CHEE 2940 Particle Processing 2006 – Assignment #1 Due 5 PM Tuesday 7 March - Chemical Engineering Office 1. For a cube with dimensions 5.00 x 5.00 x 5.00 mm, calculate the following parameters: a) Equivalent volume diameter (2 marks), b) Equivalent surface diameter (2 marks), c) Sauter diameter (2 marks), and d) Corresponding sphericities (8 marks). 2. Below is the result of a particle size analysis: Aperture size (mm or µm)
amount retained (g)
-10 mm
+9.5
0.36
-9.5
+6.8
5.16
-6.8
+4.75
24.36
-4.75
+3.4
50.04
-3.4
+2.36
83.64
-2.36
+1.7
115.08
-1.7
+1.18
131.28
-1.18
+850 µm
129.6
-850
+600
118.92
-600
+425
101.04
-425
+300
85.44
-300
+212
73.2
-212
+150
62.76
-150
+106
52.56
-106
+75
46.2
-75
+53
34.92
-53
+38
25.68
-38
0
59.76
a) Determine the mass fractions of the amounts retained, the (arithmetic) mean diameter (using the mid-point diameter for each size range), and the standard deviation. Show your table. (16 marks) b) Determine the cumulative oversized and undersized, and complete the following table. (15 marks)
Assignment #1-1
Size range Mid-point Mass Mass retained fraction γi (micron) di (micron) (g) 0 0 - 38 59.760 38 - 53 25.680 53 - 75 34.920 75 - 106 46.200 106 - 150 52.560 150 - 212 62.760 212 - 300 73.200 300 - 425 85.440 425 - 600 101.040 600 - 850 118.920 850 - 1180 129.600 1180 - 1700 131.280 1700 - 2360 115.080 2360 - 3400 83.640 3400 - 4750 50.040 4750 - 6800 24.360 6800 - 9500 5.160 9500 - 10000 0.360 sum 1200
Cumulative Cumulative Undersized Oversized P Q
c) Plot the particle size distribution as a histogram, normalised histogram and continuous distribution (normal axes and lognormal axes), cumulative oversized and undersized products (normal axes and lognormal axes). (25 marks) d) Determine the most frequent (mode) diameter and median diameter of the particles. You can use the available tables and diagrams in the answers to the above questions. Show your answers on the diagrams. (10 marks) e) Determine the volume-equivalent, surface-equivalent, and Sauter-equivalent diameters of the particles (using the mid-point diameter for each size range). Show your table. (20 marks)
Assignment #1-2
Solutions 1a.
Equivalent volume diameter (2 marks): d volume =
1b.
6V
=
π
3
6 × 53
= 6.2 mm
π
Equivalent surface diameter (2 marks): d surface =
1c.
A
π
=
6 × 52
π
= 6.9 mm
Sauter diameter (2 marks): d Sauter
1d.
3
3 d sphere 6V = = 2 = 5.0 mm A d surface
Volume sphericity (2 marks): ψ V = π ( dV ) / A = 0.81 2
Surface sphericity (2 marks): ψ A = π ( d A ) / ( 6V ) = 1.38 3
Sauter-diameter sphericities:
ψ VA = π ( d32 ) / A = 0.52 (2 marks) 2
ψ AV = π ( d32 ) / ( 6V ) = 0.52 (2 marks) 3
2a.
The table is shown below. (4 marks) Size range Mid-point
Mass Mass fraction retained γi (micron) di (micron) (g)
00 - 38 38 - 53 53 - 75 75 - 106 106 - 150 150 - 212 212 - 300 300 - 425 425 - 600 600 - 850 850 - 1180 1180 - 1700 1700 - 2360 2360 - 3400 3400 - 4750 4750 - 6800 6800 - 9500 9500 - 10000 sum
19 45.5 64 90.5 128 181 256 362.5 512.5 725 1015 1440 2030 2880 4075 5775 8150 9500
59.76 25.68 34.92 46.2 52.56 62.76 73.2 85.44 101.04 118.92 129.6 131.28 115.08 83.64 50.04 24.36 5.16 0.36 1200
0.050 0.021 0.029 0.039 0.044 0.052 0.061 0.071 0.084 0.099 0.108 0.109 0.096 0.070 0.042 0.020 0.004 0.000
Standard deviation
Mean diam di * γi
(di - d) * γi
di * γi
0.946 0.974 1.862 3.484 5.606 9.466 15.616 25.810 43.153 71.848 109.620 157.536 194.677 200.736 169.928 117.233 35.045 2.85
65561.804 26886.804 35364.126 44565.201 47227.448 50782.880 50557.324 46012.140 36001.491 19307.105 2475.220 8189.995 71524.476 204671.388 352782.688 431157.649 209714.522 20834.720
17.978 44.303 119.194 315.325 717.619 1713.400 3997.696 9356.125 22115.656 52089.438 111264.300 226851.840 395194.310 578119.680 692454.563 677017.688 285616.750 27075.000
2
2
1.000 1166.389 1723616.981 3084080.864
Assignment #1-3
The mass fractions of the amounts retained are shown in the fourth column. (4 marks) The calculation of the mean diameter is shown by the firth column, which gives m
d = ∑ γ i di = 1166.389 µm. (4 marks) i =1
The standard deviation can be calculated in two ways which are shown by the last two columns. 4 marks - The first way gives
σ=
m
∑γ (d i =1
i
− d ) = 1723616.981 = 1312.866 µ m 2
i
- The second way gives
m
σ = ∑ γ i ( di ) − ( d ) = 3084080.864 − 1166.3892 = 1312.866 µ m i =1
2
2
The two calculations give the same result. 2b. The completed table is shown below. Size range Mid-point
Mass Mass fraction Cumulative Cumulative retained Undersized Oversized γi (micron) di (micron) (g) P Q 0 0 0 0 1.000 0 - 38 19 59.76 0.050 0.050 0.950
38 - 53
45.5
25.68
0.021
0.071
0.929
53 - 75
64
34.92
0.029
0.100
0.900
75 - 106
90.5
46.2
0.039
0.139
0.861
106 - 150
128
52.56
0.044
0.183
0.817
150 - 212
181
62.76
0.052
0.235
0.765
212 - 300
256
73.2
0.061
0.296
0.704
300 - 425
362.5
85.44
0.071
0.367
0.633
425 - 600
512.5
101.04
0.084
0.451
0.549
600 - 850
725
118.92
0.099
0.550
0.450
850 - 1180
1015
129.6
0.108
0.658
0.342
1180 - 1700
1440
131.28
0.109
0.768
0.232
1700 - 2360
2030
115.08
0.096
0.864
0.136
2360 - 3400
2880
83.64
0.070
0.933
0.067
3400 - 4750
4075
50.04
0.042
0.975
0.025
4750 - 6800
5775
24.36
0.020
0.995
0.005
6800 - 9500
8150
5.16
0.004
1.000
0.000
9500 - 10000 sum
9500
0.36 1200
0.000
1.000
0.000
Cumulative undersized = (5 marks); Cumulative oversized = (5 marks); Table = (5 marks)
Assignment #1-4
2c. The histogram for the particle size distribution is obtained by plotting the third versus first column in the table shown in the answer to Q. 2b. (5 marks)
Mass retained (g)
140 120 100 80 60 40 20
-1 21 50 2 -3 42 00 5 85 60 0 0 -1 17 1 00 80 34 23 00 60 68 47 00 50 -9 50 0
-7
10 6
53
0
-3 8
5
0
Size range (micron) The normalised histogram for the particle size distribution is obtained by plotting the fourth versus first column in the table shown in the answer to Q. 2b. (5 marks)
0.120
0.080 0.060 0.040 0.020
10 - 75 6 21 150 2 42 300 5 85 - 60 0 0 17 11 00 80 34 - 23 0 0 60 68 - 47 00 5 0 -9 50 0
53
-3
8
0.000
0
Mass fraction
0.100
Size range (micron)
Assignment #1-5
The continuous distribution is obtained by plotting the fourth versus second column in the table shown in the answer to Q. 2b. The horizontal axe can be in either the normal or lognormal scale. (7 marks)
0.12
f(d)
0.08
0.04
0 0
2000
4000 6000 d (microns)
8000 10000
0.12
f(d)
0.08
0.04
0 10
100 1000 log(d/microns)
10000
Assignment #1-6
The curves for cumulative oversized and undersized products can be obtained by plotting the firth and sixth versus second column in the table shown in the answer to Q. 2b. The horizontal axe can be in either the normal or lognormal scale. (8 marks)
1
Cumulative mass fraction
Undersized 0.8 0.6 0.4 0.2
Oversized
0 0
2000
4000 6000 d (microns)
Cumulative mass fraction
1
8000
10000
Undersized Oversized
0.8 0.6 0.4 0.2 0 10
100 1000 d (microns)
10000
Assignment #1-7
2d. The mode diameter can be best determined at the maximum frequency distribution which is about 1400 ± 50 mm (see the column for mass retained or mass fraction in the answer to Q. 2a or 2b). The diameter on the horizontal axis of the frequency distribution is shUhown by the red arrow in the following diagram. (5 marks)
0.12
f(d)
0.08
0.04
Mode 0 10
100
1000
10000
log(d/microns) The median diameter can be best determined at the 50% of cumulative oversized or undersized product distribution which is about 618 ± 5 mm (see the column for mass retained or mass fraction in the answer to Q. 2a or 2b). The diameter on the horizontal axis of the frequency distribution is shown by the red arrow in the following diagram. (5 marks)
Assignment #1-8
2e. The table showing the calculation is given below. (5 marks) Size range
Mid-point Mass Mass fraction Surface Equivalent Volume Equivalent retained 2 3 γi di * γi di * γi (micron) di (micron) (g) 0 0 0 0 0 0 - 38 59.76 19 0.050 17.978 341.578
38 - 53 53 - 75 75 - 106 106 - 150 150 - 212 212 - 300 300 - 425 425 - 600 600 - 850 850 - 1180 1180 - 1700 1700 - 2360 2360 - 3400 3400 - 4750 4750 - 6800 6800 - 9500 9500 - 10000
25.68 34.92 46.2 52.56 62.76 73.2 85.44 101.04 118.92 129.6 131.28 115.08 83.64 50.04 24.36 5.16 0.36
45.5 64 90.5 128 181 256 362.5 512.5 725 1015 1440 2030 2880 4075 5775 8150 9500
Sum
1200
0.021
44.303
2015.802
0.029
119.194
7628.390
0.039
315.325
28536.879
0.044
717.619
91855.258
0.052
1713.400
310125.454
0.061
3997.696
1023410.176
0.071
9356.125
3391595.313
0.084
22115.656
11334273.828
0.099
52089.438
37764842.188
0.108
111264.300
112933264.500
0.109
226851.840
326666649.600
0.096
395194.310
802244449.300
0.070
578119.680
1664984678.400
0.042
692454.563
2821752342.188
0.020
677017.688
3909777145.313
0.004
285616.750
2327776512.500
0.000
27075.000
257212500.000
3084080.864 12277302166.666
Volume equivalent diameter: (5 marks)
dV =
m
3
∑γ d i =1
i
= 3 12277302166.666 = 2306.929 µ m
3 i
Surface equivalent diameter: (5 marks)
dA =
m
2
∑γ d i =1
i
= 3 3084080.864 = 1756.155 µ m
2 i
Sauter diameter: (5 marks) m
d Sauter =
∑γ d
i
∑γ d
i
i =1 m
i =1
i
i
3
= 2
12277302166.666 = 3980.863 µ m 3084080.864
Assignment #1-9
Note: The surface area and volume for each fraction should be
π di 2 4
γ i and
π di 3 6
γ i , respectively. For
simplicity, the numerical factors have been dropped off in the above calculation. If the full expressions for the surface area and volume are used, the equivalent diameters should be calculated in the same way, i.e.,
π d A2 4
m
=∑ i =1
π di 2 4
γi ∴ dA =
4
π
m
∑ i =1
π di 2 4
γ i and
π dV 3 6
m
=∑ i =1
π di 3 6
γ i ∴ dV =
3
6
π
m
π di 3
i =1
6
∑
γi .
If the full expressions for the surface area and volume are used, the numbers in the last two columns should be different but the results for the equivalent diameters should be the same as those shown above.
Assignment #1-10