Bai Tap Ly Thuyet Dieu Khien Tu Dong 01

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Bai Tap Ly Thuyet Dieu Khien Tu Dong 01 as PDF for free.

More details

  • Words: 1,821
  • Pages: 4
Bµi tËp Lý thuyÕt ®iÒu khiÓn tù ®éng

§µo V¨n S¬n T§H K47

Bµi tËp lý thuyÕt ®iÒu khiÓn tù ®éng

Hä tªn: §µo V¨n S¬n Líp: Tù ®éng ho¸47

§Ò bµi: HÖ thèng cã hµm truyÒn ®¹t W(p) =

5 p + 3p2 + 3p +1 3

-Thµnh lËp ph−¬ng tr×nh vi ph©n tæng qu¸t cña hÖ -Thµnh lËp hÖ ph−¬ng tr×nh tr¹ng th¸i -Gi¶i hÖ ph−¬ng tr×nh tr¹ng th¸i kh«ng thuÇn nhÊt,dõng víi ®iÒu kiÖn ®Çu: x1(0) = 0, x2(0) = 1, x3(0) = 1, u(t) = 1.

Bµi lµm W(p) =

-Tõ hµm truyÒn ®¹t cña hÖ thèng

5 p + 3p + 3p +1 3

2

=

Y ( p) U ( p)

⇒ ( p + 3 p + 3 p + 1)Y ( p) = 5U ( p ) ⇒ &y&&+ 3 & y&+ 3 y&+ y = 5u 3

2

§ã chÝnh lµ ph−¬ng tr×nh vi ph©n cña hÖ thèng. -

§Æt: x

1

x

2

x 3 x& 3

=

y = x&1 = x& 2 = & x&1 = & x&2 = &x&&1 = &y&&

x& 3 = − x

1

− 3 x

2

− 3 x

3

+ 5 u

VËy ta cã hÖ ph−¬ng tr×nh tr¹ng th¸i:

⎧ x&1 = x 2 ⎪ ⎨ x&2 = x 3 ⎪ x& = − x − 3 x − 3 x + 5 u 1 2 3 ⎩ 3

[email protected]

1

Bµi tËp Lý thuyÕt ®iÒu khiÓn tù ®éng

§µo V¨n S¬n T§H K47

Hay: ⎡ x&1 ⎢ x& ⎢ 2 ⎢⎣ x&3

⎤ ⎡ 0 ⎥ = ⎢ 0 ⎥ ⎢ ⎥⎦ ⎢⎣ − 1

1 0 − 3

0 ⎤ ⎡ x1 1 ⎥⎥ ⎢⎢ x 2 − 3 ⎥⎦ ⎢⎣ x 3

⎤ ⎡0 ⎤ ⎥ + ⎢0 ⎥u ⎥ ⎢ ⎥ ⎥⎦ ⎢⎣ 5 ⎥⎦

-Gi¶i ph−¬ng tr×nh tr¹ng th¸i kh«ng thuÇn nhÊt, dõng : 1 0⎤ ⎡0 ⎢ A=⎢0 0 1 ⎥⎥ ; B = ⎢⎣− 1 − 3 − 3⎥⎦ At X¸c ®Þnh Φ(t ) = e theo biÕn ®æi Laplace:

⎡0 ⎤ ⎢0 ⎥ ⎢ ⎥ ⎢⎣ 5 ⎥⎦

Φ( p) = [ pI − A] ⎡1 0 [ pI − A ] = p ⎢⎢ 0 1 ⎢⎣ 0 0

−1

0⎤ ⎡ 0 1 0 ⎤ ⎡p −1 ⎥ ⎢ ⎥ 0⎥ − ⎢ 0 0 1 ⎥ = ⎢⎢ 0 p ⎢⎣ 1 1 ⎥⎦ ⎢⎣ − 1 − 3 − 3 ⎥⎦ 3 2 3 2 3 det( pI − A) = p( p + 3 p + 3) + 1 = p + 3 p + 3 p + 1 = ( p + 1) −1

⎤ − 1 ⎥⎥ p + 3 ⎥⎦ 0

⎡ p2 + 3 p + 3 ⎡ p2 + 3p + 3 p+3 −1 −p ⎤ ⎢ ⎥ ⎢ 2 −1 p2 + 3 p adj ( pI − A) = ⎢ p + 3 p + 3 p − 3 p − 1⎥ = ⎢ ⎢ ⎢ 1 −p − 3 p −1 p p 2 ⎥⎦ ⎣ ⎣ ⎡ p2 + 3p + 3 1 ⎤ p+3 ⎢ ⎥ 3 3 ( p + 1) ( p + 1) 3 ⎥ ⎢ ( p + 1) −1 p2 + 3p p ⎥ adj ( pI − A) ⎢ ⇒ Φ( p ) = =⎢ 3 3 det( pI − A) ( p + 1) ( p + 1) ( p + 1) 3 ⎥ ⎢ ⎥ −p − 3p −1 p2 ⎥ ⎢ ⎢⎣ ( p + 1) 3 ( p + 1) 3 ( p + 1) 3 ⎥⎦

1⎤ ⎥ p⎥ p 2 ⎥⎦

Tra b¶ng biÕn ®æi Laplace ta cã: ⎧ 1 ⎫ t 2 −t = e L−1 ⎨ 3⎬ ⎩ ( p + 1) ⎭ 2 ⎧ p ⎫ t 2 −t L−1 ⎨ = t − ( )e ⎬ 3 2 ⎩ ( p + 1) ⎭

⎧ p2 ⎫ t 2 −t L−1 ⎨ = ( 1 − 2 t + )e ⎬ 3 2 ⎩ ( p + 1) ⎭

Suy ra: ⎧ p 2 + 3 p + 3⎫ t 2 −t Φ 11 (t ) = L−1 ⎨ = ( 1 + t + )e ⎬ 3 2 ⎩ ( p + 1) ⎭ ⎧ −1 ⎫ t 2 −t Φ 21 (t ) = L−1 ⎨ = − e 3⎬ 2 ⎩ ( p + 1) ⎭ ⎧ −p ⎫ t 2 −t Φ 31 (t ) = L−1 ⎨ = − ( t − )e ⎬ 3 2 ⎩ ( p + 1) ⎭

[email protected]

2

Bµi tËp Lý thuyÕt ®iÒu khiÓn tù ®éng

§µo V¨n S¬n T§H K47

⎧ p+3 ⎫ = (t 2 + t )e −t Φ 12 (t ) = L−1 ⎨ 3⎬ ⎩ ( p + 1) ⎭ ⎧ p2 + 3p ⎫ Φ 22 (t ) = L−1 ⎨ = (1 + t − t 2 )e −t 3 ⎬ ⎩ ( p + 1) ⎭ ⎧ − 3 p − 1⎫ = (−3t + t 2 )e −t Φ 32 (t ) = L−1 ⎨ 3 ⎬ p ( + 1 ) ⎭ ⎩ ⎧ 1 ⎫ t 2 −t = e Φ 13 (t ) = L−1 ⎨ 3⎬ ⎩ ( p + 1) ⎭ 2 ⎧ p ⎫ t 2 −t = t − Φ 23 (t ) = L−1 ⎨ ( )e 3⎬ 2 ⎩ ( p + 1) ⎭ ⎧ p2 ⎫ t 2 −t Φ 33 (t ) = L−1 ⎨ ( 1 2 )e = − t + 3⎬ 2 ⎩ ( p + 1) ⎭

⎡ t 2 −t ( 1 t )e + + ⎢ 2 ⎢ t2 Φ(t ) = ⎢ − e −t ⎢ 2 ⎢ t 2 −t ⎢ − (t − )e 2 ⎣

(t 2 + t )e −t (1 + t − t 2 )e −t (−3t + t 2 )e −t

⎤ t 2 −t e ⎥ 2 ⎥ 2 t −t ⎥ (t − )e ⎥ 2 t 2 −t ⎥ (1 − 2t + )e ⎥ 2 ⎦

⎤ ⎡ ⎤ ⎡ 5t 2 −t 5(t − τ ) 2 −(t −τ ) e e ⎥ ⎢ ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ 2 2 t (t − τ ) −(t −τ ) ⎥ ]e Φ(t ) × B × U = ⎢ 5(t − )e −t ⎥ ⇒ Φ (t − τ ) × B × U = ⎢ 5[(t − τ ) − ⎥ ⎢ ⎥ ⎢ 2 2 ⎢ ⎢ t 2 −t ⎥ (t − τ ) 2 −(t −τ ) ⎥ ]e ⎥ ⎢5[1 − 2(t − τ ) + ⎢5(1 − 2t + )e ⎥ 2 2 ⎦ ⎣ ⎦ ⎣

Suy ra: t ⎡ ⎤ 5(t − τ ) 2 −(t −τ ) ⎢ ⎥ ∫0 2 e dτ ⎢ ⎥ t ⎢ t ⎥ (t − τ ) 2 −(t −τ ) ∫0 Φ(t − τ ) × B × u(τ )dτ =⎢ ∫0 5[(t − τ ) − 2 ]e dτ ⎥ ⎢t ⎥ ⎢ (t − τ ) 2 −(t −τ ) ⎥ ]e dτ ⎥ ⎢ ∫ 5[1 − 2(t − τ ) + 2 ⎣0 ⎦

Tr−íc tiªn ta tÝnh c¸c tÝch ph©n sau: t

∫e

− ( t −τ )

dτ = − e − t + 1

0 t

∫ (t − τ )e

− ( t −τ )

dτ = −(t + 1)e − t + 1

0 t

∫ (t − τ )

2

e −(t −τ ) dτ = −(t 2 + 2t + 2)e −t + 2

0

Do ®ã ta cã: [email protected]

3

Bµi tËp Lý thuyÕt ®iÒu khiÓn tù ®éng

t

*∫5 0 t

(t − τ ) 2 −(t −τ ) 5 5 t2 e dτ = ∫ (t − τ ) 2 e −(t −τ ) dτ = − (t 2 + 2t + 2)e −t + 2 = −5( + t + 1)e −t + 5 2 20 2 2

[

t

* ∫ 5[(t − τ ) − 0

§µo V¨n S¬n T§H K47

]

5t 2 −t (t − τ ) 2 −(t −τ ) 5 e ]e dτ = 5 ∫ (t − τ )e −(t −τ ) dτ - ∫ (t − τ ) 2 e −(t −τ ) dτ = 2 20 2 0 t

t

* ∫ 5[1 − 2(t − τ ) + 0

t

(t − τ ) 2 −(t −τ ) 5 ]e dτ = 5∫ e −( t −τ ) dτ − 10∫ (t − τ )e −(t −τ ) dτ + ∫ (t − τ ) 2 e −(t −τ ) dτ 2 20 0 0 t

t

t

t2 − t )e −t 2 ⎡ ⎤ t2 − + t + 1) e − t + 5 ⎥ 5 ( ⎢ 2 ⎢ ⎥ t 5t 2 −t ⎢ ⎥ Φ − × × = ( t ) B u ( ) d e τ τ τ ∫0 ⎢ ⎥ 2 ⎢ ⎥ t2 − 5( − t )e −t ⎢ ⎥ 2 ⎣ ⎦ ⎡0 ⎤ Tõ gi¶ thiÕt ta cã: X ( 0 ) = ⎢⎢ 1 ⎥⎥ ⎢⎣ 1 ⎥⎦ = −5(

Suy ra:

⎡ 3t 2 − t ⎤ + ( t )e ⎢ ⎥ 2 ⎢ ⎥ 2 3t Φ ( t ) × X ( 0 ) = ⎢ (1 + 2 t − )e −t ⎥ ⎢ ⎥ 2 ⎢ 3t 2 − t ⎥ )e ⎥ ⎢ (1 − 5 t + 2 ⎣ ⎦ t

VËy: X (t ) = Φ (t ) × X (0) + ∫ Φ (t − τ ) × B × u (τ )dτ 0

⎡ ⎤ ⎡ ⎤ t2 3t −t + − + t + 1)e −t + 5⎥ 5 ( t e ( ) ⎢ ⎥ ⎢ 2 −t 2 2 ⎢ ⎥ ⎢ ⎥ ⎡− (t + 4t + 5)e + 5⎤ 2 2 5t −t 3t ⎥ = ⎢ (t 2 + 2t + 1)e −t ⎥ = ⎢(1 + 2t − )e − t ⎥ + ⎢ e ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 2 2 2 −t ⎢ ⎥ 2 2 − + ( t 1 ) e ⎢ ⎥ ⎢ ⎥ 3t t ⎣ ⎦ −t −t )e ⎥ ⎢ − 5( − t )e ⎢ (1 − 5t + ⎥ 2 2 ⎣ ⎦ ⎣ ⎦ 2

KÕt luËn: ⎡ − (t 2 + 4 t + 5 ) e − t + 5 ⎤ ⎢ ⎥ X (t ) = ⎢ ( t + 1) 2 e − t ⎥ 2 −t ⎢ ⎥ ( 1 t ) e − ⎣ ⎦

[email protected]

4

Related Documents