Cap. 1
08-10-2018
Prof. Dr. Elias Oliveira Serqueira 63
[email protected]
64
65
β2 π 2 Ο π₯ β + π π₯ Ο π₯ = πΈΟ π₯ 2π ππ₯ 2
β2 π 2 Ο π₯ β + π0 Ο π₯ = πΈΟ π₯ 2π ππ₯ 2 β2 π 2 Ο π₯ β = πΈΟ π₯ 2 2π ππ₯
66
β2 π 2 Ο π₯ β = πΈΟ π₯ 2π ππ₯ 2
β2 π 2 Ο π₯ β + π0 Ο π₯ = πΈΟ π₯ 2π ππ₯ 2
πΈ
π2 Ο π₯ 2ππΈ =β 2 Ο π₯ 2 ππ₯ β π2 Ο π₯ 2Ο π₯ = βπ ππ₯ 2
π2 Ο π₯ 2π = β 2 πΈ β π0 Ο π₯ ππ₯ 2 β π2 Ο π₯ 2π = 2 π0 β πΈ Ο π₯ 2 ππ₯ β 2π 2 π = 2 π0 β πΈ β π2 Ο π₯ 2Ο π₯ = π ππ₯ 2
A solução:
Ο π₯ = π΄ cos ππ₯ + π΅ sin ππ₯ Ο π₯ = π΄ π πππ₯ + π΅π βπππ₯
Ο π₯ = πΆπ ππ₯ + π·π βππ₯
67
68
69
70
71
72
73
β2 π 2 Ο π₯ β = πΈΟ π₯ 2π ππ₯ 2
β2 π 2 Ο π₯ β + π0 Ο π₯ = πΈΟ π₯ 2π ππ₯ 2
πΈ
π2 Ο π₯ 2π = β 2 πΈ β π0 Ο π₯ ππ₯ 2 β π2 Ο π₯ 2ππΈ =β 2 Ο π₯ 2 ππ₯ β π2 Ο π₯ 2Ο π₯ = βπ ππ₯ 2
π2
2π = 2 πΈ β π0 β
π2 Ο π₯ 2Ο π₯ = βπ ππ₯ 2
A solução:
Ο π₯ =π΄
π πππ₯
+
π΅π βπππ₯
Ο π₯ = πΆπ πππ₯ + π·π βπππ₯
74
75
Resulta
76
Ou ainda
77
Note que 78
79
80