Automotive Electrical And Electromechanical System Design

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Automotive Electrical And Electromechanical System Design as PDF for free.

More details

  • Words: 3,155
  • Pages: 63
Automotive Electrical and Electromechanical System Design Dr.-Ing. Uwe Knorr Product Marketing Director Ansoft Corporation Pittsburgh, PA

Challenge #1: Multi-Domain Design Electrical

Mechanical

Controls

Hydraulic

Magnetic Thermal

Pneumatic

ElectroChemical

Multi-Domain Design Z

Z Z Z

Multiple Domains are interconnected and influence each other The electrical content of vehicles increases More and more controls are involved Electrical systems closely interact with other domains Z Z Z Z

Electro-Chemical Electro-Mechanical Electro-Magnetic Electro-Thermal

# of Components

Complexity

Challenge #2: Multi-Level Design INREG

+

vbus

VBUS>=VSET

I_main

V

D1

VM1

VBUS
EQU

OUTREG vset

vbus := VM1.V NL1

GAIN2

sp

GAIN

NL

XY1 engine2generator VSET CONST

VBUS CONST

GAIN1

GAIN

GAIN4

I1

XY

GAIN3

GAIN

ERR

GAIN

INTG1 I

SUM1

LIMIT1 LIMIT

dψ 1d (t ) − p ⋅ ω (t ) ⋅ψ 1q (t ) dt dψ 1q (t ) v1q (t ) = i1q (t ) ⋅ R1 + + p ⋅ ω (t ) ⋅ψ 1d (t ) dt v1d (t ) = i1d (t ) ⋅ R1 +

Details

Accuracy

Multi-Level Design Z

Z Z

Z

Z

Different analyses require different model accuracy levels Different analyses require different algorithms Different accuracy levels require different modeling languages Model exchange from one level to the next higher level requires model extraction Design information must be exchanged between different design groups

Challenge #3: Multi-Organizational Design OEM System

Tier I Subsystem

Tier II Component

Multi-Organizational Design Analysis

Model

OEM

Statistical, Worst Case, Drive Cycle, FMEA, Long Transients

System Models with lookup tables minimum parameters

TIER I

Controls, Circuit Design, Statistical, Optimization, AC, Short Transients

Circuits, Block Diagrams, State Machines, C-Code, Lookup Tables

TIER II

Fundamental Physics, DC, AC, TR, FEA, Stress

Geometry, Material, Structure

Design Challenges Today Tier 2 Supplier

Thermal System

Hydraulics

Circuit

Electrical

System Integrator Control Mechanical

Component

Magnetic

Tier 1 Supplier

Component Supplier

Need for Integration System

Component

Circuit

Multi-Level

Electrical

Mechanical

Control

Multi-Domain

Integration

System Integrator Tier 1 Supplier

Component Supplier

Multi-Organization

EM Design Environment Maxwell2D/3D

SIMPLORER Simulation Data Bus Simulator Coupling Technology

Electromagnetism Electro mechanics

Simulink

C/C++ Interface

MathCad

Circuit Simulator

Block Diagram Simulator

State Machine Simulator

VHDL-AMS Simulator

Model Database Electrical, Blocks, States, Machines, Automotive, Hydraulic, Mechanics, Power, Semiconductors…

Integrated Design Environment

ƒ ƒ ƒ

WIN/2000 WIN/XP WIN/NT

ƒ ƒ

Pentium >256MB

Compatibility Z

MS-Office compatible Z Z Z

Z

Read and write Excel, Access Copy & Paste to and from Word, PowerPoint, Excel… Windows Printing Support

Data Format compatible Z Z Z Z Z Z Z

ASCII Access (*.mdb) Excel (*.xls) CSV (*.csv) Comtrade (*.cfg) SPICE (*.out) TEK – Oscilloscope data (*.dat)

Post Processing ƒ

IEEE 488.2 Data Interface (GPIB)

ƒ

Graphical and numerical data analysis and representation

ƒ ƒ ƒ ƒ ƒ

Power Module Channel Calculator FFT Presentation Mode Matlab® and Mathcad® Integration

Component Characterization Data Transfer

• Characteristics

A B

• Stimuli

C

M_LUT1 Yt

M

3~

IM1

• Loads

NL_Charact Data Acquisition

NL

2D, 3D, multi dimensional lookup table

V3DLUT Z Y X

V_LUT E1 Data Processing

L1 #

Yt

C1 #

State Machines Event driven modification of topologies & parameters

Behavioral Modeling

Online measurement of characteristic values

Smart models, state dependent step size modification

Relay Model tdmk := 12m

VDROP := 2

RSup := 680

VPULL := 7

RCoil := 3

ROn := 5m

LCoil := 250m CCoil := 40n

tdbrk := 8m

Relay Macro

S1 drvp

drvm

Relay

no

com Relay.Iin Relay.Iout

14.00 E1

E2

R1

10.00 8.00 6.00

S3

Symbol Editor

4.00 2.00 -2.00

E6

E5

0

0.20

R1pNoRs1 R3

Final Relay Model

0.40

0.60 t

Relay Model AM1 +

drvp

A

no LCoil

CCoil

Rsup

ROn S1

+

VM1 V

RCoil

drvm com ON_DIS lon

• Fast! EQU

DELAY_OFF_ON DEL: lon##tdmk

IPULL := VPULL/RCoil.R LCoil.I <= IDROP LCoil.I >= IPULL

loff OFF_DIS

IDROP := VDROP/RCoil.R DELAY_ON_OFF DEL: loff##tdbrk

• Easy model generation • Good numerical behavior

Block Diagrams Analog and Digital Controller Modeling N"GSMP_1" EXT

-16.66m NSET CONST

16.666667

PI P_GAIN NL KP := 50 C/C++I_GAIN I Code P

KI := 20

LIMITER

CONTR_OUT

LIMIT

u_limit := 20 l_limit := 0

op1 := -2.5 op2 := 2.5 ymax1 := -1 ymax2 := 1

EXT

Each block can be assigned an individual sampling time or run with system time step

DC Motor Drive System TR R_R ET1 10m R_S

Wiper System

D1

D2

D3

AM1

L_R 0.3m

LOAD CD

L_S

tY

M

1m

ET2 R_T

D4

DCM.N GAIN

-16.66m

CONST

16.6667

D7

DCM

L_T

ET3

N_REF

+ A

D5

LIMITER

GAIN

LIMIT

I_GAIN I

CONST

.1m

D6

P_GAIN KP := 50 CLOCK

RA := 1.2 LA := 9.5m KE := 0.544 J := 4m

KI := 20

UL := 20 LL := 0

CONTR_OUT THRES1 := -2.5 THRES2 := 2.5 VAL1 := -1 VAL2 := 1

Wiper System – Result 0 15.00

50.00m

100.00m

10.00

10.00

0 0

50.00m

0 20.00

0 100.00m T

Motor Torque and Load Torque

50.00m

N_REF N

0

Motor Speed

-10.00 0

100.00m

0

50.00m

-10.00 100.00m T

Automotive System Library Automotive Library Power Storages

Fuses

Spark Plugs

Battery - Basic Model

Fuse - Single Element

Battery

Fuse - Double Element

Fuel Cell

Fuse - Advanced

Alternator - Transient Model

PPTC (Three RC combinations)

Alternator - Average Model

PPTC (Two RC Combinations)

Alternator - Current Source

Wires Wire - Thermal static Wire - Thermal dynamic

Lamps

Spark Plug Machines

Starter

PWM PWM Switch PWM Load Flasher Switch Connectors Inline Terminal Pair

Wire - Thermal dynamic II

Lamp - Filament

Wire with Thermal Pin

Lamp - Single Filament

Wire - Advanced

Lamp - Double Filament

Inertia

Engine - Speed Source

Wire - Advanced II

Lamp - Advanced

Friction

Engine - Dynamic Model

Gauge based

DC Machine

PWM Models

Relays

Mechanical Models

Fan

Wire - Thermal static

Relay - Normally Open

Ideal Gearbox

Wire - Thermal dynamic

Relay - Normally Closed

Gearbox with Losses

Wire - Thermal dynamic II

Relay - One Pole, Two Throws

Wire with Thermal Pin

Relay - Two Poles, Two Throws

Wire - Advanced

Relay - Two Poles, Cross-Strap

Wire - Advanced II

Applications: • Electrical Distribution System of Vehicles • Power Management • Drive Cycle Analysis • FMEA • Statistical Analyses

Industries: • Automotive Manufacturer • EV/EHV • Aerospace • Defense • Ship Building Industry

Eyelet Terminal Engine Models

Automotive Library Yt

S2

Engine Block Ground

Lamp Switch

To Head Lamp Switch

Turn Signal

Yt

fuse1_5Amp

S3

Yt

TS1_HIGH_LOW_Beams_Switch rlyno1

Chassis Ground

Low

fuse2_15Amp

To Hazzard Flasher

itp19

High

itp11 S1 D1

D2

tY

-

+

Battery

Tail Lamps

battery1

t

QuickGraph1

14.00 10.00

N0161.V

60s

6.00

High

2.00 -2.00 0

20.00

40.00

60.00 t

Turn Signal Voltages

Low

Low

RH HeadLamp

High

LH HeadLamp

Inrush Currents Probe1

7.50

Exterior Lighting System

5.00

0 -2.50 0

25.00

50.00

60.00

t

Automotive Library Z

Benefits Z Z Z Z Z Z Z

Easy to use and intuitive graphical modeling Easy parameterization using Wizard technology Statistical analyses, optimization and parameter variations Characterization tool for fuses Multiple model levels for components Web based example database with jump start projects Animated symbols for easy visual inspection

Electro-Chemical Components

-

+ Fuel Cell

-

+

Battery

Fuel Cell

Lead Acid Battery

EV/EHV – Charging System L1

Boost Converter

D1

0.1m 0 VM1

+ V + Fuel Cell

Output Voltage

RL

TR1

+

-

RLoad

Battery

LBATT_A2

FUELCELL_A2

0

ICA:

2.50m

5.00m

7.50m

10.00m

12.50m

15.00m

20.00m t

period := 20u 6.10

SET: cs:=1

Transistor Control modeled using state machines

ST_r1

5.90

On

5.80

ST_r1.VAL>=0.99 and L1.I
Input Voltage

5.70 5.60

L1.I>=I_command

5.50 5.40

Off

5.30 5.20

SET: cs:=0

Load resistance and reference current modification modeled using state machines

VM1.V

6.00

t>3m

5.10

Off2

0

2.50m

5.00m

7.50m

10.00m

12.50m

15.00m

20.00m t

16.00

t>12m

L1.I 14.00 12.00

SET: RL:=5

SET: RL:=10

SET: RL:=5

10.00 8.00

t>0.0025

6.00

Inductor Current

4.00

SET: I_command:=10

SET: I_command:=15

2.00 0

0

2.50m

5.00m

7.50m

10.00m

12.50m

15.00m

20.00m t

Multi-Domain Design • Hydraulics • VHDL-AMS • Mechanics • Electro Mechanical • Magnetics • …

Hydraulic Library r1

1

0

3 50 pk_1

Hydraulic Library MASS_TRB1 VOL_ACT1

F LIMIT_TRB1

PIPE

Sharp-Edge

Level1

15.00m

LIMIT_TRB1.SUL

Generic

PIPE1

MASS_TRB1.S

OR_SE1

10.00m P1

0

0

0.50

1.00 t

Power Library Power Library Power System and Cable Models

Inverter Topologies

Single Phase Power Supply

Two Level Inverter Equivalent Circuit

Ideal Three Phase Power Supply

Three Phase Two Level Inverter

Three Phase Power Supply with Impedance

Single Phase Two Level Inverter

WIRE - Gamma Model

Three Phase Three Level Inverter

Wire T-Model

Single Phase Three Level Inverter

Line-commutated Converters B2 Diode Bridge

DC Link Control Algorithms

B2 Fully Controlled

Two Level Square Wave

B2 Half-Controlled, Symmetrical

Two Level Natural Sampling

B2 Half-Controlled, Asymmetrical

Three Level Single Phase

B6 Diode Bridge

Three Level Three Phase

B6 Thyristor Bridge

Three Level Single Phase NS

B6 Bridges - Inverse Parallel Connection

Three Level Three Phase NS

B12 Diode Bridge

Four Quadrant Current Control

B12 Thyristor Bridge Parallel Connection

Four Quadrant Natural Sampling

B12 Thyristor Bridge Cascade B24 Thyristor Bridge Single Phase A.C. Chopper Three Phase A.C. Chopper

Load Models Three Phase RL Load Logic Dead Time

Applications: • AC/DC Converters • Inverters (DC/AC) • Drive Systems • Power Quality • Alternative Power Industries: • Industrial Automation • Drives Manufacturers • EV/EHV • Power Conversion • Power Quality

Power Library 2L3_GTOS

Us1

g_r1

g_s1

g_t1

Ua

Us1

+ V

Us2 M Us3

Us2

ω

C

M1 ω1

J1

M

M2

J2

ω

ω2

Us3

g_r2

g_s2

g_t2 Uf

2L_NSAMP

2-level natural sampling

Machine Characteristic

Torque

1.60k

350.00

1.40k

300.00

1.20k 200.00

1.00k

CONST

800.00

KONST1 CONST

100.00 600.00 400.00

Omega

0

200.00

SPR1

0 -200.00

ein_aus

-100.00 -173.34

0

200.00

-150.00

359.12

0

1.00

1.50

Rotor Current

Stator Current asm_k_g22.Is_d asm_k_g22.Is_q

200.00 0

asm_k_g22.Ir_d asm_k_g22.Ir_q

1.40k 1.20k

-200.00

1.00k

-400.00

800.00

-600.00

600.00

-800.00

400.00

-1.00k

200.00

-1.20k

0

-1.40k

-200.00

0

1.00

1.50 t

0

1.00

1.50 t

Direct inverter driven squirrel cage induction machine with 2-level natural sampling control and mechanical load

Power Library Z

Benefits Z

Z Z Z

Z

Predefined macro models of frequently used power electronic topologies Includes common control algorithms Auxiliary elements, such as power grid models and loads System level models for rapid computation of overall system behavior, power quality and control algorithms Easy and intuitive graphical building blocks

Mechanical Elements Library Mechanical Systems Rotational

Coordinate Transformation

Mass

Rotational-Rotational

Rigidity

Rotational-Translational

Torque Source

Translational-Rotational

Angular Velocity Source Ground Translational

Translational-Translational Electrical Machines DCMP DC-Machine Permanent Excitation

Mass

ASMS Slip Ring Induction Machine

Rigidity

SYMP Synchronous Machine Permanent Excitation

Force Source

SYMP Synchronous Machine Permanent Excitation w Damper

Velocity Source Ground

Applications: • Drive Trains • Electro-Hydraulic Systems • Electro-Mechanical Systems • Load Variations

Industries: • Automotive Suppliers • Drive Manufacturers • Industrial Automation • Defense • Aerospace

Mechanical Elements Library ET1 Square_wave1.VAL

M

Stf1

DCMP

STF

M

DCMP

Dcmp1

Dcmp2

J := 2m

J := 2m

M

Stf2

DCMP

STF

Dcmp3 J := 2m

Mas1 J

Motor-generator combination driving a mass with limitations

J := 10m

250.00

Dcmp1.VA Dcmp2.VA Dcmp3.VA

100.00 0 -100.00 -250.00 0

0.50

1.00 t

200.00

Dcmp1.OMEGA Dcmp2.OMEGA Dcmp3.OMEGA Mas1.OMEGA

100.00 0 -100.00 -200.00 0

0.50

1.00 t

1.25k

Mas1.MACX

500.00 0 -500.00 -1.25k 0

0.50

1.00 t

Mechanical Elements Library Z

Benefits Z Z Z

Z

Z

Non-linear friction models incl. stick friction Non-linear rigidity models incl. backlash Fast computing 1D modeling approach based on SIMPLORER C-Code interface Electrical Machine model implementation with mechanical pins provide connectivity between electrical and mechanical world Schematic based graphical modeling with mechanical building blocks

Multi-Organizational Design VHDL-AMS

Simulink

MathCad

Sim-Interface

External Simulators

SIMPLORER Simulation Data Bus Internal Simulators

Digital Solver

Analog Solver

AMS

VHDL-AMS

Block Diagram Simulator

Circuit Elements

State Flow Simulator

VHDL-AMS Schematic Z

Fully supported by SIMPLORER Schematic

Z

Embedded Editor with Syntax coloring allows to create models on sheet and in the ModelAgent

VHDL-AMS Code for a Resistor ENTITY Resistor IS PORT ( QUANTITY r : REAL := 1.0e+03; -- Default = 1 K TERMINAL p,m : ELECTRICAL); END ENTITY Resistor; ARCHITECTURE Rbehav1 OF Resistor IS QUANTITY voltage ACROSS current THROUGH p TO m; BEGIN current == voltage/r; END behav;

r Rbehav1

Resistor p

m

r := 1.0e3

Entity and Architecture Z

Entity Z

Z

Z

Interface description of a subsystem or physical device Specifies input and output ports to the model

Entity input ports

Architecture 1 Architecture 2 Architecture 3

Architecture Z

Z

Z

Behavior description of the model Can be dataflow, structural, procedural, etc Modeling can deal with both analog (continuous) and digital (discrete) domains inout ports output ports

VHDL-AMS Basic Library OPEN!

VHDL – Digital Systems A.val

Two bit adder with Carry A

C.val

CLK

XOR2

B

B.val

Sum

CLK

SUM.y XOR2

C

CLK

CARRY.y

AND2

AND2

AND2

Carry OR3

0

2m

4m

6m

8m

10m

12m

14m

16m

18m

20m

22m

24m

26m

28m

30m

32m

34m

36m

38m

40m

t

VHDL – Digital Systems Complete Automotive System Analysis across Domains • ASICs • Micro Controller • FPGAs … ECU

PTCU MCU

VHDL

VHDL-AMS Multi Domain Design vm_rotb

ω

+

spring_rotb

damp_rotb

ω

v_rotb

1/pipe_area

crank_radius

+

T

fm_rotb

CONST

CONST

torque

force

pressure

Spped 40

damp_rotb.omega

25

EQU

mass_rotb

0

Mechanic

pipe_area:= 0.05 crank_radius:= 0.2

-25 -40 0

50

Fluidic

0.1k t [s]

k := 10

rho := MATH_PI dia := 1 len := 1/4 QuickGraph2

L

1Meg

P

flow_meter

rhyd1

flow_meter.q

lhyd1 0

chyd1 vol := 1 b := 1

-1Meg 0

50

0.1k t [s]

VHDL-AMS Multi Organization Design OEM

System Simulation Drive Cycles Fuel Economy

VHDL - AMS Subsystem Providers Suppliers

Power Train Electrical System Sensors …

VHDL - AMS Component Providers

Solenoids, Motors, Battery, Sensors, Semiconductors, Fuse …

DC Drive – VHDL-AMS Controller 0

TR R_R ET1

10m

R_S

AM1 L_R 0.3m

R_T

0

0.1

0.2 t [s]

0

0.1

0.2

0

0.1

0.2 t [s]

0

0.1

0.2

2.00e+001

M

ET2

0.2

A

TLoad

L_S

0.1

4.00e+001

D7

motor current

3

L_T

DCM

Bridge1

RA := 1.2 LA := 9.5m KE := 0.544 J := 4m

ET3

0

1.00e+003

LIMITER PIC

N_REF

UL := 20 LL := 0

CONST

1000 GAIN

VHDL-AMS

0

CONTR_OUT

LIMIT

0.1

DC Link Voltage and Current

5.00e+002

THRES1 := -2.5 THRES2 := 2.5 VAL1 := -1 VAL2 := 1

0.2

2.00e+001

DCM.MI [N·m] TLoad.VAL

0

1.50e+003

1.00e+003

motor torque and load torque

0

-1.00e+001

speed and reference speed 0

0

0.1

0.2 t [s]

0

0.1

0.2 t [s]

DC Drive – VHDL-AMS Controller

C/C++ Interface

µ-Controller Code

Electrical Components

ODE External Simulators

NonElectrical Elements

C/C++ Interface ®

System Simulation

The Multi Domain Simulator

C/C++

make

Symbol Editor

Dynamic Link Library .dll

Symbol Library

DC Drive – C-Code Controller 0

TR

ET1

AM1

R_R

L_R

10m R_S

0.3m

0.2 DCM.IA [A]

A 2.00e+001

TLoad

L_S

M

D7

motor current

3

ET2 R_T

0.1

3.00e+001

DCM RA := 1.2 LA := 9.5m KE := 0.544 J := 4m

Bridge1

L_T

ET3

0

0

0.1

0.2 t [s]

0

0.1

0.2

1.00e+003

PIC

N_REF

LIMIT

PGain := 3

1000

5.00e+002

UL := 20 LL := 0

IGain := 2

CONST

THRES1 := -2.5 THRES2 := 2.5 VAL1 := -1 VAL2 := 1

GAIN

0

0.1

0.2

2.00e+001

DC Link Voltage and Current

CONTR_OUT

LIMITER

PIC1

Bridge1.Vout [V] Bridge1.Iout [A]

DCM.MI [N·m] TLoad.VAL

C-Code

0

0

0.1

0.2 t [s]

0

0.1

0.2

1.50e+003

DCM.N [rpm] N_REF.VAL

1.00e+003

-1.00e+001

speed and reference speed

motor torque and load torque

0

0

0

0.1

0.2 t [s]

0

0.1

0.2 t [s]

DC Drive – C-Code Controller

SIM2SIM SIMPLORER to Simulink Interface • Co-Simulation Interface • Link blocks in both packages • Using SIMPLORER's external simulator integration interface and S-function in Matlab • Co-Simulation Interface is an open API that can be used for other simulation packages

Simulink

SIMPLORER

Drive System Control TR R_R

+

AM1

A

L_R Bridge1

ET1 10m R_S

0.3m

TLoad

L_S

M

D7

3

ET2 R_T

DCM

L_T

RA := 1.2 LA := 9.5m KE := 0.544 J := 4m

ET3

P_GAIN GAIN

N_REF CLOCK

1000

CONST

.1m

I

KI := 2

CONTR_OUT

LIMIT

KP := 3

CONST

LIMITER

I_GAIN

UL := 20 LL := 0

THRES1 := -2.5 THRES2 := 2.5 VAL1 := -1 VAL2 := 1

Drive System Control TR SIM2SIM1.CS

R_R

L_R Bridge1

ET1 10m R_S

0.3m

L_S

M 3

ET2 R_T

DCM

TLoad

L_T

ET3 SIM2SIM1

SiM2SiM

50



SIMPLORER Link Interface

RA := 1.2 LA := 9.5m KE := 0.544 J := 4m

D7

Drive System Control

Complete Vehicle Simulation

SIMPLORER – Advisor Link

SIMPLORER – Advisor Link SIMPLORER Single Voltage Electrical Automobile System Template GAIN

Generator generator

generator1

50

SiM2SiM generator generic

Battery



SIMPLORER Link Interface

generic

+ A

generator

+Battery-

AM1

p

p

m

m

BatteryPower GeneratorPower

Regulator voltage regulator curve

®

LoadPower

m

p

Loads Engine

RadiatorFan

Misc

BrakeLights

TurnSignal

ExternalLights

FrontWipers VM1

Simulation properties: Step width max 100m Step width min 100u Simulation end time 1369

+ p

V

Starter m

RearWipers

RearDefrost

FrontHVAC

RearHVAC

HeatedSeats

Radio

Results Generator Current

Speed in RPM AM1.I

100.00

Speed

4.00k 2.50k

0 -50.00

0

0

500.00

-2.00k

793.91 t

0

500.00

793.91 t

Bus Voltage

Load Power LoadPower

500.00

VM1.V

13.00

0

12.00

-1.00k -1.50k

0

500.00

793.91 t

11.50

0

500.00

793.91 t

Complete Set of Analyses DC Analysis

OP: -7.9752e-006 V OP: -0.00405477 V NINV +

C1 100p R 15916

OUT INV

10k

-

NSC_LM_7411

OP: -3.98873 V

R1 R9 30k

OP: -0.00100994 V OP: 1 V

OP: 0.999992 V

R2 10k OP: 3.99573 V

E1

OUT

NINV +

Rp 15916 C2 1n

INV OUT

INV

R1p 10k

-

R3 10k

NSC_LM_7412 OP: 0.000980576 V 30k

OP: 0.998936 V

NINV +

Rfp

R4 10k

-

NSC_LM_7413

+ V

VM

R1 500m OP: 1 V E1

Complete Set of Analyses L1 3.18m

OP: 0.969697 V

OP: 0.969697 V

R2

16 OP: 0 V

1 L2

AC Analysis

132.6u

C1

31.83m

Bode C1.V

Gain [dB]

100

200

300

400

500

600

700

800

900

1k

20.00

20.00

0.00

0.00

-20.00

-20.00

-28.01

-28.01 100

200

300

400

500

600

700

800

900

1k

400

500

600

700

800

900

1k

f [Hz]

Phase [rad]

100

200

300

3.14

3.14

2.36

2.36

1.57

1.57

0.79

0.79

0.00

0.00 100

200

300

400

500

600

700

800

900

1k

f [Hz]

Experiments Z Z Z Z Z

1D, 2D & 3D Parameter Sweep Monte Carlo Sensitivity Worst Case Optimization Z Z Z

Simplex Algorithm Successive Approximation Genetic Algorithms

Disconnected Technologies System

Block Diagrams/State Machines OEM

Sub-System

VHDL-AMS Circuit

Circuits

Supplier

FEA Component Logic

Magnetic Electrical

Thermal Mechanical

Hydraulic

Matlab/ Simulink

Ci ui rc

Bl

ts

St ock at D e M iag ac ra hi ms ne / s

Integrated Technologies

MathCAD Co-Simulation Advisor D VH

S AM L-

A E F

Simulator Coupling



an da rd St

y ac C o m m u n ic a ti o n

y c n e i c i f f E

r cu Ac

s

Integrated Design Environment

Related Documents