 and compared with A-weighting -40
40 A-weighting
20 Hz 24
100
www.bksv.com
100
Frequency Weighting Curves Lp
D
[dB] Lin. 0 D
C B+C
A
-20 A B -40
-60
10
25
20
www.bksv.com
50
100
200
500
1k
2k
5k
10 k 20 k
Frequency [Hz]
The Sound Level Analyzer
dB 100 1/1, 1/3 oct
1/3 Octave Analysis
Weighting 80 RMS Peak Fast Slow Impulse
60 40 20 125 250 500 1k
87.2 26
www.bksv.com
2k
4k
8k
LA
Time Weighting p
Time
Lp
Lp
Impulse (1.5 ) Slow (1 s) Fast (125 ms)
Slow (1 s) Fast (125 ms) Impulse (35 ms) 27
www.bksv.com
Time
Equivalent Level, Leq
Leq = 10 log10
1 T ∫0
T
⎛ p(t ) ⎞ ⎜ ⎟ dt ⎝ p0 ⎠ 2
Lp
Leq Time
T 28
www.bksv.com
Sound Power z z z z
Product noise labeling Government regulations ‘Apples to Apples’ comparison of noise Can predict SPL with knowledge of sound field
Z z
Three ways to calculate sound power: z Free Field z Reverberant Field z Sound Intensity
Y
X 29
www.bksv.com
Intensity Mapping
z
z
z
30
www.bksv.com
Visually identify where sounds come from Rank sound power contribution of individual components Make modern art?
Sound Quality L = 63 dBA
zz
L = 63 dBA
L = 63 dBA
Sound SoundQuality Qualityisisaaparameter parameterthat thatsells sellsthe theproduct product zz A-weighted A-weightednoise noiselevels levelsand andsound soundpower powerare arenot notsufficiently sufficiently sensitive sensitiveto tofully fullycharacterize characterizethe the“quality” “quality”of ofproduct productsound sound zz Sound SoundQuality Qualityisisfunction functionof ofconsumer consumerexpectations expectations
31
www.bksv.com
Building Acoustics z z z z z
32
Reverberation Time Transmission Loss Leakage between rooms Impact Isolation Speech Intelligibility
www.bksv.com
Environmental Noise Models
Large Plane Smaller size
Mid Sized
Noise Contours
Mid Sized
Smaller
33
www.bksv.com
Conclusion
34
z
Clear understanding of the three basic acoustic parameters: pressure, intensity, power
z
What a decibel is and why we use it in acoustics
z
Differences between Anechoic, Reverberant, and Pressure sound fields
z
How wavelengths are calculated and the importance of frequency analysis in acoustics
z
Introduction to some different acoustic applications
www.bksv.com
Literature for Further Reading References z z z z z z z z
35
Acoustic Noise Measurements Journals and Magazines Brüel & Kjær (BT 0010-12) z Journal of the Acoustical Noise Control - Principles and Practice Society of America Brüel & Kjær (188-81) z Noise Control Engineering Noise and Vibration Control z Sound and Vibration Magazine L. L. Beranek, ed. INCE z Bruel & Kjaer Magazine Industrial Noise Control Websites Louis Bell, Dekker z www.bkhome.com The Science and Application of Acoustics z asa.aip.org Daniel Raichel, AIP Press z www.inceusa.org Industrial Noise and Vibration Control z www.nonoise.org Irwin and Graf, Prentice Hall Acoustics L.L. Beranek, Acoustical Society of America Acoustical Designing in Architecture V. Knudsen, C. Harris Acoustical Society of America
www.bksv.com