SIMULATION OF ROTATIONAL MOLDING
Abbas TCHARKHTCHI
INTRODUCTION Non-reactive rotational molding
Reactive rotational molding
NON-REACTIVE ROTATIONAL MOLDING There are not any chemical reactions during rotomolding. The transformation is based essentially on physical state changes The polymer is as powder (100-500µm) heating
Solid
cooling
molten state
Examples: thermoplastics (PE, PP, PA, PC,…)
Solid
REACTIVE ROTATIONAL MOLDING • There are chemical reaction during this processing .
Chemical reactions
Liquid
Solid
or heating
Solid
chemical reactions
liquid
Solid
• Examples: Thermosets, rubbers, polymerization of certain polymers
(PA6) chemical modification of certain polymers,
DIFFERENT STEPS OF SIMULATION Non-reactive rotational molding
Reactive rotational molding - Chemical reactions (crosslinking, polymerization) - Rheology - Flow of liquid mixture
- flow of particles (powder) ? -Sintering - Melting - Rheology - Flow of melted (viscous) polymer - Solidification (crystallization)
Heat transfer
CYCLE TIME 200
T (°C)
C 150
100
D
B
A
E F
50
I
II
III 10
IV 20
V
time (min) 40
30
solid Molten polymer solid+molten polymer
solid
solid+molten polymer
HEAT TRANSFER
HEAT TRANSFER Heating Oven
1.
mold
Polymer molten+solid
air + powder
Convection air of oven / metallic surface of the mold
2. Conduction in the thickness of the mold 3. Transmission mold / polymer 4. Conduction in the thickness of the molten polymer layer 5. Convection polymer / mixture of air and powder
HEAT TRANSFER 1 - Convection air of oven / metallic surface of the mold
∂T − km ∂x 2 - Conduction in the thickness of the mold
= hov / m (Tov − T )
∂T ∂ ∂T km ρm Cpm = ∂x ∂t ∂x
3 - Transmission mold / polymer
∂T − km ∂x
∂T = − k p ∂x
4 - Conduction in the thickness of the molten polymer layer ∂ ∂T ∂T ρ P C PP + ∆H = k P ∂x ∂x ∂t 5 - Convection polymer / mixture of air and powder
∂T − kp ∂x
= h pa (T pa − T )
RESULTS
Evolutions de Ta pour les trois conditions opératoires choisies. Comparaison des courbes expérimentales et numériques (Tfour = 300 °C, tchauffe = 20, 25 et 30 min).
REACTIVE ROTATIONAL MOLDING
REACTIVE ROTATIONAL MOLDING Rheochemistry and rheokinetic of thermosets during rotational molding
Chemistry
- Cross-linking mechanism - Kinetic models
Rheology
- Evolution of viscosity - Rhelogical models
Fluid Mechanic
- Fluid flow models - Finite elements and SPH
Heat transfer Experimental methods, DSC, IR spectrophotometry, Rheometry
REACTIVE ROTATIONAL MOLDING Cross-linking reaction d [E ] 2 ( ) − = [ E ] 0 [ A ] 0 1 − x × k '+ k ([OH dt
(
]0 + x[ E ] 0 ) + k " [ HX ] ) 500
1
450
taux de conversion 130°C
0,8
400
taux de conversion 140°C
0,7
350
taux de conversion 140°C
0,6
300
Taux de conversion therorique
0,5
250
0,4
200
0,3
150
0,2
100
0,1
50
Viscosité Pa.s
η x* = * η0 x − x
A + Bα
taux de conversion
Rheology
0,9
point de gel à 150°C Point de gel à 140°C Point de gel à 130°C viscosité à 130°C 1Hz viscositéà 140°C 1Hz Viscosité à 150°C 1Hz
0
0
0
10
20
30
40 temps /min
50
60
70
80
SIMULATION (SPH METHOD) SPH is a Lagragian method for simulation of fluid flow. In this method the material at macroscopic scale is considered as a group of particles of masse mi, rate vi avec other properties like pressure, pi, temperature, Ti, internal energy Ui, entropy Si,… • Central function • Smoothing length • Conservation of quantity of mouvement • Conservation of energy • Equation of state • Density • Schema of integration
SIMULATION OF FLUID FLOW
A cylinrical mold turning aroude its principal axis
SIMULATION OF FLUID FLOW
A part with more complex geometry
SIMULATION OF FLUID FLOW
Cubic mold in rotomolding condition
NON-REACTIVE ROTATIONAL MOLDING
FORMATION OF DIFFERENT LAYERS Melting + Coalescence Layer by Layer Particle (polymer)
moule
1st layer
Molten Polymer
moule
2nd layer
moule
moule
3th layer
4th layer
FORMATION OF THE FIRST LAYER The following schema shows the mechanism of melting of a particle and its adhesion on the internal surface of the mold. mg
Surface Of the mold
mg
mg
The particles fall on the bottom of the mold, will be melted progressively and spread on the internal surface. This spreading depends on the force of gravity and the surface tension.
FORMATION OF THE FIRST LAYER
γ
mg
The shear force induced by the weight of particle assures the adhesion between melted particle and the surface of the mold.
F
mg
On the superior part of the mold, the surface tension spreads the melted polymer on the surface
NON-REACTIVE ROTATIONAL MOLDING - Flow of particles (powder) ? -Sintering (coalescence + densification) Polymer support X
1
3
1
2 and 3
4
2
4
Different steps of coalescence de grains 1) initial state 2 and 3) growth 4) final state
t
DIFFERENT MODELS - Frenkel
2
x r
- Kuckzynski - Eshely
- Lontz
3 γ t 2 η
=
x2 1 , 02 r
γt X = a ηa0
n
= K (T )t
1/ 2
2 3 x λ = t 2 r − τ η0 1 − e
t
x
r
Coalescence of 2 particules
Example: PVDF - Under optical microscope
T = ambiante
t = 80 s
T = 172,8 °C
t = 100 s
t = 20 s
t = 120 s
t = 40 s
t = 140 s
t = 60 s
t =160 s
Example: PVDF
1
2
3
NON-REACTIVE ROTATIONAL MOLDING
- Melting - Rheology - Flow of molten (viscous) polymer - Solidification (crystallization)
CONCLUSION
Reactive rotational molding Reactive rotational molding
Chemical reactions Kinetic model
Heat transfer
Rheology η=f(t)
T=f(t)
η=f(x)
fluid flow model
X: degree of conversion
CONCLUSION
Non-reactive rotational molding Non-reactive rotational molding
Coalescence Kinetic model
Heat transfer
Melting
T=f(t) X: degree of conversion
Formation of layers Densification
Rheology fluid flow model
Cooling
Solidification crystallization