Axiom.pdf

  • Uploaded by: Muhammad Abdullah
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Axiom.pdf as PDF for free.

More details

  • Words: 3,123
  • Pages: 22
1

Propositional Logic - Axioms and Inference Rules

Axioms Axiom 1.1 [Commutativity] (p ∧ q) (p ∨ q) (p = q)

= = =

(q ∧ p) (q ∨ p) (q = p)

Axiom 1.2 [Associativity] p ∧ (q ∧ r) p ∨ (q ∨ r)

= =

(p ∧ q) ∧ r (p ∨ q) ∨ r

Axiom 1.3 [Distributivity] p ∨ (q ∧ r) p ∧ (q ∨ r)

= =

(p ∨ q) ∧ (p ∨ r) (p ∧ q) ∨ (p ∧ r)

Axiom 1.4 [De Morgan] ¬(p ∧ q) ¬(p ∨ q)

¬p ∨ ¬q ¬p ∧ ¬q

= =

Axiom 1.5 [Negation] ¬¬p

=

p

Axiom 1.6 [Excluded Middle] p ∨ ¬p

=

T

1

Axiom 1.7 [Contradiction] p ∧ ¬p

=

F

Axiom 1.8 [Implication] p ⇒ q

=

¬p ∨ q

Axiom 1.9 [Equality] (p = q)

=

(p ⇒ q) ∧ (q ⇒ p)

Axiom 1.10 [or-simplification] p ∨ p p ∨ T p ∨ F p ∨ (p ∧ q)

= = = =

p T p p

Axiom 1.11 [and-simplification] p ∧ p p ∧ T p ∧ F p ∧ (p ∨ q)

= = = =

p p F p

Axiom 1.12 [Identity] p

=

p

2

Inference Rules p1 = p2 , p2 = p3 p1 = p3

Transitivity

p1 = p2 E(p1 ) = E(p2 ) , E(p2 ) = E(p1 )

Substitution

q1 , q2 , . . . , qn , q1 ∧ q2 ∧ . . . ∧ qn ⇒ (p1 = p2 ) E(p1 ) = E(p2 ) , E(p2 ) = E(p1 )

3

Conditional Substitution

2

Propositional Logic - Derived Theorems

Equivalence and Truth Theorem 2.1 [Associativity of = ] ((p = q) = r)

=

(p = (q = r))

Theorem 2.2 [Identity of = ] (T = p)

=

p

Theorem 2.3 [Truth] T

Negation, Inequivalence, and False Theorem 2.4 [Definition of F ] F

=

¬T

Theorem 2.5 [Distributivity of ¬ over = ] ¬(p = q) (¬p = q)

= =

(¬p = q) (p = ¬q)

Theorem 2.6 [Negation of F ] ¬F

=

T

4

Theorem 2.7 [Definition of ¬] (¬p = p) ¬p

= =

F (p = F )

Disjunction Theorem 2.8 [Distributivity of ∨ over = ] (p ∨ (q = r)) ((p ∨ (q = r)) = (p ∨ q))

= =

((p ∨ q) = (p ∨ r)) (p ∨ r)

Theorem 2.9 [Distributivity of ∨ over ∨ ] p ∨ (q ∨ r) = (p ∨ q) ∨ (p ∨ r)

Conjunction Theorem 2.10 [Mutual definition of ∧ and ∨ ] (p ∧ q) (p ∧ q) ((p ∧ q) = p) ((p ∧ q) = (p = q)) (((p ∧ q) = p) = q)

= = = = =

(p = (q = (p ∨ q))) ((p = q) = (p ∨ q)) (q = (p ∨ q)) (p ∨ q) (p ∨ q)

Theorem 2.11 [Distributivity of ∧ over ∧ ] p ∧ (q ∧ r) = (p ∧ q) ∧ (p ∧ r)

5

Theorem 2.12 [Absorption] p ∧ (¬p ∨ q) = p ∧ q p ∨ (¬p ∧ q) = p ∨ q Theorem 2.13 [Distributivity of ∧ over = ] (p ∧ q) ((p ∧ q) = (p ∧ ¬q)) p ∧ (q = p)

= = =

((p ∧ ¬q) = ¬p) ¬p (p ∧ q)

Theorem 2.14 [Replacement] (p = q) ∧ (r = p)

(p = q) ∧ (r = q)

=

Theorem 2.15 [Definition of = ] (p = q)

=

(p ∧ q) ∨ (¬p ∧ ¬q)

Theorem 2.16 [Exclusive or] ¬(p = q)

=

(¬p ∧ q) ∨ (p ∧ ¬q)

Implication Theorem 2.17 [Definition of Implication] (p ((p ⇒ q) = (p (p ((p ⇒ q) = (p

⇒ q) ∨ q)) ⇒ q) ∧ q))

= = = =

((p ∨ q) = q) q ((p ∧ q) = p) p

6

Theorem 2.18 [Contrapositive] (p ⇒ q)

=

(¬q ⇒ ¬p)

Theorem 2.19 [Distributivity of ⇒ over = ] p ⇒ (q = r)

((p ⇒ q) = (p ⇒ r))

=

Theorem 2.20 [Shunting] p ∧ q ⇒ r

=

p ⇒ (q ⇒ r)

Theorem 2.21 [Elimination/Introduction of ⇒ ] p p p p (p ∨ q)

∧ (p ⇒ q) ∧ (q ⇒ p) ∨ (p ⇒ q) ∨ (q ⇒ p) ⇒ (p ∧ q) p ⇒ F F ⇒ p

= = = = = = =

p ∧ q p T ¬q ∨ p (p = q) ¬p T

Theorem 2.22 [Right Zero of ⇒ ] (p ⇒ T )

=

T

Theorem 2.23 [Left Identity of ⇒ ] (T ⇒ p)

= p

7

Theorem 2.24 [Weakening/Strengthening] p p ∧ q p ∧ q p ∨ (q ∧ r) p ∧ q

⇒ ⇒ ⇒ ⇒ ⇒

p p p p p

∨ q ∨ q ∨ q ∧ (q ∨ r)

Theorem 2.25 [Modus Ponens] p ∧ (p ⇒ q)



q

Theorem 2.26 [Proof by Cases] (p ⇒ r) ∧ (q ⇒ r) (p ⇒ r) ∧ (¬p ⇒ r)

= =

(p ∨ q ⇒ r) r

Theorem 2.27 [Mutual Implication] (p ⇒ q) ∧ (q ⇒ p)

=

(p = q)

Theorem 2.28 [Antisymmetry] (p ⇒ q) ∧ (q ⇒ p)



(p = q)

Theorem 2.29 [Transitivity] (p ⇒ q) ∧ (q ⇒ r) (p = q) ∧ (q ⇒ r) (p ⇒ q) ∧ (q = r)

⇒ ⇒ ⇒

(p ⇒ r) (p ⇒ r) (p ⇒ r)

Theorem 2.30 [Monotonicity of ∨ ] (p ⇒ q)



(p ∨ r ⇒ q ∨ r)

8

Theorem 2.31 [Monotonicity of ∧ ] (p ⇒ q)



(p ∧ r ⇒ q ∧ r)

Substitution Theorem 2.32 [Leibniz] (e = f )



(E(e) = E(f ))

Theorem 2.33 [Substitution] (e = f ) ∧ E(e) (e = f ) ⇒ E(e) q ∧ (e = f ) ⇒ E(e)

= = =

(e = f ) ∧ E(f ) (e = f ) ⇒ E(f ) q ∧ (e = f ) ⇒ E(f )

Theorem 2.34 [Replace by T ] p ∧ E(p) p ⇒ E(p) q ∧ p ⇒ E(p)

= = =

p ∧ E(T ) p ⇒ E(T ) q ∧ p ⇒ E(T )

Theorem 2.35 [Replace by F ] p ∨ E(p) E(p) ⇒ p E(p) ⇒ p ∨ q

= = =

p ∨ E(F ) E(F ) ⇒ p E(F ) ⇒ p ∨ q

Theorem 2.36 [Shannon] E(p)

=

(p ∧ E(T )) ∨ (¬p ∧ E(F ))

9

3

Propositional Logic - Examples and Exercises

10

4

Predicate Logic - Axioms

Axiom 4.1 [Definition of ∃]   ∃i : m ≤ i < n : pi  = (m ≥ n) ⇒  F  (m < n)



∃i : m ≤ i < n : pi  =     ∃i : m ≤ i < n − 1 : pi     ∨ pn−1

     

Axiom 4.2 [Definition of ∀]   ∀i : m ≤ i < n : pi  = (m ≥ n) ⇒  T  (m < n)



∀i : m ≤ i < n : pi  =     ∀i : m ≤ i < n − 1 : p i     ∧ pn−1

11

     

Axiom 4.3 [Range Split]   (m1 ≤ m2 ≤ m3 )



  ∀i : m1 ≤ i < m2 : pi     ∧     ∀i : m ≤ i < m : p 2 3 i     = ∀i : m1 ≤ i < m3 : pi  

(m1 ≤ m2 ) ∧ (n1 ≥ n2 )



  ∀i : m1 ≤ i < n1 : pi     ∧     ∀i : m2 ≤ i < n2 : pi     = ∀i : m1 ≤ i < n1 : pi  

(m1 ≤ m2 ≤ m3 )



  ∃i : m1 ≤ i < m2 : pi     ∨     ∃i : m ≤ i < m : p 2 3 i     = ∃i : m1 ≤ i < m3 : pi  

(m1 ≤ m2 ) ∧ (n1 ≥ n2 )



  ∃i : m1 ≤ i < n1 : pi     ∨     ∃i : m ≤ i < n : p 2 2 i     = ∃i : m1 ≤ i < n1 : pi

Axiom 4.4 [Interchange of Dummies] ∀i : m1 ≤ i < n1 : (∀j : m2 ≤ j < n2 : pi,j ) = ∀j : m2 ≤ j < n2 : (∀i : m1 ≤ i < n1 : pi,j ) ∃i : m1 ≤ i < n1 : (∃j : m2 ≤ j < n2 : pi,j ) = ∃j : m2 ≤ j < n2 : (∃i : m1 ≤ i < n1 : pi,j )

12

Axiom 4.5 [Dummy Renaming] ∀i : m ≤ i < n : pi = ∀j : m ≤ j < n : pj Axiom 4.6 [Distributivity of ∨ over ∀ ] (p ∨ (∀i : m ≤ i < n : qi )) = ∀i : m ≤ i < n : (p ∨ qi ) Axiom 4.7 [Distributivity of ∧ over ∀ ]   p ∧ (∀i : m ≤ i < n : qi )  = (m < n) ⇒  ∀i : m ≤ i < n : p ∧ qi 

 ∀i : m ≤ i < n : pi   ∧ ∀i : m ≤ i < n : qi

=

∀i : m ≤ i < n : (pi ∧ qi )

Axiom 4.8 [Distributivity of ∧ over ∃ ] (p ∧ (∃i : m ≤ i < n : qi )) = ∃i : m ≤ i < n : (p ∧ qi ) Axiom 4.9 [Distributivity of ∨ over ∃ ]   p ∨ (∃i : m ≤ i < n : qi )  = (m < n) ⇒  ∃i : m ≤ i < n : (p ∨ qi ) 

 ∃i : m ≤ i < n : pi   ∨ ∃i : m ≤ i < n : qi

=

∃i : m ≤ i < n : (pi ∨ qi )

Axiom 4.10 [Universality of T ] ∀i : m ≤ i < n : T = T

13

Axiom 4.11 [Existence of F ] ∃i : m ≤ i < n : F = F Axiom 4.12 [Generalized De Morgan] ¬ (∃i : m ≤ i < n : pi ) ¬ (∀i : m ≤ i < n : pi )

= =

∀i : m ≤ i < n : ¬pi ∃i : m ≤ i < n : ¬pi

Axiom 4.13 [Trading] (m ≤ i < n) ⇒ pi (m ≤ i < n) ∧ pi

= ⇒

∀i : m ≤ i < n : pi ∃i : m ≤ i < n : pi

Axiom 4.14 [Definition of Numerical Quantification]   N i : m ≤ i < n : pi  (m ≥ n) ⇒  = 0 (m < n) ∧ ¬pn−1





 N i : m ≤ i < n : pi   = N i : m ≤ i < n − 1 : pi 

(m < n) ∧ pn−1



N i : m ≤ i < n : pi  =     N i : m ≤ i < n − 1 : p i     + 1

14

     

Axiom 4.15 [Definition of Σ]   Σi : m ≤ i < n : ei  = (m ≥ n) ⇒  0  (m < n)



Σi : m ≤ i < n : ei  =     Σi : m ≤ i < n − 1 : ei     + en−1

     

Axiom 4.16 [Definition of Π]   Πi : m ≤ i < n : ei  = (m ≥ n) ⇒  1  (m < n)



Πi : m ≤ i < n : ei  =     Πi : m ≤ i < n − 1 : e i     ∗ en−1

15

     

5

Predicate Logic - Derived Theorems

Theorem 5.1 [Definition of ∃]   ∃i : m < i ≤ n : pi  = (m ≥ n) ⇒  F  (m < n)



∃i : m < i ≤ n : pi  =     ∃i : m + 1 < i ≤ n : pi     ∨ pm+1

     

Theorem 5.2 [Definition of ∀]

(m ≥ n)





 ∀i : m < i ≤ n : pi   = T 

(m < n)



∀i : m < i ≤ n : pi  =     ∀i : m + 1 < i ≤ n : p i     ∧ pm+1

16

     

Theorem 5.3 [Definition of Σ]   Σi : m < i ≤ n : ei  = (m ≥ n) ⇒  0  (m < n)



Σi : m < i ≤ n : ei  =     Σi : m + 1 < i ≤ n : ei     + em+1

     

Theorem 5.4 [Definition of Π]

(m ≥ n)





 Πi : m < i ≤ n : ei   = 1 

(m < n)



Πi : m < i ≤ n : ei  =     Πi : m + 1 < i ≤ n : e i     ∗ em+1

17

     

6

Some Simple Laws of Arithmetic

Throughout this compendium, we assume the validity of all “simple” arithmetic rules. Examples of such rules are all simplification rules, e.g. = 2+3 = 5 x+x = 2∗x x+y−y =x (x/3) ∗ 3 = x 0∗x = 0 1∗x = x x ∗ x = x2 0x = 0 1x = 1 (2 ∗ x + 10 = 20) = (x = 5) (x + y < 2 ∗ y) = (x < y) (x + y = x + z) = (y = z) x ∗ (y + 1) − (x + z) = (x ∗ y − z) Following is a collection of theorems that might be used. The list is not exhaustive but intend to show the level of complexity that you can specify theorems on.

18

Theorems on < and ≤ (x < y) (x < y) (x < y) (x < y) (x < y) ∧ (y ≤ z) (x ≤ y) (x ≤ x) (x ≤ y) ∧ (y ≤ z) (x ≤ y) ∧ (y < z) (x ≤ y) ∧ ¬(x < y) (x ≤ y − 1) (x ≤ y) ∨ (y ≤ x) (x ≤ y) ∨ (y < x) (x ≤ y)

= ⇒ ⇒ = ⇒ = = ⇒ ⇒ ⇒ = = = =

(y > x) ¬(y = x) ∧ ¬(y < x) (x ≤ y) (x ≤ y) ∧ (x 6= y) (x < z) ¬(x > y) T (x ≤ z) (x < z) (x < y) (x < y) T T (x < y) ∨ (x = y)

Theorems on properties about + and − (x < y) (x < y + 1) (x < y) (0 < x) (x − 1 < x) (x ≤ y − 1) (x ≤ y) (x1 < y1 ) ∧ (x2 < y2 ) (x1 ≤ y1 ) ∧ (x2 ≤ y2 )

⇒ = ⇒ = = = = ⇒ ⇒

19

(x < y + 1) (x ≤ y) (z − y < z − x) (−x < 0) T (x < y) (x − 1 < y) (x1 + x2 < y1 + y2 ) (x1 + x2 ≤ y1 + y2 )

Theorems on properties about ∗ and / (0 < x) (0 < x) (0 < x) (0 ≤ x/2) (x = 0) 2 ∗ (x/2)

= = = = ⇒ =

(0 < 2 ∗ x) (x < 2 ∗ x) (x ÷ 2 < x) (0 ≤ x) (x ∗ y = 0) x

Theorems on equivalence relation (x = x) (x = y)

= =

T (x ≤ y) ∧ (y ≤ x)

Theorems about odd(n) and even(n) odd(x) even(x) odd(x + 2 ∗ y) even(x + 2 ∗ y) odd(x) odd(x) odd(x) ∧ (x = 0)

⇒ ⇒ = = = ⇒ =

((x − 1) ÷ 2 = (x − 1)/2) (x ÷ 2 = x/2) odd(x) even(x) ¬even(x) ((x ≥ 1) = (x ≥ 0)) F

20

7

Predicate Logic - Examples and Exercises

21

8 8.1

Arrays - Axioms Axioms

Axiom 8.1 [Assignment to Array Element]   (i = j) ⇒ (e = f )  ∧ ((b; i : e) [j] = f ) =  (i 6= j) ⇒ (b[j] = f ) Axiom 8.2 [Definition of Arithmetic Relations] (b[i : j] = x) (b[i : j] < x) (b[i : j] > x) (b[i : j] ≤ x) (b[i : j] ≥ x) (b[i : j] 6= x) x ∈ b[i : j]

= = = = = = =

(∀k (∀k (∀k (∀k (∀k (∀k (∃k

: : : : : : :

i≤k i≤k i≤k i≤k i≤k i≤k i≤k

<j+1 <j+1 <j+1 <j+1 <j+1 <j+1 <j+1

22

: : : : : : :

b[k] = x) b[k] < x) b[k] > x) b[k] ≤ x) b[k] ≥ x) b[k] 6= x) x = b[k])

More Documents from "Muhammad Abdullah"

Axiom.pdf
October 2019 17
Doc6.docx
October 2019 19
Rujukan.docx
August 2019 21
Document.docx
June 2020 11