AXIALLY LOADED COMPRESSION MEMBERS 1.) A column that is 9 m. long is to carry a load of 890 kN. The member will be braced about both principal axis at top and bottom and in addition will be braced about its minor axis at mid-height. Using Fy = 345.5 MPa, design a section to carry the loads safely. Kx = Ky = 1.0 Properties of Steel Sections Available Sections W 8 x 40 W 8 x 48 W 10 x 49 W 12 x 50
Area 7613 mm2 9097 mm2 9290 mm2 9484 mm2
rx 89.66 mm 91.69 mm 110.49 mm 131.57 mm
Given: L=9m Fy = 345.5 MPa Kx = Ky = 1.0 C = 890 kN
890 kN y
Solution: a) Assume Fa (Max Fa = 0.6Fy) Fa = 0.4 Fy Fa = 0.4 (345.5) Fa = 138.2 MPa b) Gross โ Area Required C
Ag = Assumed Fa Ag =
4.5 m
890 x 103 138.2
Ag = 6439.942 mm2 c) Try W 80 x 40 A = 7613 mm2 rx = 89.66 mm ry = 51.82 mm Slenderness Ratio: KxL 1(9000) = 89.66 = 100.38 rx KyL 1(4500) = 51.82 = 86.64 ry ๐พ๐ฟ Use ๐ = 100.38 < 200
4.5 m (SAFE)
Determine if Intermediate or Long Column: 2ฯ2 E Fy
Cc = โ
2ฯ2 (200000) 345.5
Cc = โ
Cc = 106.89 > 100.38 ; Therefore, Intermediate Column Determine the Actual Allowable Fa: Use: Fa = [1 -
ry 51.82 mm 52.83 mm 64.52 mm 49.78 mm
2 (KLโr)
2 Cc 2
Fy
] F.S.
x
3 3(KLโr) (KLโr) 8 Cc 8 Cc 3 5 3(100.38 ) (100.38 )3 = 3 + 8(106.89) - 8 (106.89)3
5
F.S. = 3 + F.S.
F.S. = 1.92 Fa = [1 -
(100.38)2 2 (106.89)2
345.5 1.92
]
Fa = 100.60 MPa Determine the Capacity C Cap. C = Fa Ag Cap. C = 100.60 (7613) Cap. C = 765866 N Cap. C = 765.87 kN < 890 kN ; Therefore, try another section. d) W 8 x 48 A = 9097 mm2 rx = 91.69 mm ry = 52.83 mm Slenderness Ratio: KxL 1(9000) = = 98.16 rx 91.69 KyL 1(4500) = = 85.18 ry 52.83 ๐พ๐ฟ Use = 98.16 < 200 (SAFE) ๐
Determine if Intermediate or Long Column: 2ฯ2 E Fy
Cc = โ
2ฯ2 (200000) 345.5
Cc = โ
Cc = 106.89 > 98.16 ; Therefore, Intermediate Column Determine the Actual Allowable Fa: 2
Use: Fa = [1 5
F.S. = 3 + F.S.
(KLโr) 2 Cc 2
3(KLโr)
-
8 Cc 5 3(98.16 ) = 3 + 8(106.89)
]
Fy F.S.
3 (KLโr)
8 Cc 3 (98.16)3
- 8 (106.89)3
F.S. = 1.91 Fa = [1 -
(98.16)2 2 (106.89)2
]
345.5 1.91
Fa = 104.62 MPa Determine the Capacity C Cap. C = Fa Ag Cap. C = 104.62 (9097) Cap. C = 951728 N Cap. C = 951.73 kN < 890 kN ; SAFE Therefore, use W 8 x 48
2.) Design the web members U1L1/U1โL1โ & U3M/U3โN of your riveted fink truss which are under compression. Using two unequal leg angles long legs back to back straddling on a 12 mm gusset plate. Use AISC specifications & ASTM A36 steel. K=1.0 (pin riveted connection.)
โ15.62 +7.82
๐ฟ๐ ๐1 = 4 = 4.36 m
7.8 ๐ = tanโ1 ( ) 15.6 = 26.57ยฐ ๐1 ๐ฟ1 = 4.36 tan 26.57ยฐ = 2.18 m FOR MEMBERS U1L1/U1โL1โ & U3M/U3โN: C = 66.56 kN L = 2.18 m tgp = 12 mm
For AISC ASTM A36 steel: Fy = 248 MPa
Solution: a) Assume for Fa : Max. Fa = 0.6Fy = 0.6(248) Max. Fa = 148.8 MPa Assume Fa = 60 MPa b) Compute for Gross Area: ๐ถ
๐ด๐ = ๐ด๐ ๐ ๐ข๐๐๐ ๐น
๐
=
66560 60
Ag = 1109.33 mm2 (for 2โ s) 1109.33 = 2 Ag = 554.665 mm2 c) Try Sections: Try 2โ s 75x50x5 Area = 600 mm2 rx = 24.1 mm
ry = 14.5 mm x = 11.9 mm y = 24.4 mm
d) Compute for Radius of Gyration & check for Slenderness Ratio: rx = 24.1 mm r๐ฆ = โry 2 + (๐ฅ +
๐ก๐๐ 2 ) 2
= โ14.5 2 + (11.9 +
12 2 ) 2
ry = 23.04 mm (use) ๐พ๐ฟ โค 200 ๐ 1(2180) ? 200 23.04
๐๐
=
94.62 < 200 (OKAY) e) Compute for allowable compressive stress, Fa: 2๐2 ๐ธ ๐น๐ฆ
๐ถ๐ถ = โ ๐น. ๐. = =
= โ
2๐2 (200000) 248
= 126.17 > ๐๐
โด ๐ผ๐๐ก๐๐๐๐๐๐๐๐ก๐ ๐ถ๐๐๐ข๐๐
5 3(๐๐
) ๐๐
3 + โ 3 8๐ถ๐ถ 8(๐ถ๐ถ )3 5 3(94.62) (94.62)3 + โ 3 8(126.17) 8(126.17)3
๐น. ๐. = 1.895 ๐น๐ = (1 โ
๐๐
2 ๐น๐ฆ )( ) 2๐ถ๐ถ 2 ๐น๐ (94.62)2
248
= (1 โ 2(126.17)2 ) [1.895] Fa = 94.07 MPa f) Compute for allowable compressive strength, Capacity C: Cap. C = AgFa = 2(600)(94.07)(10-3) Cap. C = 112.884 kN > Actual C (OKAY!!) โซ ุโฌUSE 2โ s 75x50x5
3.) Determine the maximum length of a W 250x167 section used as a hinged-end column (k=1.0) to support a load of 1600 kN. Use AISC specifications with Fy = 380 MPa. Properties of W 250x167: A = 21300 mm2 rx = 119 mm ry = 68.1 mm Given: C = 1600 kN K = 1.0 Fy = 380 Mpa Solution: a) Determine Fa: C Fa = Ag Fa =
L
1600(1000) 21300
Fa = 75.12 MPa b) Determine Cc: 2ฯ2 E Fy
Cc = โ
2ฯ2 (200000) 380
Cc = โ
Cc = 101.93 c) Assume column is intermediate KL Let x = R x2
Fy
Fa =(1 - 2Cc 2 )( Fs ) 5
3x
x3
FS = 3 + 8Cc - 8Cc3 x2
Fa =(1 - 2Cc 2 )(
Fy 5 3x x 3 + 3 8Cc 8Cc 3
)
Solving for x: 75.12 = (1 โ
๐ฅ2 )( 2(101.93)2 5+
380
3๐ฅ ๐ฅ3 โ 3 8(101.93) 8(101.93)3
)
x1 = 1.686 x2 = - 1.775 x3 = 0.089 Solving for L using the largest value of x x= L=
KL R 68.1(1.686) 1.0
L = 114.817 mm (unrealistic)
d) Assume column is long Fa=
12ฯ2 E KL R
23( )2
75.12=
12ฯ2 (200000) 23(
L= 7.974 m
1.0L 2 ) 68.1
4.) A W 250 x 73 is to serve as a pin-ended 12m long column. It is braced at mid-height with respect to its weak axis. Properties of W 250 x 73 A= 9280mmยฒ ๐๐ฅ = 110 ๐๐ฆ = 64.7 d= 253mm ๐๐ = 254mm ๐ผ๐ฅ = 113x106 ๐๐4 ๐ก๐ = 14.2mm ๐ผ๐ฆ = 38.8x106 ๐๐4 a. Determine the slenderness ratio with respect to y-axis b. Determine the Eulerโs Buckling stress c. Determine the allowable axial compressive load using a factor of safety of 2.5 Solution: a) Slenderness ratio with respect to y-axis ๐พ๐ฟ 1(6000) = 64.7 ๐๐ฆ ๐ฒ๐ณ = 92.74 ๐๐
b) Eulerโs Buckling stress ๐พ๐ฟ 1(6000) = ๐๐ฅ 110 ๐พ๐ฟ = 109.9 ๐๐ฅ ๐ฟ
use ๐= 109.9 ๐น๐ =
๐ยฒ๐ธ ๐ฟ ( )ยฒ ๐
=
๐ยฒ(200000) (109.9)ยฒ
๐ญ๐ = 165.87MPa c) Allowable axial compressive load using a factor of safety of 2.5 ๐๐ = ๐น๐ ๐ด ๐๐ = 165.87(9280) ๐๐ = 1539274N ๐๐ = 1539.3kN ๐๐ ๐น.๐. 1539.3 P= 2.5
P=
P= 615.72kN
5.) A W 12 x 79 column carries an axial load of 2463.134 kN. A rectangular base plate is required to support this column. Assume that the base plate will cover the full area of concrete with fcโ = 28 MPa. Use Fy = 245 MPa. Properties of W 12 x 79 d = 314.45 mm bf = 306.83 mm
B m
Given: C = 2463.134 kN fcโ = 28 MPa Fy = 245 MPa Solution:
C
0.95 d
a) Size of Base Plate: Allowable bearing stress of concrete: Fp = 0.35 fcโ Fp = 0.35 (28) Fp = 9.8 MPa
m
Trial area of base plate: C A= Fp 2463134 A = 9.8
n
0.80 bf
n
A = 251340 mm2 Assume m = n B = 2n + 0.80 bf B = 2n + 0.80(306.83) B = 2n + 245.46 **
Equivalent Rectangular Section
Base Plate
C = 2m + 0.95 d C = 2m + 0.95(314.45) C = 2m + 298.73 ** BC = 251340 mm2 (2m + 245.46) (2m + 298.73) = 251340 4m + 1088.38m + 73326.27 = 251340 4m2 + 1088.38m + 178013.73 = 0 m2 + 272.10m โ 44503.43 = 0 m = 114.97 Determine Size: B = 2(114.97) + 245.46 B = 475.1 say 480 mm C = 2(114.97) + 298.73 C = 528.67 say 530 mm Use 480 mm x 530 mm Base Plate fp fp
P = BC 2463134 = 480 (530)
fp = 9.68 < 9.8 MPa (OK)
b) Thickness of Base Plate: B = 2n + 245.46 480 = 2n + 245.46 n = 117.27 C = 2m + 298.73 530 = 2m + 298.73 m = 115.64 mm Use x = 117.27 (bigger value) 3 Fp x 2
t = โ0.75 Fy t=โ
3 (9.8) (117.27)2 0.75 (245)
t = 46.9 mm say 50 mm
6.) A W 14 x 550 is used as a column to carry an axial load of 3600kN. Design a square base plate to support the column. The base plate rest on full area of a square concrete block with fcโ=21MPa. Use A36 steel base plate. Properties of W 14 x 550 ๐๐ = 514 d= 437
L m
Given: C = 3600 kN fcโ = 21 MPa Fy = 248 Mpa
0.95 d Solution:
L
a) Allowable bearing stress of concrete: ๐น๐ = 0.35fcโ ๐น๐ = 0.35(21) = 7.35MPa b) Size of base plate: ๐
Area of base plate = ๐น๐ =
m
3600000 7.35
Area of base plate = 489795 mmยฒ L = โ๐ด = โ489795 L = 699.854 say 700mm 700= 2n + 0.8(514) n= 144.4mm 700= 2m + 0.95(437) m= 142.425mm c) Thickness of Base Plate: use x= n 3๐น ๐ฅ 2
๐ t= โ0.75๐น
๐ฆ
3(7.35)(144.4)2 0.75(248)
t= โ
t= 49.718mm say 50mm therefore use 700 x 700 x 50 mm base plate
n Equivalent Rectangular Section
0.80 bf
n Base Plate
7.) Determine the safe load of the column section shown, if it has a yield strength of 250 MPa. E = 200000 MPa. Use NSCP Specifications. Properties of Channel Section: A = 3929 mm2 d = 305 mm tf = 12.7 mm tw = 7.2 mm Ix = 53.7 x 106 mm4 Iy = 1.61 x 106 mm4 rx = 117 mm x = 17.7 mm Properties of W 460x74: A = 9450 mm2 d = 457 mm bf = 190 mm tf = 14.5 mm tw = 9.0 mm Ix = 333 x 106 mm4 rx = 118 mm Iy = 16.6 x 106 mm4 ry = 41.9 mm a.) When the height of column is 6 m. b.) When the height of column is 10 m. Assume K = 1.0 Solution: a) When the height of column is 6 m. A = A1 + A2 = 3929 + 9450 = 13,379 mm2 13379ำฏ = 3929(17.7) + 9450(235.7) ำฎ = 171.68 mm Ix = [1.61 x 106 + 3929(153.98)2] + [333 x 106 + 9450(64.02)2] Ix = 466.5 x 106 mm4 Iy = 53.7 x 106 + 16.6 x 106 = 70.3 x 106 mm4 Use Least I 70.3 x 106 13379
r= โ
r = 72.488 mm ๐๐
=
L r
6000 72.488
=
2ฯ2 E
CC = โ
Fy 5
=
5 3
2ฯ2 (200000)
=โ
3(SR)
F.S. = 3 +
= 82.77
250 SR3
- 8(C
3 8CC C) 3(82.77) (82.77)3
+ 8(125.66) โ 8(125.66)3
F.S. =1.88 Fa =(1-
=125.66 > SR โดIntermediate Column
SR2 2CC
2
Fy
)( FS)
(82.77)2
250
= [1- 2(125.66)2] [ 1.88] Fa = 104 MPa
P = FaA P = 104(13379)(10-3) P = 1391.4 kN b) when L = 10 m: L
SR= r =
10000 =138> CC โดLong Column 72.488
Fa =
12ฯ2 E 23(SR)2
Fa =
12ฯ2 (200000) 23(138)2
Fa = 54.1 MPa P = FaA = 54.1(13379)(10-3) = 723.8 kN
8.) A column is made of steel pipe with an outside diameter of 280 mm. The base plate of the column rests on a circular base plate on concrete pedestal. The column is 3.6 m long and subjected to an axial load of 900 kN. The allowable compressive stress in steel pipe is 65 MPa and the allowable bearing stress in concrete pedestal is 12 MPa. a. What is the required column thickness without exceeding its allowable compressive stress? b. What is the required diameter of the steel base plate? c. If the pipe is 10 mm thick, what is the effective slenderness ratio assuming that column is hinged at both ends? (k=1.0) Given: D = 280 mm L = 3.6 m C = 900 kN
Fp = 12 MPa Fa = 65 MPa
Solution: a. Fa =
C A
๐(2802 โ ๐2 ) 900(1000) = 4 65 ๐ = 246.517 ๐๐ t
Since D โ d = thickness therefore, Thickness = 33.483 mm b. Fp=
280 mm
C Ap
๐(๐ท 2 ) 900(1000) = 4 12 ๐ = ๐๐๐. ๐๐๐ ๐ฆ๐ฆ
d c.
KL R
KL R
=
=
3600(1.0) โD2 +d2 4
3600(1.0) โ2802 +246.5172 4
KL = 38.60 R
Republic of the Philippines Nueva Ecija University of Science and Technology College of Engineering Department of Civil Engineering Cabanatuan City
Comprehensive Examination 3
Submitted by: GROUP 2: Lara Mariz B. Gatbonton Justine Chris Lina Kim Eucasion Gabriel Lopez
BSCS 5-A
Submitted to: Engr. Ermino G. Enriquez