Axially-loaded-compression-members.docx

  • Uploaded by: Dominic Flores
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Axially-loaded-compression-members.docx as PDF for free.

More details

  • Words: 2,264
  • Pages: 11
AXIALLY LOADED COMPRESSION MEMBERS 1.) A column that is 9 m. long is to carry a load of 890 kN. The member will be braced about both principal axis at top and bottom and in addition will be braced about its minor axis at mid-height. Using Fy = 345.5 MPa, design a section to carry the loads safely. Kx = Ky = 1.0 Properties of Steel Sections Available Sections W 8 x 40 W 8 x 48 W 10 x 49 W 12 x 50

Area 7613 mm2 9097 mm2 9290 mm2 9484 mm2

rx 89.66 mm 91.69 mm 110.49 mm 131.57 mm

Given: L=9m Fy = 345.5 MPa Kx = Ky = 1.0 C = 890 kN

890 kN y

Solution: a) Assume Fa (Max Fa = 0.6Fy) Fa = 0.4 Fy Fa = 0.4 (345.5) Fa = 138.2 MPa b) Gross โ€“ Area Required C

Ag = Assumed Fa Ag =

4.5 m

890 x 103 138.2

Ag = 6439.942 mm2 c) Try W 80 x 40 A = 7613 mm2 rx = 89.66 mm ry = 51.82 mm Slenderness Ratio: KxL 1(9000) = 89.66 = 100.38 rx KyL 1(4500) = 51.82 = 86.64 ry ๐พ๐ฟ Use ๐‘Ÿ = 100.38 < 200

4.5 m (SAFE)

Determine if Intermediate or Long Column: 2ฯ€2 E Fy

Cc = โˆš

2ฯ€2 (200000) 345.5

Cc = โˆš

Cc = 106.89 > 100.38 ; Therefore, Intermediate Column Determine the Actual Allowable Fa: Use: Fa = [1 -

ry 51.82 mm 52.83 mm 64.52 mm 49.78 mm

2 (KLโ„r)

2 Cc 2

Fy

] F.S.

x

3 3(KLโ„r) (KLโ„r) 8 Cc 8 Cc 3 5 3(100.38 ) (100.38 )3 = 3 + 8(106.89) - 8 (106.89)3

5

F.S. = 3 + F.S.

F.S. = 1.92 Fa = [1 -

(100.38)2 2 (106.89)2

345.5 1.92

]

Fa = 100.60 MPa Determine the Capacity C Cap. C = Fa Ag Cap. C = 100.60 (7613) Cap. C = 765866 N Cap. C = 765.87 kN < 890 kN ; Therefore, try another section. d) W 8 x 48 A = 9097 mm2 rx = 91.69 mm ry = 52.83 mm Slenderness Ratio: KxL 1(9000) = = 98.16 rx 91.69 KyL 1(4500) = = 85.18 ry 52.83 ๐พ๐ฟ Use = 98.16 < 200 (SAFE) ๐‘Ÿ

Determine if Intermediate or Long Column: 2ฯ€2 E Fy

Cc = โˆš

2ฯ€2 (200000) 345.5

Cc = โˆš

Cc = 106.89 > 98.16 ; Therefore, Intermediate Column Determine the Actual Allowable Fa: 2

Use: Fa = [1 5

F.S. = 3 + F.S.

(KLโ„r) 2 Cc 2

3(KLโ„r)

-

8 Cc 5 3(98.16 ) = 3 + 8(106.89)

]

Fy F.S.

3 (KLโ„r)

8 Cc 3 (98.16)3

- 8 (106.89)3

F.S. = 1.91 Fa = [1 -

(98.16)2 2 (106.89)2

]

345.5 1.91

Fa = 104.62 MPa Determine the Capacity C Cap. C = Fa Ag Cap. C = 104.62 (9097) Cap. C = 951728 N Cap. C = 951.73 kN < 890 kN ; SAFE Therefore, use W 8 x 48

2.) Design the web members U1L1/U1โ€™L1โ€™ & U3M/U3โ€™N of your riveted fink truss which are under compression. Using two unequal leg angles long legs back to back straddling on a 12 mm gusset plate. Use AISC specifications & ASTM A36 steel. K=1.0 (pin riveted connection.)

โˆš15.62 +7.82

๐ฟ๐‘œ ๐‘ˆ1 = 4 = 4.36 m

7.8 ๐œƒ = tanโˆ’1 ( ) 15.6 = 26.57ยฐ ๐‘ˆ1 ๐ฟ1 = 4.36 tan 26.57ยฐ = 2.18 m FOR MEMBERS U1L1/U1โ€™L1โ€™ & U3M/U3โ€™N: C = 66.56 kN L = 2.18 m tgp = 12 mm

For AISC ASTM A36 steel: Fy = 248 MPa

Solution: a) Assume for Fa : Max. Fa = 0.6Fy = 0.6(248) Max. Fa = 148.8 MPa Assume Fa = 60 MPa b) Compute for Gross Area: ๐ถ

๐ด๐‘” = ๐ด๐‘ ๐‘ ๐‘ข๐‘š๐‘’๐‘‘ ๐น

๐‘Ž

=

66560 60

Ag = 1109.33 mm2 (for 2โˆ s) 1109.33 = 2 Ag = 554.665 mm2 c) Try Sections: Try 2โˆ s 75x50x5 Area = 600 mm2 rx = 24.1 mm

ry = 14.5 mm x = 11.9 mm y = 24.4 mm

d) Compute for Radius of Gyration & check for Slenderness Ratio: rx = 24.1 mm r๐‘ฆ = โˆšry 2 + (๐‘ฅ +

๐‘ก๐‘”๐‘ 2 ) 2

= โˆš14.5 2 + (11.9 +

12 2 ) 2

ry = 23.04 mm (use) ๐พ๐ฟ โ‰ค 200 ๐‘Ÿ 1(2180) ? 200 23.04

๐‘†๐‘… =

94.62 < 200 (OKAY) e) Compute for allowable compressive stress, Fa: 2๐œ‹2 ๐ธ ๐น๐‘ฆ

๐ถ๐ถ = โˆš ๐น. ๐‘†. = =

= โˆš

2๐œ‹2 (200000) 248

= 126.17 > ๐‘†๐‘… โˆด ๐ผ๐‘›๐‘ก๐‘’๐‘Ÿ๐‘š๐‘’๐‘‘๐‘–๐‘Ž๐‘ก๐‘’ ๐ถ๐‘œ๐‘™๐‘ข๐‘š๐‘›

5 3(๐‘†๐‘…) ๐‘†๐‘… 3 + โˆ’ 3 8๐ถ๐ถ 8(๐ถ๐ถ )3 5 3(94.62) (94.62)3 + โˆ’ 3 8(126.17) 8(126.17)3

๐น. ๐‘†. = 1.895 ๐น๐‘Ž = (1 โˆ’

๐‘†๐‘…2 ๐น๐‘ฆ )( ) 2๐ถ๐ถ 2 ๐น๐‘† (94.62)2

248

= (1 โˆ’ 2(126.17)2 ) [1.895] Fa = 94.07 MPa f) Compute for allowable compressive strength, Capacity C: Cap. C = AgFa = 2(600)(94.07)(10-3) Cap. C = 112.884 kN > Actual C (OKAY!!) โ€ซ ุžโ€ฌUSE 2โˆ s 75x50x5

3.) Determine the maximum length of a W 250x167 section used as a hinged-end column (k=1.0) to support a load of 1600 kN. Use AISC specifications with Fy = 380 MPa. Properties of W 250x167: A = 21300 mm2 rx = 119 mm ry = 68.1 mm Given: C = 1600 kN K = 1.0 Fy = 380 Mpa Solution: a) Determine Fa: C Fa = Ag Fa =

L

1600(1000) 21300

Fa = 75.12 MPa b) Determine Cc: 2ฯ€2 E Fy

Cc = โˆš

2ฯ€2 (200000) 380

Cc = โˆš

Cc = 101.93 c) Assume column is intermediate KL Let x = R x2

Fy

Fa =(1 - 2Cc 2 )( Fs ) 5

3x

x3

FS = 3 + 8Cc - 8Cc3 x2

Fa =(1 - 2Cc 2 )(

Fy 5 3x x 3 + 3 8Cc 8Cc 3

)

Solving for x: 75.12 = (1 โˆ’

๐‘ฅ2 )( 2(101.93)2 5+

380

3๐‘ฅ ๐‘ฅ3 โˆ’ 3 8(101.93) 8(101.93)3

)

x1 = 1.686 x2 = - 1.775 x3 = 0.089 Solving for L using the largest value of x x= L=

KL R 68.1(1.686) 1.0

L = 114.817 mm (unrealistic)

d) Assume column is long Fa=

12ฯ€2 E KL R

23( )2

75.12=

12ฯ€2 (200000) 23(

L= 7.974 m

1.0L 2 ) 68.1

4.) A W 250 x 73 is to serve as a pin-ended 12m long column. It is braced at mid-height with respect to its weak axis. Properties of W 250 x 73 A= 9280mmยฒ ๐‘Ÿ๐‘ฅ = 110 ๐‘Ÿ๐‘ฆ = 64.7 d= 253mm ๐‘๐‘“ = 254mm ๐ผ๐‘ฅ = 113x106 ๐‘š๐‘š4 ๐‘ก๐‘“ = 14.2mm ๐ผ๐‘ฆ = 38.8x106 ๐‘š๐‘š4 a. Determine the slenderness ratio with respect to y-axis b. Determine the Eulerโ€™s Buckling stress c. Determine the allowable axial compressive load using a factor of safety of 2.5 Solution: a) Slenderness ratio with respect to y-axis ๐พ๐ฟ 1(6000) = 64.7 ๐‘Ÿ๐‘ฆ ๐‘ฒ๐‘ณ = 92.74 ๐’“๐’š

b) Eulerโ€™s Buckling stress ๐พ๐ฟ 1(6000) = ๐‘Ÿ๐‘ฅ 110 ๐พ๐ฟ = 109.9 ๐‘Ÿ๐‘ฅ ๐ฟ

use ๐‘Ÿ= 109.9 ๐น๐‘’ =

๐œ‹ยฒ๐ธ ๐ฟ ( )ยฒ ๐‘Ÿ

=

๐œ‹ยฒ(200000) (109.9)ยฒ

๐‘ญ๐’† = 165.87MPa c) Allowable axial compressive load using a factor of safety of 2.5 ๐‘ƒ๐‘’ = ๐น๐‘’ ๐ด ๐‘ƒ๐‘’ = 165.87(9280) ๐‘ƒ๐‘’ = 1539274N ๐‘ƒ๐‘’ = 1539.3kN ๐‘ƒ๐‘’ ๐น.๐‘†. 1539.3 P= 2.5

P=

P= 615.72kN

5.) A W 12 x 79 column carries an axial load of 2463.134 kN. A rectangular base plate is required to support this column. Assume that the base plate will cover the full area of concrete with fcโ€™ = 28 MPa. Use Fy = 245 MPa. Properties of W 12 x 79 d = 314.45 mm bf = 306.83 mm

B m

Given: C = 2463.134 kN fcโ€™ = 28 MPa Fy = 245 MPa Solution:

C

0.95 d

a) Size of Base Plate: Allowable bearing stress of concrete: Fp = 0.35 fcโ€™ Fp = 0.35 (28) Fp = 9.8 MPa

m

Trial area of base plate: C A= Fp 2463134 A = 9.8

n

0.80 bf

n

A = 251340 mm2 Assume m = n B = 2n + 0.80 bf B = 2n + 0.80(306.83) B = 2n + 245.46 **

Equivalent Rectangular Section

Base Plate

C = 2m + 0.95 d C = 2m + 0.95(314.45) C = 2m + 298.73 ** BC = 251340 mm2 (2m + 245.46) (2m + 298.73) = 251340 4m + 1088.38m + 73326.27 = 251340 4m2 + 1088.38m + 178013.73 = 0 m2 + 272.10m โ€“ 44503.43 = 0 m = 114.97 Determine Size: B = 2(114.97) + 245.46 B = 475.1 say 480 mm C = 2(114.97) + 298.73 C = 528.67 say 530 mm Use 480 mm x 530 mm Base Plate fp fp

P = BC 2463134 = 480 (530)

fp = 9.68 < 9.8 MPa (OK)

b) Thickness of Base Plate: B = 2n + 245.46 480 = 2n + 245.46 n = 117.27 C = 2m + 298.73 530 = 2m + 298.73 m = 115.64 mm Use x = 117.27 (bigger value) 3 Fp x 2

t = โˆš0.75 Fy t=โˆš

3 (9.8) (117.27)2 0.75 (245)

t = 46.9 mm say 50 mm

6.) A W 14 x 550 is used as a column to carry an axial load of 3600kN. Design a square base plate to support the column. The base plate rest on full area of a square concrete block with fcโ€™=21MPa. Use A36 steel base plate. Properties of W 14 x 550 ๐‘๐‘“ = 514 d= 437

L m

Given: C = 3600 kN fcโ€™ = 21 MPa Fy = 248 Mpa

0.95 d Solution:

L

a) Allowable bearing stress of concrete: ๐น๐‘ = 0.35fcโ€™ ๐น๐‘ = 0.35(21) = 7.35MPa b) Size of base plate: ๐‘ƒ

Area of base plate = ๐น๐‘ =

m

3600000 7.35

Area of base plate = 489795 mmยฒ L = โˆš๐ด = โˆš489795 L = 699.854 say 700mm 700= 2n + 0.8(514) n= 144.4mm 700= 2m + 0.95(437) m= 142.425mm c) Thickness of Base Plate: use x= n 3๐น ๐‘ฅ 2

๐‘ t= โˆš0.75๐น

๐‘ฆ

3(7.35)(144.4)2 0.75(248)

t= โˆš

t= 49.718mm say 50mm therefore use 700 x 700 x 50 mm base plate

n Equivalent Rectangular Section

0.80 bf

n Base Plate

7.) Determine the safe load of the column section shown, if it has a yield strength of 250 MPa. E = 200000 MPa. Use NSCP Specifications. Properties of Channel Section: A = 3929 mm2 d = 305 mm tf = 12.7 mm tw = 7.2 mm Ix = 53.7 x 106 mm4 Iy = 1.61 x 106 mm4 rx = 117 mm x = 17.7 mm Properties of W 460x74: A = 9450 mm2 d = 457 mm bf = 190 mm tf = 14.5 mm tw = 9.0 mm Ix = 333 x 106 mm4 rx = 118 mm Iy = 16.6 x 106 mm4 ry = 41.9 mm a.) When the height of column is 6 m. b.) When the height of column is 10 m. Assume K = 1.0 Solution: a) When the height of column is 6 m. A = A1 + A2 = 3929 + 9450 = 13,379 mm2 13379ำฏ = 3929(17.7) + 9450(235.7) ำฎ = 171.68 mm Ix = [1.61 x 106 + 3929(153.98)2] + [333 x 106 + 9450(64.02)2] Ix = 466.5 x 106 mm4 Iy = 53.7 x 106 + 16.6 x 106 = 70.3 x 106 mm4 Use Least I 70.3 x 106 13379

r= โˆš

r = 72.488 mm ๐‘†๐‘… =

L r

6000 72.488

=

2ฯ€2 E

CC = โˆš

Fy 5

=

5 3

2ฯ€2 (200000)

=โˆš

3(SR)

F.S. = 3 +

= 82.77

250 SR3

- 8(C

3 8CC C) 3(82.77) (82.77)3

+ 8(125.66) โˆ’ 8(125.66)3

F.S. =1.88 Fa =(1-

=125.66 > SR โˆดIntermediate Column

SR2 2CC

2

Fy

)( FS)

(82.77)2

250

= [1- 2(125.66)2] [ 1.88] Fa = 104 MPa

P = FaA P = 104(13379)(10-3) P = 1391.4 kN b) when L = 10 m: L

SR= r =

10000 =138> CC โˆดLong Column 72.488

Fa =

12ฯ€2 E 23(SR)2

Fa =

12ฯ€2 (200000) 23(138)2

Fa = 54.1 MPa P = FaA = 54.1(13379)(10-3) = 723.8 kN

8.) A column is made of steel pipe with an outside diameter of 280 mm. The base plate of the column rests on a circular base plate on concrete pedestal. The column is 3.6 m long and subjected to an axial load of 900 kN. The allowable compressive stress in steel pipe is 65 MPa and the allowable bearing stress in concrete pedestal is 12 MPa. a. What is the required column thickness without exceeding its allowable compressive stress? b. What is the required diameter of the steel base plate? c. If the pipe is 10 mm thick, what is the effective slenderness ratio assuming that column is hinged at both ends? (k=1.0) Given: D = 280 mm L = 3.6 m C = 900 kN

Fp = 12 MPa Fa = 65 MPa

Solution: a. Fa =

C A

๐œ‹(2802 โˆ’ ๐‘‘2 ) 900(1000) = 4 65 ๐‘‘ = 246.517 ๐‘š๐‘š t

Since D โ€“ d = thickness therefore, Thickness = 33.483 mm b. Fp=

280 mm

C Ap

๐œ‹(๐ท 2 ) 900(1000) = 4 12 ๐ = ๐Ÿ‘๐ŸŽ๐Ÿ—. ๐ŸŽ๐Ÿ๐Ÿ— ๐ฆ๐ฆ

d c.

KL R

KL R

=

=

3600(1.0) โˆšD2 +d2 4

3600(1.0) โˆš2802 +246.5172 4

KL = 38.60 R

Republic of the Philippines Nueva Ecija University of Science and Technology College of Engineering Department of Civil Engineering Cabanatuan City

Comprehensive Examination 3

Submitted by: GROUP 2: Lara Mariz B. Gatbonton Justine Chris Lina Kim Eucasion Gabriel Lopez

BSCS 5-A

Submitted to: Engr. Ermino G. Enriquez

More Documents from "Dominic Flores"

Skrivbok
August 2019 29
Lax9stencil5-1
August 2019 32