Bangla Math By Rakes Prasad

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Bangla Math By Rakes Prasad as PDF for free.

More details

  • Words: 2,524
  • Pages: 25
Rakes prasad

°h¢cL Aˆ

Digitally signed by Rakes prasad DN: cn=Rakes prasad, c=IN, o=prasadonlineproject, email=prasadrakes@gmail. com Reason: I am the editor of this document Location: mollarpur,birbhum, w.b.,india Date: 2009.01.11 22:36:12 +05'30'

Bjl¡ Hh¡l Bj¡−cl j¡a«i¡o¡u Aˆ ¢nMh , −cM−h¡ ¢L L−l A¢a pq−S …Z Ll¡ k¡u z a¡l SeÉ fËb−j clL¡l ¢LR¥ e¡ja¡ j¤MÙ¹ Ll¡l z e£−Ql RL …−m¡ −cMz RL 1.

1 2

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

4

6

8

10

12

14

16

18

20

9

12

15

18

21

24

27

30

16

20

24

28

32

36

40

25

30

35

40

45

50

36

42

48

54

60

49

56

63

70

64

72

80

81

90

3 4 5 6 7 8 9 10

8*4 = 4 *8,..

100

RL 2. 1

2

3

4

5

6

7

8

9

10

11

11

22

33

44

55

66

77

88

99

110

12

12

24

36

48

60

72

84

96

108

120

13

13

26

39

52

65

78

91

104

117

130

14

14

28

42

56

70

84

98

112

126

140

15

15

30

45

60

75

90

105

120

135

150

16

16

32

48

64

80

96

112

128

144

160

17

17

34

51

68

85

102

119

136

153

170

18

18

36

54

72

90

108

126

144

162

180

19

19

38

57

76

95

114

133

152

171

190

20

20

40

60

80

100

120

140

160

180

200

21

21

42

63

84

105

126

147

168

189

210

22

22

44

66

88

110

132

154

176

198

220

23

23

46

69

92

115

138

161

184

207

230

24

24

48

72

96

120

144

168

192

216

240

25

25

50

75

100

125

150

175

200

225

250

RL 3.

11 12 13 14 15 16 17

11

12

13

14

15

16

17

18

19

20

121

132

143

154

165

176

187

198

209

220

144

156

168

180

192

204

216

228

240

169

182

195

208

221

234

247

260

196

210

224

238

252

266

280

225

240

255

270

285

300

256

272

288

304

320

289

306

323

340

324

342

360

361

380

18 19

400

20

pÇf¡ce¡u l¡−Ln fËp¡c, 2008

Hh¡l Bjl¡ hNÑ , hNÑj§m, Oe, Oej§m CaÉ¡¢c ¢nMh z HM¡−e ¢LR¥ ¢Q−œl j¡dÉ−j fÜ¢a…−m¡ −h¡T¡h¡l −Qø¡ Ll¡ q−u−Rz ¢euj 01. fËb−j 1 −b−L 32 fkÑ¿¹ pwMÉ¡l hNÑ j¤MÙ¹ Ll¡ clL¡l k¡ e£−Ql R−L −cJu¡ q−m¡z No

Square

No

Sq

No

Sq

No

Sq

no

sq

1

1

9

81

17

289

25

625

33

1089

2

4

10

100

18

324

26

676

34

1156

3

9

11

121

19

361

27

729

35

1225

4

16

12

144

20

400

28

784

36

1296

5

25

13

169

21

441

29

841

38

1444

6

36

14

196

22

484

30

900

41

16 81

7

49

15

225

23

529

31

961

8

64

16

256

24

576

32

1024

¢euj 02. −k pjÙ¹ pwMÉ¡l −no pwMÉ¡ 5 a¡−cl hNÑ ¢eÑZu zHLV¡ Ec¡lqZ ¢e−u hÉ¡f¡lV¡ −h¡T¡l −Qø¡ Ll¡ k¡Lz −kje d¢l 25 ,Hl −no pwMÉ¡ 5 Hhw B−Nl pwMÉ¡ 2 za¡q−m Bjl¡ B−Nl pwMÉ¡¢V−L a¡l f−ll pwMÉ¡ ¢c−u …Z Llh AbÑ¡v 2 −L 3 ¢c−u AbÑ¡v 2x3 / 5x5=6 / 25 = 625 AbÑ¡v (25) =625 HLCi¡−h 105P2P= 10 X 11/25 = 11025; 135P2P= 13 X 14/25 = 18225

e£−Ql ¢Qœ ¢V −cM z



Bjl¡ Hh¡l ¢euj¢V−L fËp¡¢la Ll¢R. ¢euj 03 : k¢c −no pwMÉ¡ c¤¢Vl −k¡Ngm 10 qu a¡q−m Bjl¡ HC ¢euj¢V fË−u¡N Ll−a f¡lh ¢L¿¹¥ h¡j q¡−al pwMÉ¡ c¤¢V−L (L.H.S) HLC q−a q−hz Ex 1 : 47 X 43 . HM¡−e −no pwMÉ¡ c¤¢Vl −k¡Ngm 10 AbÑ¡v7 + 3 = 10 ;a¡q−m 47 x 43 = ( 4 + 1 ) x 4 / 7 x 3 = 20 / 21 = 2021. Ex2: 62 x 68 2 + 8 = 10, h¡j q¡−al c¤¢V−L (L.H.S)HLC AbÑ¡v 6. 6 Hl f−ll pwMÉ¡ qm 7 Hhw 62 x 68 = ( 6 x 7 ) / ( 2 x 8 ) = 42 / 16 = 4216.

Ex 3: 127 x 123 127 x 123 = 12 x 13 / 7 x 3 = 156 / 21 = 15621. U(e£−Ql ¢Qœ ¢V −cM )U

Ex 4. 395P2P 395P2P = 395 x 395 = 39 x 40 / 5 x 5 = 1560 / 25 = 156025. .Hi¡−hJ ¢euj¢V−L j−e l¡M¡ −k−a f¡−l 125P2P =(12P2P +12)25=(144+12)25=15625 . .Hl g−m h−s¡ pwMÉ¡l −r−œ p¤¤¢hd¡ q−hz ¢euj 04 : k¢c −no pwMÉ¡ c¤¢Vl −k¡Ngm 5 qu a¡q−m Bjl¡ HC ¢euj¢V fË−u¡N Ll−a f¡lh ¢L¿¹¥ h¡j q¡−al pwMÉ¡ c¤¢V−L (L.H.S)HLC q−a q−hz Ex 1. 82 x 83=(8P2P+8/2) /3 x 2=(64+4) / 06=6806

AbÑ¡v U( nU2 PU UP +n/2) ,n kMe −S¡l U pwMÉ¡ (even no).a−h mr

L−l¡ −no …Zgm¢V 06 AbÑ¡v c¤C Ar−ll ,öd¤ 6 euz

Ex 2.181 x 184=(18P2P +9) / 04=(324+9) / 04=33304. ¢L¿¹¥ k¢c n ¢h−S¡l qu a¡q−m ¢L q−h ? aMe Bjl¡ Hi¡−h pj¡d¡e Llh: Ex 3: 91 x 94= (9P2P +9/2) / 04=(81+4 ½ ) / 04= (81+4 ) / 54 Ah¡L m¡N−R ? Bjl¡ −Lhm ½ −L f−ll O−l 5 ¢m−M¢R L¡lZ ½ na−Ll O−l B−R a¡C 1/2= 1/2 x 100=50. H−r−œ 5 −L Hi¡−h p¢l−u ¢e−a quz e£−Ql ¢Qœ ¢V −cM z



Ex 4 . 51 x 54= (25+2) / 54 =2754 54=29754

Ex 5. 171 x 174= (289+8) /

¢euj 05 : Hh¡l Bjl¡ −k −L¡e pwMÉ¡l hNÑ Ll¡l p¡d¡lZ fÜ¢a ¢e−u B−m¡Qe¡ LlhzB−N e£−Ql RL¢V i¡mi¡−h mr L−l¡z base 50 100

range 26-74 76-126

Trick

alternative −cM 5P2P =25

25(±)( read as 25 plus minus) 100(±)2(±)

150

126-174

225(±)3(±)

200

176-224

400(±)4(±)

250

226-274

625(±)5(±)

300

276-224

900(±)6(±)

350

326-374

1225(±)7(±)

400

376-424

1600(±)8(±)

450

426-474

2025(±)9(±)

500

476-524

2500(±)10(±)

………

…………..

……………………….

1000

976-1024

100,00(±)20(±)

1500

1476-1524

225,00,00(±)30(±)

2000

1976-2024

4,000,000(±)40(±)

Given no(±)

Hhw 10P2P = 100 Hi¡−h

.

50 base Hl SeÉ: 26 −b−L 74 fkÑ¿¹ pwMÉ¡…−m¡l SeÉ base 50 dl¡ qu,AbÑ¡v HC p£j¡l (range) j−dÉ pwMÉ¡…−m¡l SeÉ 25+- ¢euj¢V M¡−Vz fËb−j −cM−a qu pwMÉ¡¢V 25 Hl −R¡−V¡ e¡ h−s¡ ,−R¡−V¡ q−m 25Hhw h−s¡ q−m 25+ ¢euj¢V hÉhq¡l Ll−a quz Ec¡lq−Zl p¡q¡−kÉ J d¡f BL¡−l ¢hou¢V −h¡T¡−e¡ qmz .Ex 1. 43P2P d¡f 1:

base −b−L pwMÉ¡¢Vl ¢h−k¡Ngm −hl L−l¡z −kje 50-43=07 d¡f 2: fË¡ç de¡aÆL pwMÉ¡¢Vl hNÑ L−l¡ J H¢V−L X¡e ¢c−L −mM , −kje 07 2 P P=49. d¡f 3: −k−qa¥ 43 pwMÉ¡¢V 50 Hl −Q−u −R¡−V¡ a¡C HM¡−e . 25- ¢euj¢V M¡−V, AbÑ¡v 25 −b−L 07 ¢h−k¡N c¡J J ¢h−k¡Ngm−L h¡j¢c−L −mMz 25-07=18 d¡f 4: H¢VC qm Ešl AbÑ¡v 1849 Ex 2. 57P2P : d¡f 1.

base −b−L pwMÉ¡¢Vl ¢h−k¡Ngm −hl L−l¡z −kje 57-50=7P .

d¡f 2:

fË¡ç pwMÉ¡¢Vl de¡aÆL j¡e¢V hNÑ L−l¡ J H¢V−L X¡e ¢c−L −mM , −kje 7P2P=49

d¡f 3 :

−k−qa¥ 57 pwMÉ¡¢V 50 Hl −Q−u h−s¡ a¡C HM¡−e 25+ ¢euj¢V M¡−V, AbÑ¡v 25 −b−L 07 −k¡N c¡J J −k¡Ngm−L h¡j¢c−L −mMz 25+7=32

Ešl qm 32 49. Ex 3. 69 2P P d¡f4:

d¡f 1: 69-50=19 , 19P2P =361 d¡f 2: H¢M−e 3 −L q¡−a e¡J J X¡e ¢c−L 61 −L −mMz L¡lZ Bjl¡ c¤C Ar−ll −h¢n ¢e−a f¡lh e¡z d¡f 3: 25+19=44, ¢L¿¹¥ HC 44 Hl p−‰ 3 −L (q¡−a l¡M¡) −k¡N L−l¡ J h¡j¢c−L −mMzAbÑ¡v (25+19+3) d¡f 8:

Ešl qm 47 61

100 base Hl SeÉ:

76 −b−L 124 fkÑ¿¹ pwMÉ¡…−m¡l SeÉ base 100 dl¡ qu,AbÑ¡v HC p£j¡l (range) j−dÉ pwMÉ¡…−m¡l SeÉ 100(+-)2(+-) ¢euj¢V M¡−Vz Ex 5. 89P2P d¡f 1: 100-89=11 ,11P2P =121 ,q¡−a b¡L−m¡ 1 d¡f 2: . "

100-(2 x 11 )+1=79,AbÑ¡v Ešl qm 7921

HM¡−e ¢hLÒf ¢euj¢V qm ”given no (±)” AbÑ¡v fËcš pwMÉ (±) d¡f 1: 100-89=11 ,11P2P =121 ,q¡−a b¡L−m¡ 1 d¡f 2: 89-11+1=79 ,AbÑ¡v Ešl qm 7921

# HM¡−e fËcš pwMÉ¢V qm 89 ,−pM¡e −b−L ¢h−k¡Ngm 11 −L ¢h−k¡N −cJu¡ q−u−R ¢L¿¹¥ j−e l¡M−h q¡−a l¡M¡ 1 −L phpju −k¡N Ll−a quz # HC ¢hLÒf ¢euj¢V H−r−œ hÉhq¡l Ll¡ i¡m z Ex 6. 117² d¡f 1: 117-17=17 , 17P2P=289 , q¡−a b¡L−m¡ 2 d¡f 2: .

117+17=134, 134+2=136 AbÑ¡v Ešl qm 13689.

h¡L£ −r−œJ HLCi¡−h ¢euj…−m¡−L fË−u¡N Ll−a q−hz P P

Ex 6. 139² 1. 150-139=11 , hNÑ 121 , q¡−a b¡L−m¡ 1 2. 225-3×11=225-33=192, 192+1=193 , Ešl qm 19, 321 Ex 7. 164² 1. 164-150=14, 14²=196, q¡−a b¡L−m¡ 1 2. 225+3(14)=225+42=267 ,267+1=268 , Ešl qm 26,896 Ex 8. 512² 1. 12²=144 , q¡−a b¡L−m¡ 1, 2500+10(12)+1=2621, Ešl qm 262144 Hh¡l −a¡jl¡ ¢e−Sl¡ ¢LR¥ Ec¡lqZ AiÉ¡p L−l¡ z ¢euj 06 : Hh¡l Bjl¡ c¤¢V pwMÉ¡l Oe ¢nMh . HM¡−e HL¢V EQ¡lq−el p¡q¡−kÉ hÉ¡f¡l¢V −h¡T¡h¡l −Qø¡ Ll¡ qmz −kje dl Ex 1. (18)P 3

d¡f 1. fËb−j pwMÉ¡c¤¢Vl Ae¤f¡a −hl Ll−a q−h −kje HM¡−e 1:8

d¡f 2. Hh¡l fËbj pwMÉ¡¢Vl Oe Ll J a¡lfl Oe pwMÉ¡¢V−L Ae¤f¡a ¢c−u flfl ¢aeh¡l …Z L−l HL¢V m¡C−e −mMz −kje : 1P3P=1 / 1 x 8=8 / 8 x 8=64 / 64 x 8 =512 d¡f 3. ¢àa£u J a«a£u pwMÉ¡¢Vl ¢à…Z L−l a¡−cl AhÙÛ¡−el ¢WL e£−Q a¡¢c−L −mM z d¡f 4. Aa:fl Efl J e£−Ql pwMÉ¡…−m¡−L −k¡N Ll ( HL Ar−ll −hn£ q−m q¡−a ¢e−a q−h)z a¡q−mC Ešl¢V f¡Ju¡ k¡−hz e£−Ql ¢Qœ¢V −cMz 1. 2. 4.

18

Abѡv 1 :8

4

3

1 =1 / P

P

24

51

1x8=8

/ 8 x 8=64

/ 64 x 8 =512

8 x 2=16 64 x 2=128 -----------------------------------------------------------(4+1) 5

(24+8+16) =48

(51+64+128) =243

51

2

Ex 2. (33) P3

Hh¡l −a¡jl¡ ¢e−Sl¡ ¢LR¥ Ec¡lqZ AiÉ¡p L−l¡ z ¢euj 07 : Hh¡l Bjl¡ −k −L¡e pwMÉ¡l hNÑjm § Ll¡l p¡d¡lZ fÜ¢a ¢e−u B−m¡Qe¡ LlhzB−N e£−Ql RL¢V i¡mi¡−h mr L−l¡z

f¤ZÑhNÑ l¡¢nl HLL O−ll Aˆ hNÑjm § l¡¢nl HLL O−ll Aˆ

P1P

P4P

5 P P

6 P P

P9P

P1,9

P2,8

5 P

P4,6

P3,7

P1+9=10P

P2+8=10P

P5+5=10P

P4+6=10P

P3+7=10P

#1. −L¡−e¡ pwMÉ¡l −no Arl¢V k¢c pwMÉ¡¢Vl hNÑj§m f¡Ju¡ pñh euz

2,3,7,8 qu

,a¡q−m −pC

#2. Arl¢V−a k¢c ¢h−S¡l pwMÉ¡L n§eÉ b¡−L, a¡q−m −pC pwMÉ¡¢Vl hNÑj§m f¡Ju¡ pñh euz e£−Ql RL¢V i¡mi¡−h mr L−l¡z p£j¡

hNÑ

hNÑ

P

1²=1

1-3

P

P

P

P

p£j¡

9²=81 P

hNÑ

P

P

P

81-99 P

p£j¡ P

P

P

17²=289

289-323

P

P

P

hNÑ P

P

p£j¡ P

P

25²=625 P

P

625-675 P

P

2²=4

4-8

P

P

P

10²=100

P

P

P

3²=9

9-15

11²=121

P

P

P

P

4²=16 P

16-24

P

P

P

P

P

P

7²=49 P

P

P

P

P

64-80 P

P

225-255

P

P

P

361-399 P

P

400-440 P

P

441-483

P

P

484-528 P

529-575 P

256-288 P

P

P

576-624 P

P

P

P

900-960

P

P

P

31²=961 P

P

841-899 P

30²=900

P

24²=576

P

P

P

P

784-840 P

29²=841

P

23²=529

P

P

P

P

P

P

28²=784

P

22²=484

729-783

P

P

21²=441

P

27²=729

P

P

P

P

P

676-728

P

P

20²=400

P

16²=256 P

P

P

P

15²=225

P

8²=64

196-224 P

26²=676

P

19²=361

P

P

49-63

P

169-195 P

14²=196

P

P

P

P

P

36-48

P

144-168 P

P

324-360

P

P

13²=169

P

6²=36

P

P

25-35

P

121-143

P

P

18²=324

P

12²=144

P

5²=25

P

P

100-120

P

961-1023

P

P

32²=1024

P

P

P

1024P

1088 P

¢euj 1: H−Lh¡−l X¡e¢c−Ll −no c¤¢V pwMÉ¡−L Bm¡c¡ L−l ¢m−M . e¡Jz 2: f−s b¡L¡ pwMÉ¡¢V −L¡e p£j¡l j−dÉ f−l −p¢V h¡l L−l¡ J . a¡−L h¡j¢c−L −mMz (H¢V qm Eš−ll h¡jfr) 3: p£j¡¢V−L a¡l f−ll pwMÉ¡ ¢c−u …Z L−l¡ J −cM Bm¡c¡ . . Ll¡ pwMÉ¡¢V JC …Zgm¢Vl −Q−u h−s¡ e¡ −R¡−V¡. 4: k¢c h−s¡ qu ,a¡q−m hNÑj§m l¡¢nl HLL O−ll A−ˆl h−s¡ . pwMÉ¡¢V qm X¡efr (R.H.S) . Ex1.√ (6241)

hÉMÉ¡: 1. X¡e¢c−Ll −no c¤¢V pwMÉ¡ qm 41 k¡−L Bm¡c¡ L−l ¢m−M ¢em¡jz 2. f−s b¡L¡ pwMÉ¡¢V AbÑ¡v 62-Hl p£j¡ qm 7,a¡C H¢V qm Eš−ll h¡jfr. 3. 7 −L a¡l f−ll pwMÉ¡ ¢c−u …Z L−l −cMm¡j 56 Hl −Q−u 62 h−s¡z 4. a¡C 1 Hl SeÉ fcš h−s¡ pwMÉ¡¢V AbÑ¡v 9 −L Bjl¡ X¡efr ¢qp¡−h ¢em¡jz p¤¤al¡w Ešl¢V qm 79z Ex2 .√ (2601) 1. 26 / 01 2. 26 Hl

p£j¡ qm

5 ,h¡j¢c−L 5

−mMz 3. HMe 5×6=30 ,26 qm −R¡V 30 Hl −Q−uz 4. 1 −L Bjl¡ a¡C X¡efr ¢qp¡−h ¢em¡j J Ešl qm 51. Ex1.√ (2704) 1. 27 / 04 2. 27 Hl

p£j¡ qm h¡j¢c−L

5

−mMz

3. HMe 5×6=30 , 27 qm

−R¡V 30 Hl −Q−uz a¡C 2 −L Bjl¡ a¡C X¡efr ¢qp¡−h ¢em¡j J Ešl qm 52

a−h

5

¢c−u −no pwMÉ¡ …¢ml −r−š pq−SC Ešl f¡Ju¡ u¡uz

Ex 4. √(99225) 1. 992 /25 2. 992 Hl

p£j¡ qm 31 . 3. HM¡−e X¡efr phpju q−h 5 L¡lZ R−L Bj¡−cl L¡−R Bl ¢LR¥ e¡Cz 4. Ešl qm 315

.

Exercise 1.√34225

.

2.√105625

3.√(0.00126025)

4. √2209

5. √2916

6. √2116

7. √15129

8.√ 16129

9. √55696

10. √66564

11. √8.8804

12. √0.00101124

¢euj 08 : Hh¡l Bjl¡ −k −L¡e pwMÉ¡l Oej§m Ll¡l p¡d¡lZ fÜ¢a ¢e−u B−m¡Qe¡ LlhzB−N e£−Ql RL¢V i¡mi¡−h mr L−l¡z f¤ZÑOe l¡¢nl HLL O−ll Aˆ

1

2

3

4

5

6

4

5

6

Oe l¡¢nl HLL 1 O−ll Aˆ

8

7

2+8=10

3+7=10

Oe

Oe

P

p£j¡

P

1 =1 P

1-7 P

P

p£j¡ P

216-342 P

8

9

3

2

9

7+3=10

8+2=10

Oe

P

6 =216 P

7

P

P

p£j¡

11 =1331 P

P

1331-1727 P

P

2 =8

8-26

7 =343

P

P

P

P

3 =27 P

27-63

P

P

P

P

64-124

P

343-511

P

P

P

P

125-215

10 =1000

P

P

P

P

P

21=9261

25=15625

P

P

Ex1. (46656) 1. 2. 3. 4.

P

P

2197-2743

P

P

14 =2744

P

P

1000-1330 P

P

13 =2197

P

P

1728-2196

P

729-999

P

5 =125 P

P

512-728

P

9 =729

P

12 =1728

P

8 =512

P

4 =64 P

P

P

P

2744-3374

P

P

P

15 =3375

3375-4095

P

P

P

P

1/3 P

P

46 / 656 6 Hl SeÉ U

U

X¡e¢c−L 46 Hl p£j¡ qm 3 Ešl qm 36 P

Ex2 . (0.0020048383)

n.b. (1 cn¢jL

6 −mMz

1/3 P

P

1.

0.0020048 / 383

2.

3 Hl

3.

2048 Hl

3.

Ešl qm

U

SeÉ X¡e¢c−L 7 −mMz

O−ll SeÉ Eš−ll

p£j¡ qm

12

0 .123 3

Ol B−N cn¢jL hp¡J )

Hh¡l −a¡jl¡ ¢e−Sl¡ ¢LR¥ Ec¡lqZ AiÉ¡p L−l¡ z

→ →

! #

$#

" %

$#



! #

→ →

!"#$

% $# % $# &' $# ) ( ) # ' *+ ,

" % #



%$&'

" "" $ $ -

,

/

#!

%

,

& &

!"#$

$#

.

→ → → → →

'%

%



%$% 0

& &

" "" $ $

#!

%

&'

/

,

. ,

% 0 & & & & &

→ )

!"

#$% # "

2

, ) 12 % #

&

& #$

3

' ( !"

%

) * "$ &

#

$

,

'!%

"#$(

'! )%

*

$

$ + % " #$

+

%,

Related Documents

Prasad
November 2019 27
Prasad
November 2019 24
Rakes-of-mallow.pdf
April 2020 0