Aporte Fase 4.docx

  • Uploaded by: Juan Jose Perdomo
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Aporte Fase 4.docx as PDF for free.

More details

  • Words: 729
  • Pages: 4
Ejercicio No. 3 1+π‘₯ ∫√ 𝑑π‘₯ 1βˆ’π‘₯ ; 𝑃 = 1 βˆ’ π‘₯ β†’ 𝑑𝑝 = βˆ’π‘‘π‘₯ π‘₯ = 1 βˆ’ 𝑝 β†’ 𝑑𝑝 = 𝑑π‘₯ Reemplazando 1 + (1 βˆ’ 𝑝) 2βˆ’π‘ βˆ’βˆ«βˆš 𝑑𝑝 = βˆ’ ∫ √ 𝑑𝑝 𝑝 𝑝 Ahora, realizamos integracion por partes y obtenemos 2βˆ’π‘ ⋃=√ 𝑝 1

⋃= 2

2βˆ’π‘ 𝑝

βˆ—(

√

=

βˆšπ‘ βˆ— βˆ’2 2√2 βˆ’ 𝑝 βˆ— 𝑝2

βˆ’1.9𝑝 βˆ’ (1)(2 βˆ’ 𝑝) βˆ’π‘ βˆ’ 2 + 𝑝 βˆšπ‘ βˆ—( ) )= 2 𝑝 𝑝2 2√2 βˆ’ 𝑝

=

βˆ’βˆšπ‘ √2 βˆ’ 𝑝 βˆ— 𝑝2

𝑑𝑝

Luego reemplazamos βˆ’βˆšπ‘ 2βˆ’π‘ π‘ˆ. 𝑉 βˆ’ ∫ 𝑣. 𝑑𝑒 = βˆ’ (√ βˆ— 𝑝 βˆ’ βˆ«π‘ βˆ— ) 𝑑𝑝 𝑝 √2 βˆ’ 𝑝 βˆ— 𝑝2

= βˆ’ (√2 βˆ’ π‘βˆšπ‘ + ∫

𝑑𝑝

𝑑𝑝 ) = βˆ’ (√2 βˆ’ π‘βˆšπ‘ + ∫ ⏟ 2𝑝 βˆ’ 𝑝2 √2 βˆ’ 𝑝 βˆ— βˆšπ‘ 𝐼

( 𝐼=∫

𝑑𝑝 √2𝑝 βˆ’ 𝑝2

=∫

𝑑𝑝 βˆšβˆ’(𝑝2 βˆ’ 2𝑝)

Sustituimos π‘‘π‘š π‘š =π‘βˆ’1 β†’βˆ« π‘‘π‘š = 𝑑𝑝 √1 βˆ’ π‘š2

=∫

𝑑𝑝 βˆšβˆ’((𝑝 βˆ’ 1)2 βˆ’ 1)

=∫

) 𝑑𝑝 √1 βˆ’ (𝑝 βˆ’ 1)2

Luego como π‘‘π‘š

𝐼=∫ ; se realiza por el metodo de integrales trigonometrical √1βˆ’π‘š2

I m

π‘ π‘’π‘›πœƒ =β†’ π‘šπ‘‘ = π‘π‘œπ‘ πœƒπ‘‘πœƒ 𝑠𝑒𝑛2 πœƒ = π‘š2 √1 βˆ’ π‘š2 Reemplazando ∫

π‘π‘œπ‘ πœƒπ‘‘πœƒ √1 βˆ’ 𝑠𝑒𝑛2 πœƒ

=∫

π‘π‘œπ‘ πœƒπ‘‘π‘œπœƒ βˆšπ‘π‘œπ‘  2 πœƒ

= ∫ π‘‘πœƒ = πœƒ + 𝑐

Sabemos que senΡ³=m; luego Ρ³=arcseno(m) M=p-1 ; =arcsen(p-1); volvemos a la integral inicial y obtenemos 1+π‘₯ 𝑑𝑝 ∫√ 𝑑π‘₯ = βˆ’ (√2 βˆ’ 𝑝 βˆ— βˆšπ‘ + ∫ ) = βˆ’βˆš2 βˆ’ 𝑝 βˆ— βˆšπ‘ + π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(𝑝 βˆ’ 1) 1βˆ’π‘₯ √2𝑝 βˆ’ 𝑝2 Luego p=1-x, reemplazamos βˆ’ (√2 βˆ’ (1 βˆ’ π‘₯) βˆ— √1 βˆ’ π‘₯ + π‘Žπ‘Ÿπ‘π‘ π‘’π‘›((1 βˆ’ π‘₯) βˆ’ 1))) βˆ’(√1 + π‘₯ βˆ— √1 βˆ’ π‘₯ + π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(βˆ’π‘₯) βˆ’ 1)) βˆ’ (√π‘₯ βˆ’ π‘₯ 2 + π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(βˆ’π‘₯)) Luego el resultado de la integral se debe evaluar en los limites lo entonces, = βˆ’βˆš1 βˆ’ π‘₯ 2 βˆ’ π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(βˆ’π‘₯)‫׀‬о; Evaluando = βˆ’βˆš1 βˆ’ 1 βˆ’ π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(βˆ’1) βˆ’ (βˆ’βˆš1 βˆ’ 0 βˆ’ π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(βˆ’0)) = βˆ’π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(βˆ’1) βˆ’ (√1 βˆ’ 0)

πœ‹ πœ‹ βˆ’ (βˆ’1 βˆ’ 0) = + 1 = 2.57 2 2

Ejercicio No. 7 1

6π‘₯ 3 𝑑π‘₯ βˆ’1 (π‘₯ 2 + 1)2

∫

2

1

π‘₯3 ; π‘Ÿπ‘’π‘ π‘œπ‘™π‘£π‘Žπ‘šπ‘œπ‘  π‘π‘Ÿπ‘–π‘šπ‘’π‘Ÿπ‘œ π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ 𝑦 π‘™π‘’π‘’π‘”π‘œ π‘’π‘£π‘Žπ‘™π‘’π‘Žπ‘šπ‘œπ‘  π‘™π‘œπ‘  π‘™π‘–π‘šπ‘–π‘‘π‘’π‘  βˆ’1 (π‘₯ 2 + 1)2

= 6∫

2

∫

π‘₯3 𝑑π‘₯; π‘Ÿπ‘’π‘Žπ‘™π‘–π‘π‘’π‘šπ‘œπ‘  π‘’π‘›π‘Ž π‘ π‘’π‘ π‘‘π‘–π‘‘π‘’π‘π‘–π‘œπ‘› (π‘₯ 2 + 1)2 π‘ˆ = π‘₯2 + 1 β†’ 𝑒 βˆ’ 1 = π‘₯2 𝑑𝑒 = 2π‘₯ 𝑑π‘₯ 𝑑𝑒 = π‘₯𝑑π‘₯ 2

Reemplazando, ∫

π‘₯ 2 π‘₯𝑑π‘₯ 1 (𝑒 βˆ’ 1) βˆ— 𝑑𝑒 1 𝑒 βˆ’ 1 = ∫ = ∫ 2 2 2 (π‘₯ + 1) 2 𝑒2 2 𝑒

1 𝑒 1 𝑑𝑒 1 1 = ∫ 2 𝑑𝑒 βˆ’ ∫ 2 = (∫ 𝑑𝑒 βˆ’ ∫ π‘’βˆ’2 ) 2 𝑒 2 𝑒 2 𝑒 1 1 1 = (𝑙𝑛|𝑒| + π‘’βˆ’1 ) = (ln(𝑒) + ) 2 2 𝑒 Reemplazamos el valor de U y obtenemos 1 1 (ln(π‘₯ 2 + 1) + 2 ) ; π‘π‘œπ‘Ÿ π‘π‘œπ‘›π‘ π‘–π‘”π‘’π‘–π‘’π‘›π‘‘π‘’ 2 π‘₯ +1 ∫

π‘₯3 1 1 𝑑π‘₯ = (𝑙𝑛|π‘₯ 2 + 1| + 2 ) ; 𝑒𝑠 π‘‘π‘’π‘π‘–π‘Ÿ 2 2 (π‘₯ + 1) 2 π‘₯ +1

6∫

π‘₯3 1 𝑑π‘₯ = 3 (𝑙𝑛|π‘₯ 2 + 1| + 2 ) 2 2 (π‘₯ + 1) π‘₯ +1

Ahora evaluamos los limites ‫׀‬-1/2 ; y obtenemos

‫׀‬ 1 3 (𝑙𝑛|π‘₯ 2 + 1| + π‘₯ 2 +1) [βˆ’1; evaluamos 2

3 (𝑙𝑛|1 + 1| +

1 1 1 ) βˆ’ 3 (ln( +1) + ) 1 1+1 4 4+1

1 5 4 3 (𝑙𝑛|2| + ) βˆ’ 3 (ln | | + ) 2 4 5 1 5 4 3 (𝑙𝑛|2| + ) βˆ’ 3 (𝑙𝑛 | | + ) 2 4 5 3 (1.199 βˆ’ 3(1.02) = 3(1.19 βˆ’ 1.02) = 0.51

Ejercicio No. 11 ∫ π‘π‘œπ‘  3 π‘₯𝑠𝑒𝑛4 π‘₯𝑑π‘₯ = ∫ π‘π‘œπ‘ π‘₯. π‘π‘œπ‘  2 π‘₯. 𝑠𝑒𝑛4 π‘₯𝑑π‘₯ = ∫ π‘π‘œπ‘ π‘₯ (1 βˆ’ 𝑠𝑒𝑛2 π‘₯)𝑠𝑒𝑛4 π‘₯𝑑π‘₯ = ∫ π‘π‘œπ‘ π‘₯. 𝑠𝑒𝑛4 π‘₯ βˆ’ π‘π‘œπ‘ π‘₯𝑠𝑒𝑛6 π‘₯𝑑π‘₯ Hecemos una sustituciΓ³n U=senx Du= cosx.dx ; reemplazamos ∫ π‘π‘œπ‘ π‘₯. 𝑠𝑒𝑛4 π‘₯ βˆ’ π‘π‘œπ‘ π‘₯𝑠𝑒𝑛6 π‘₯𝑑π‘₯ = ∫ π‘π‘œπ‘ π‘₯𝑠𝑒𝑛4 π‘₯𝑑π‘₯ βˆ’ ∫ π‘π‘œπ‘ π‘₯𝑠𝑒𝑛6 π‘₯𝑑

= ∫ 𝑒4 𝑑𝑒 βˆ’ ∫ 𝑒6 . 𝑑𝑒 = 𝑠𝑒𝑛5 π‘₯ 𝑠𝑒𝑛7 π‘₯ βˆ’ +𝑐 5 7

𝑒5 𝑒7 βˆ’ +𝑐 5 7

Related Documents

Aporte Fase 3.docx
November 2019 11
Aporte Fase 4.docx
December 2019 21
Aporte Fase 2..docx
November 2019 15
Aporte Fase 3.docx
June 2020 3
Aporte Fase 2.doc
May 2020 5

More Documents from ""

Tarea1_grupo_58.docx
November 2019 20
Aporte Fase 4.docx
December 2019 21
Ejercicios-1.docx
December 2019 11
November 2019 14