LAWS OF SINE, COSINE, AND TANGENT B
In any triangle
c
a
A
C
b
Law of Sines sin A a
=
sin B b
=
sin C c
*GTA 05-02-029 1 April 05
Law of Cosines a2 = b2 + c2 – 2bc cos A
b2 = a2 + c2 – 2ac cos B
c2 = a2 + b2 – 2ab cos C
Law of Tangents a + b = tan[½(A + B)] a - b = tan[½(A - B)]
ALGEBRAIC SIGNS OF TRIG FUNCTIONS BY QUADRANT Quad I Quad II Quad III Quad IV
all positive (+) sin (+), cos (-), tan (-) sin (-), cos (-), tan (+) sin (-), cos (+), tan (-)
0° IV
I
III
II
90°
270°
180°
TRIGONOMETRIC ELEVATION COMPUTATIONS ζ1 = mean observed ZD sin 1″ = 0.00000485
S = geodetic distances T = slope distance
Conversion Factors and Common Formulas
Reduction of Reciprocal Zenith Distance Observations Reduction in seconds = −
(HI - HT) sin mean ZD S sin 1″
Reciprocal Observations h2 – h1 = T sin ½(ZD2 − ZD1)
or
h2 − h1 = S tan ½(ZD2 − ZD1)
DISTRIBUTION: Installation Training Support Centers (TSCs).
Nonreciprocal Observations h2 − h1 = T sin (90° − ζ1 + k)
or
h2 − h1 = S tan (90° − ζ1 + k)
Legend: C cot FS in lb mi SIF t
C factor cotangent far sight inch(es) pound(s) mile(s) stadia-interval factor grid azimuth
cm csc ft kg LEC mm sin tan
centimeter(s) cosecant foot; feet kilogram(s) linear error of closure millimeter(s) sine tangent 4
Purpose: Use this GTA as a guide for making common conversions. See FM 3-34.331 for more information.
cos FM GTA km m sec SLC ZD
cosine field manual graphic training aid kilometer(s) meter(s) secant sea level coefficient zenith distance
DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited.
Headquarters, Department of the Army *This publication supersedes GTA 05-02-029, August 1987.
CONVERSION FACTORS
LEVELING ("C" FACTOR) C factor =
Length 1 mm 10 mm 100 mm 1,000 mm 10 m 100 m 1,000 m
= 0.100 cm = 1.000 cm = 10.000 cm = 100.000 cm = 0.010 km = 0.100 km = 1.000 km
= 0.001 m = 0.010 m = 0.100 m = 1.000 m
1 cm 1 in 1m 1 ft 1 km 1 mi
= 0.3937 in = 2.54 cm = 39.37 in = 3.28083 ft = 30.48 cm = 0.30480 m = 0.62137 mi = 1609.344 m = 1.60930 km
π
1 degree = 180 radians
1 radian =
180 π
degrees
°C = 5/9(°F - 32)
°F = (9/5 °C) + 32 Weight
1 lb = 0.4536 kg
1 kg = 2.2050 lb
B c
In any right triangle
a
A
Cosine =
adjacent leg hypotenuse
Tangent =
opposite leg adjacent leg
Cosecant =
1 sine
Secant =
Cotangent =
b
Sin A =
a c
Cos A =
b c
Tan A =
a b
Bearing (β) = tan ∆N if if if if
C
K = Ko [1 + (XVIII) q2 + 0.00003q4] Ko = 0.9996 q = 0.000001 x E′
K = K x SLC mean elevation
SLC = 1 – mean radius of the earth Mean radius of the earth = 6,372,000 m (20,906,000 ft) =
∆N = grid distance x cosine of azimuth
Sec A = b/c =
c b
∆E = grid distance x sine of azimuth
1 = a/c
1
Cot A = a/b = a = √c2 - b2
2
∆N + ∆N ∆N ∆N +
TRAVERSE COMPUTATIONS
2 2 LEC = √error ∆N + error ∆E
b a
Ratio of closure = 1: c = √a2 + b2
∆E + ∆E + ∆E ∆E -
K = scale factor (horizontal distance)
1
1 tangent
∆E
Distance = √ΔN2 +ΔE2
c a
Csc A
1 cosine
C ±0.003 ±0.007 ±0.010
K = scale factor (geodetic distance)
COMMON FORMULAS
opposite leg hypotenuse
SIF 1:100 1:200 1:333
Correct rod reading = C x last FS interval + last FS mean reading
t = grid azimuth t=β t = 180° - β t = 180° + β t = 360° - β
Temperature
Sine =
Maximum allowable C factor:
BASIC COMPUTATIONS
Degrees 1 degree = 17.777777 mils
near rod reading – far rod reading far intervals – near intervals
b = √c2 - a2
length (m) LEC
3