Answers

  • Uploaded by: Sathis Kumar
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Answers as PDF for free.

More details

  • Words: 6,990
  • Pages: 51
MODULE 1- ANSWERS TOPIC: SIMULTENOUS LINEAR EQUATIONS 1. Calculate the values of m and n that satisfy the simultaneous linear equations: 4m + n = 2 and 2m – 3n = 8 [ 4 marks] 12m + 3n = 6 2m – 3n = 8 14m = 14 m=1

1 1 1

n = -2

1

2. Calculate the values of m and n that satisfy the simultaneous linear equations:

1 m - 3n = 10 2 5m + 6n = -8 m - 6n = 20 5m + 6n = -8 6m = 12 m=2 n =-2

[ 4 marks] 1 1 1 1

3. Calculate the values of m and n that satisfy the simultaneous linear equations: 2m – n = 7 m – 2n = 5 [ 4 marks] 2m – n = 7 2m – 4n = 10 3n = -3 n = -1 m =3

1 1 1 1

4. Calculate the values of p and q that satisfy the simultaneous linear equations: p + 2q = 6

3 p – q = -7 2 [ 4 marks] p + 2q = 6 3p – 2q = -14 4p= -8 p = -2 q =4

1 1 1 1

5. Calculate the values of m and n that satisfy the simultaneous linear equations: 4m - 3n = 7 and m + 6n = 4 [ 4 marks] 4m - 3n = 7 4m + 24n = 16 -27n = -9

1 1

1 3

1

m =2

1

n=

6. Calculate the values of p and q that satisfy the simultaneous linear equations: 2p - 3q = 13 4p + q = 5 [ 4 marks] 4p - 6q = 26 4p + q = 5 -7q = 21 q = -3

1

p =2

1

1 1

7. Calculate the values of p and q that satisfy the simultaneous linear equations:

1 p – 2q = 13 2 3p + 4q = -2

[ 4 marks]

p – 4q = 26 3p + 4q = -2 4p = 24 p=6

1

q = -5

1

1 1

8. Calculate the values of k and w that satisfy the simultaneous linear equations: 2k – 3w = 10 and 4k + w = -1 [ 4 marks] 4k – 6w = 20 4k + w = -1 -7w = 21 w = -3 k =

1 2

1 1 1 1

9. Calculate the values of m and n that satisfy the simultaneous linear equations: 2m - 5n = -12 and 3m + n = -1 [ 4 marks] 2m - 5n = -12 15m + 5n = -5 17m = 17 m = -1 n =2

1 1 1 1

10. Calculate the values of x and y that satisfy the simultaneous linear equations: x – 3y = 5 3x – y = 3 [ 4 marks] 3x – 9y = 15 3x – y = 3 -8y = 12

3 y=2 x=

1 2

1 1 1

1

11. Calculate the values of s and t that satisfy the simultaneous linear equations: 8s + 3t = 12 6s – 9t = 24 [ 4 marks] 24s + 9t = 36 6s – 9t = 24 30s = 60 s=2 t=-

4 3

1 1 1 1

12. Calculate the values of m and n that satisfy the simultaneous linear equations: m - 3n = 6 and 2m – n = 7 [ 4 marks] 2m - 6n = 12 2m - n = 7 -5n = 5 n = -1

1 1 1

m =3

1

13. Calculate the values of k and h that satisfy the simultaneous linear equations: 4k - 3h = 10 2k – 5h = 12 [ 4 marks] 4k - 3h = 10 4k – 10h = 24 -7h = -14 h=2 k=4

1 1 1 1

14. Calculate the values of m and n that satisfy the simultaneous linear equations: 2m + 3n = 9

1 m–n=2 3

[ 4 marks]

2m + 3n = 9 m – 3n = 6 3m = 15 m= 5 n =

1 1 1

1 3

1

15. Calculate the values of m and n that satisfy the simultaneous linear equations: 2m – n = 2 4m – 3n = 5 [ 4 marks] 6m – 3n = 6 4m – 3n = 5 2m = 1

1 1

1 2

1

n =1

1

m=

MODULE 2 – ANSWERS TOPIC : SOLID GEOMETRY

1. Volume of solid = Volume of cuboid + volume of half-cylinder 1 22 = 14 x 6 x 4 + x x 32 x 14 2 7 336 cm3

=



+

197.92cm3

= 533.92 cm3 534 cm3

2. Volume of remaining solid = volume of big pyramid = = = =

1 ( x 152 x 18 ) 3 1 ( x 225 x 18 ) 3

-

(1350 - 48) 1302 cm3

3. Volume of solid = Volume of cone + Volume of hemisphere

1 2 1 4 πr h + × × πr 3 3 2 3  1 22  21  2   1 4 22  21  3  4042.5 =  × ×   × h +  × × ×     3 7  2    2 3 7  2   =

4042.5 = 115.5 h + 2425.5 h = 14 cm 4. Volume of pyramid = volume of solid – volume of cuboid = 1100 cm3 − (10 ×10 × 8) = 1100 - 800 = 300 cm3 Volume of pyramid =

1 x Area of base x h 3

=

1 x (10 x 10) x h 3

=

100 xh 3

100 h = 300 3

volume of small pyramid

1 x 62 x 4 ) 3 1 ( x 36 x 4 ) 3 (

= 300 x

3 100

= 9 cm 5. Volume of cylinder = πr2h =

22 x 3.5 2 x 4 7

= 154 cm3 Volume of cone

Volume of solid 154 +

=

1 2 πr h 3

=

1 22 x x 3.5 2 x t 3 7

=

269.5 t cm3 21

= 231 cm3

269.5 t = 231 21 269.5 t = 1617 t=

1617 269.5

= 6 cm

6. Volume of remaining solid = Volume of cylinder – volume of cone = πr2h -

=[

1 2 πr h 3

22 1 22 x 7 x 7 x 20] – [ x x 7 x 7 x 9] 7 3 7

= 3080 – 462 = 2618 cm3

7. Volume of solid = Volume of half – cylinder + volume of prism Volume of half – cylinder =

1 x πr2h 2

Volume of prism = area of base x height Volume of solid = Volume of half – cylinder + volume of prism =[

1 22 14 2 1 x x( ) x 6] + [ x 14 x 8 x 6] 2 7 2 2

= 462 + 336 = 798 cm2

MODULE 3 - ANSWERS TOPIC: CIRCLE, AREA AND PERIMETER 1 (a)

90 22 120 22 × 2 × ×12 @ × 2× ×7 360 7 360 7 90 22 120 22 × 2 × × 12 + × 2 × × 7 + 12 + 5 360 7 360 7 57.53

K1 K1 N1

(b)

90 22 120 22 2 × × 12 2 @ × ×7 360 7 360 7

K1

90 22 120 22 1 × × 12 2 + × × 7 2 − × 7 × 12 360 7 360 7 2 122.48

K1 N1

2 (a)

∠FEC = 135

K2

135 22 × 2× ×7 360 7 16.5

K1 N1

(b)

135 22 × ×7 ×7 360 7

K1

1  Shaded area = (21 × 14) −  × 14 × 14  − L3 2  = 138.25

K1

L3 =

N1 3 a)

b)

270 22 90 22 × × 2 × 21 atau × ×7×2 360 7 360 7

K1

270 22 90 22 × × 2 × 21 + × × 7 × 2 + 14 + 14 360 7 360 7

K1

= 138

N1

270 22 × × 21 × 21 atau 360 7



90 22 × ×7×7 360 7

K1

270 22 90 22 × × 21 × 21 - 2 × × ×7×7 360 7 360 7

K1

= 962.5 cm2

N1

4 a)

60 22 × 2 × × 28 360 7

K1

60 22 × 2 × × 28 + 14 + 14 + 14 + 14 + 28 360 7 1 113 atau 113⋅33 3 b)

60 22 60 22 × × 28 × 28 atau × ×14 ×14 360 7 360 7 60 22 60 22 × × 28 × 28 − × ×14 ×14 + 14 × 14 360 7 360 7 504

K1 N1

K1 K1 N1

5 a)

120 22 240 22 × × 14 × 14 atau × ×7×7 360 7 360 7 120 22 240 22 × × 14 × 14 + × ×7×7 360 7 360 7 308

b)

K1 K1 N1

120 22 240 22 × 2 × × 14 atau × 2× × 7 360 7 360 7 120 22 240 22 × 2 × × 14 + × 2× × 7 + 7 + 7 360 7 360 7 2 72 3

K1 K1 N1

6 (a)

45 22 ×2× × 14 360 7

K1

22  45  ×2× × 14  + 14 + 14 + 14 + 14  360 7  

K1

70

(b)

2 3

45 22 × × 14 × 14 360 7

N1 or

90 22 × × 14 × 14 360 7

K1

90 22  45 22    × × 14 × 14  + 2 14 × 14 − × × 14 × 14   360 7 360 7    

K1

161

N1

7 (i)

(ii)

(iii)

210 22 × 2 × × 35 360 7 1 128 @ 128.33 3

K1 N1

210 22 210 22 × 2× ×7 : × 2 × × 35 360 7 360 7

K1

1: 5

N1

210 22 210 22 × × 35 2 or × × 72 360 7 360 7 210 22 210 22 × × 35 2 − × × 72 360 7 360 7 2156

K1 K1 N1

8 (a)

45 22 ×2× × 14 360 7

or

14 2 + 14 2 − 14

11 + 14 + 14 + 14 + 5.799 58.80 (2 d. p) (b)

45 22 × × 14 x 14 360 7 45 22 1 90 22 × 14 × 14 − × ×7 × 7 + × × 14 × 14 2 360 7 360 7

90 22 × ×7 × 7 360 7

or

136.5

K1 K1 N1 K1 K1 N1

9 (a)

(b)

90 22 60 22 × × 14 × 14 and A2 = × ×7×7 360 7 360 7 A1 – A2 1 128 3 90 22 180 22 × 2 × × 14 or P2 = ×2× ×7 P1 = 360 7 360 7 A1 =

P1 + P2 + 14 58

K1 K1 N1 K1 K1 N1

10 (a)

AB =

14 2 + 14 2 = 392 = 19.80 150 22 60 22 90 22 × 2 × × 14 atau × 2 × × 14 atau × 2 × × 14 360 7 360 7 360 7

Lengkok AC + 14 + 14 + 19.80 atau Lengkok AB + lengkok BC + 14 + 14 + 19.80 84.47 (b)

150 22 1 × × 14 2 atau × 14 × 14 360 7 2 150 22 1 × × 14 2 - × 14 × 14 atau 360 7 2 770 – 98 3 2 476 158 atau atau 158.67 3 3

K1 K1 K1 N1 K1 K1

N1

MODULE 4 - ANSWERS TOPIC: QUADRATIC EXPRESSIONS AND EQUATIONS. Answer:

(a)

3x(x− 1) 2

=x+6

3x2 –x – 12 = 0 ………..1 (3x+ 4)(x – 3) =0 ……….1

4 3

x=

x= 3 …………….1,1

(b) (w – 1)2 – 32 = 0 w2– 2w – 8= 0 …………..1 (w+2)(w–4)=0 …………..1 w=4

w= –2 ……………1,1

(c) 2a2 = 3(1 + a) + 2 2a2– 3a – 5 = 0 …………1 (a+1)(2a – 5) = 0………..1 a= –1 x =

5 …………..1,1 2

2

(d)

5p + 3p 1+ p

=4

5p2– p – 4 = 0 …………1 (5p– 4)(p+1) = 0…….....1 p=

4 5

p = – 1………..1,1

2

(e)

3t

2

= 7t – 4

3t2+ 14t – 8 = 0 ………..1 (3t – 2)(t – 4)=0 ………..1 t=

2 3

t = 4 …………1,1

(f) x2 – 2 =

11x− 5 4

4x2– 11x – 5 = 0 ………1 (4x+1)(x - 3) = 0 ………1

1 4

x=

(g)

x=3

2 m −6 5

=m

m2– 5m – 6 = 0 ………..1 (m - 6)(m + 1) = 0………1 m=6

m= -1 …………1,1

(h) (2x + 1)(x – 2)=7 2x2– 3x – 9 = 0 …………1 (x+3)(x - 3) = 0 …………1 x = -3 x = 3 ……………. 1,1 (i) p + 2 =

p+ 2 p− 3

p2 – 2p – 8 = 0 …………1 (p+2)(p– 4)=0 ………….1 p= –2

p = 4……………1,1

(j) 3x(2x – 1)+ 8x = 1 6x2+ 5x – 1 = 0 …………1 (x+1)(6x - 1) = 0 ………..1 x = -1 x =

1 …………..1,1 6

2 (k) 3y −2 = y

5

3y2 – 5y – 2 = 0………………1 (y+1)(y– 2)=0 ………………..1 y= -1

y = 2 …………………1,1

(l) (r –1)(r + 3) = 5(r + 3) r2 – 3yr– 18 = 0 ……………..1

(r+6)(r– 3)=0 ………………..1 y= -6

y = 3 ……………….1,1

(m) 7p – 2p2 = 2(1 + p) 2p2– 5p + 2 = 0 …………..1 (2p– 1)(2p+5) = 0 ………..1

1 2

p=

−5 …………1,1 2

p=

x 2 + 25 2

(n) 5x =

x2 – 10x + 25 = 0 …………1 (x-5)(x-5)=0……………….1 x=5 ………………………..1 2

(o)

p +5 6

=p

p2– 6p + 5 = 0 ………….1 (p– 1)(p+5) = 0 …………..1 p=1

p = -5……………..1,1

(p) 4(5x – 1) =

− 3(5x− 1) x

20x2– 11x -3 = 0 ……….1 (5x+ 1)(4x-3) = 0 ………..1 x=-

(q) d =

1 5

x=

1 ………….1,1 4

7 − 6d d

d2+ 6d -7 = 0 ………..1 (d– 1)(d+7) = 0 ………1 x=1 (r)

x = -7 ……….1,1

2 2m + 5m m+ 1

=2

2m2+ 3m -2 = 0 ……….1

(2m– 1)(m+1) = 0………1 x = -2

(s)

x=

3m(m− 1) m+ 1

1 ………….1,1 2

=2

3m2- 5m -2 = 0 …………..1 (3m+1)(m-2) = 0 ………….1 x=2

x=-

1 …………1,1 3

(t) y2 + 9y – 1 = 3(y – 2) y2+ 6y+5 = 0 ……………1 (y+1)(y+5) = 0 ………….1 x = -1

x = -5 ………….1,1

MODULE 5 – ANSWERS TOPIC: SETS 1 (a)

(b)

2 (a)

(b)

ξ

ξ

1

PQ

R

PQ

R

J ∩ L′

2

1 J

K

( K ∪ L) ∩ J ′ J

2

K

3

L

3 (a)

1

Q R

P

(b)

R

P

2 3

Q

4 (a)

5

1

(b)

30 –(5 + 6 + 2 + 1 ) 16

1 1

(c)

9

1 4

5 (a) (b)

{10,11,12,13 }

1

A = { 9,12,15 } B = { 7,9,11,13,15} A ∪ B = { 7,9,11,12,13,15}

1 1

N(AUB)=6

6 (a)

3

2

ξ

G

H

24 12

(b)

7

6

8

1

24

(a)

{4 , 8} Note:

(b)

6

3

1 Accept without bracket. 2

3

8

1

ξ P

R

3

Q

P Q

2

R

1.

(c)

MODULE 6 TOPIC : MATHEMATICAL REASONING (i) some 1m (ii) all 1m If x > 4 then x > 7 1m False. 1m P∩Q≠P 1m

(a) (b) (c)

Non-statement 1m 3 is a factor of 24 2m 3(2n) – n and n = 1,2,3,……

(a)

(i) True 1m (ii) False 1m The determinant of matrix a = 0 If A ⊂ B then A ∩ B = A If A ∩ B = 0 then A ⊂ B

(a) (b)

2.

3.

(b) (c)

4.

(a) (b) (c)

5.

(a) (b) (c)

6.

(a) (b) (c)

7.

(a)

(b) (c) 8.

9.

(a) (b)

True If p3= 8 then p = 2 If p = 2 then p3 = 8 If x = 9 then x = 3

2m

1m 1m 1m

1m 1m 1m 2m

(i) True 1m (ii) False 1m Premise 1 : If p = 7, then 6 x p = 42 1m 4n2 + 7, n = 1,2,3,4…. 2m (i) Statement. 1m (ii) Non-statement 1m Some 1m Premise 2 : p is a positive integer (i) False (ii) False t≠0 If x ± 3, then x2 = 9 True

2m

1m 1m 1m 1m 1m

(c)

Statement 1m If x is an even number then x can be divided by 2. If x can be divided by 2 then x is an even number. n2 + 2 , n = 0, 1, 2,……… 2m

(a)

(i)

True

1m

1m 1m

(ii) False 1m 2 If n = 2, then x + x is a quadratic expressions. If 1 – m > 2 then m < -1 If m < -1 then 1 – m > 2

(b) (c) 10.

(a) (b)

1m 1m 1m

It is a statement because it has a truth value which is false. 2m (i) True 1m (ii) False 1m y>3 1m

(c)

MODULE 7- ANSWERS TOPIC: THE STRAIGHT LINES

12 − 2 3 − (−2) 10 = 2

1. a) m =

b) y = 2x + c Point (5, 5),

= 2

5 = 2(5) + c

= 10 + c c = -5 y = 2x - 5 Equation of SRT is y = 2x

–5 c) x – intercept = - ﴾ =

5 2 2 − (−5) 4 − ( −1)

2. a) Gradient = =

−5 ﴿ 2

b) y – intercept = 5

7 5

Point E = (-5, -2), gradient =

5 7/5 − 25 = 7

x –intercept = -

7 5

y= mx + c -2 = mx + c -2 =

7 (−5) + c 5

c=5 y =

7 x+5 5

2− p 6−0 2− p = 6

3. a) The gradient = -3 -18

= 2–p p= 20 Coordinates of point T = (0 , 20)

b) y = mx + c m = -3, c = 20 y = -3x + 20

1 x + 18 3 1 x+9 y= 6

c) 2y =

The value of p = 9, gradient =

6−3 −1− 4 3 = 5

4. a) m =

1 6 b) m = -3 (4 – q) -12 + 3q

3 5

3 5

3−0 4−q

=

= 3(5) = 15 3q = 27 q = 9

c) D = (-1 , 0) , F = (4 , 3)

3−0 4 − (−1)

m =

3 5

=

0 − (−8) 0 − (−4) 8 = 4

5. a) Gradient =

= 6 = 6 = c= y =

b) x-intercept = -

10 2

= -5

2

y = mx + c 2(-2) + c -4 + c 10 2x + 10

3−0 5−0 3 = 5 3 = 5

5. a) Gradient =

z−4 10 5z - 20

= 30

5z

= 50

b) gradient =

3 , E = (-2 , 4) 5 y

= mx + c

4

=

-

c

=

26 5

6 + c 5

Equation of line EF is y =

26 3 x + 5 5

z

= 10

c) x – intercept of line EF = -

26 5 3 5

= −

26 3 b) x-intercept of HIJ = − (

7. a) F = (0,4) , G = (-4 , 0)

4−0 0 − (−4) 4 = 4

Gradient

=

=

m=

9 4

y = 5x - 3

9 ) 4

- 0

Q = (-5 ,

9 3 ), gradient M = 4 4

y = mx + c

9 4 3

c=6

9 1 x 4 3 3 = 4

=

c) R = (0, 6) , S = (6, 0)

0−6 6−0 −6 = 6

m=

= -1 9. a) i) Equation of LK is x = 7 ii)

b)

9 3 = (−5) + c 4 4 15 9 + c = 4 4

-5 – (- 8) =

3 5

c) y = mx + c

= 1

8. a) P = (-8, 0) , Q = (-5 ,

−3 ) 5

y = mx + c 8 = 2(-2) + c 8 = -4 + c 12 = c Equation of EFG is y = 2x + 12

y-intercept = 6

8 − (−4) −2−7 12 = − 9 4 − = 3

b) m =

y = mx + c 8= −

4 (−2) + c 3

16 =c 3 4 16 y= − x + 3 3 Coordinates of H = (0,

16 ), 3

Coordinates of J is (x, 0) ,



y= −

4 16 x+ 3 3

4 16 x+ = 0 3 3

-4x + 16 = 0 -4x = -16 X = 4 Therefore coordinates of J = (4, 0) 10 a). 3y – 6x = 3 -----------------(1) 4x = y – 7 y = 4x + 7 _________(2) Substitute (2) into (1) 3(4x + 7) - 6x = 3 12x + 21 - 6x = 3 6x = 3 – 21 6x = -18 x = -3 y = 4(-3) + 7 = -12 + 7 = -5 Point of intersection is (-3, -5)

2 x + 3 ---------------------(1) 3 4 y = x + 1 ---------------------(2) 3

b) y =

(1) to (2)

2 4 x + 3 = x +1 3 3 4 2 x − x = 3 −1 3 3

2 x=2 3 x=3 y =

2 (3) + 3 3

=2+ 3 =5 Point of intersection is (3, 5) MODULE 8 – ANSWERS TOPIC: STATISTICS 1) a) Body mass(kg) 15-19

Midpoint 17

Lower boundary 14.5

Upper boundary 19.5

Frequency 2

20-24

22

19.5

24.5

4

25-29

27

24.5

29.5

9

30-34

32

29.5

34.5

13

35-39

37

34.5

39.5

9

40-44

42

39.5

44.5

3

b)

i) Modal class 30-34 kg ii)9+3=12 iii)Mean= (17x2)+(22x4)+(27x9)+(32x13)+(37x9)+(42x3) 40 = 1240/40 = 31 kg c) graph d) graph 2) a) Marks 11-15

freq 1

Cumulative freq 1

16-20

3

4

21-25

6

10

26-30

10

20

31-35

11

31

36-40

7

38

41-45

2

40

b) c) 3) a)

graph i) upper quartile ¾ x 40 = 30 = 35 i) 30 students scored less than 35

Age 40-44 45-49 50-54 55-59 60-64 b) c) c)

Frequency 6 12 18 9 5

Midpoint 42 47 52 57 62

Mean age = 51.5 The modal age is 50-54 years old graph

4) a) Donation (RM) 10-19

Frequency 5

Cumulative frequency 5

20-29

8

13

30-39

11

24

40-49

13

37

50-59

3

40

c)

i) ii)

RM43.50 There are 10 persons who donated RM43,50 or more

b) graph 5) a)

b)

Mass(kg) 30-34

Frequency 2

Midpoint 32

35-39

10

37

40-44

12

42

45-49

8

47

50-54

5

52

55-59

3

57

i) ii)

40-44 kg (32x2)+(37x10)+(42x12)+(47x8)+(52x5)+(57x3) 40 = 1745/40 = 43.625 kg

c) graph

6) a) Pocket money(RM) 31-35

Frequency 3

Midpoint 33

36-40

5

38

41-45

6

43

46-50

9

48

51-55

8

53

56-60

6

58

61-65

3

63

b) i) 46-50 ii) mean = (33x3)+(38x5)+(43x6)+(48x9)+(53x8)+(58x6)+(63x3) 40 = 1940/40 = 48.5 c) graph

MODULE 9 - ANSWERS TOPIC: LINES AND PLANES IN 3-DIMENSIONS 1

Identify ∠PUQ @ ∠SCR tan ∠PUQ =

9 12

∠PUQ = 360 52’ @ 36.870

2

3

 PRQ 12 tan PRQ  5 PRQ = 67.380 or 670 22’

Identify

Identify ∠VST tan ∠VST =

5 12

22.60 or 220 37’

4

Identify ∠VTU tan ∠VTU =

6 4

∠VTU = 56⋅31° or 56°18’ 5

Identify ∠ GSJ tan ∠ GSJ =

6 8

36.87° or 36° 52’ 6

Identify ∠PWS tan ∠PWS =

13 10 2 − 6 2

∠PWS = 58⋅39° or 58⋅4° or 58°24’ 7

Identify ∠ TRM Tan ∠ TRM =

5 82 + 62

∠ TRM = 26.57° or 8

26 ° 34 ′

Identify ∠PTQ or ∠QTP tan ∠PTQ =

9 12

∠PTQ = 36052’ or 36.90

9

a) b)

10 Identify ∠EPF 7 10

Tan ∠EPF =

10

c)

340 59’ ∠UQV

a)

13 cm

b)

Identify ∠SMW tan ∠SMW =

7 13

28.30 or 28018’

c)

∠RUQ or ∠QUR

MODULE 10 – ANSWERS TOPIC: GRAPHS OF FUNCTIONS 1.

a) x=-2 y=15

x=0.5 y= -5

x=3 y=0

b) graph

40

35

30

25

y(x) = 2⋅x2-5⋅x-3 20

20.5

15

y(x) = 3 ⋅x+4 10

5

-10

-5

-2.4

5

-0.75 -5

-10

c) i) ii)

x=-2.4 y= 20.5 when 2x2 – 5x – 3 = 0 y=0 Then the values of x is -0.5 and 3

b) y=2x2-5x-3 0=2x2-8x-7 (-) ----------------------Y= 3x + 4 X Y

0 4

3 13

From the graph x= -0.75 and 4.75

4.75

10

2.

a)x=2.5 y=-2.25

x=4 y=0

b)graph 2 c)

i) ii)

y=1.75 x=7.4

b) straight line y=2x+1 x=0.45 and 6.55 3.

a) x=-1 y=-5

x=2.5 y=2

b)graph 16

C 14

12

10

y(x) = 3⋅x

8

6

4

2

A -5

-4

-3

-2

-1

B

1 -2

y(x) =

5 x

-4

-6

-8

-10

-12

-14

c)

i) ii)

x=1.8 y= 2.8 y=-6 x=-0.8

b) The graph is y=3x X Y

0 2 0 6

2

3

4

5

The values of x= -1.3 and 1.3

4.

a)

x=-2 y=-1

x=2.5 y=0.8

b) graph c)

i) ii)

y=-1.3 x=1.7

b) The straight line is y=

3 x–2 4

The values of x = -0.75 and 3.45 5.

a) x=-3 y=30 b) graph

x=2 y=0 45

40

35

34

30

y=x^3-1 3x+18 25

20

y=-2x+20 15

10

5

3.85

-3.2 -6

c)

i)

-0.25

-4

x=-1.5 y=34 ii) y=25

-2

-5

x=3.85

b) y=x3-13x+18 0=x3-11x-2 (-) -------------------------Y= -2x+20 X 0 4 Y 20 12

2

3.35 4

6

X= -3.2, -0.25 and 3.35

6.

a)

x=-2 y=15

x=3 y=-5

b) graph 6 c)

i) ii)

y=10.75 x=-1.5

b)

y=-12x-5 x=-3.6, 0 and 2.75

JAWAPAN MODUL11 TOPIC : TRANSFORMATIONS 1 (a) (i) (ii)(a) (b) (b)(i)(a) (b) (ii)

2 (a)(i) (ii) (b)(i)(a) (b) (ii)

3 (a)(i) (ii) (b)(i)(a) (b) (ii)

4 (a)(i) (ii) (b)(i)(a) (b) (ii)

5 (a)(i) (ii) (b)(i)(a)

(0, -1) (-3, -4) (-1, -2)

1 1 1

M is a rotation of 90o clockwise about point (1,3) N is an enlargement with centre at (2,0) and a scale factor of 2 Area EFGH = k2(Area ABCD) = 22(25) = 100 unit2

3 3

(4, -2) (1, 0)

1 2

U is a rotation of 90o clockwise about the point (1, 1) V is an enlargement with centre at (4, 0) and scale factor of 2 Area OFJK = k2(Area ABCD) 120 + Area ABCD = 22(Area ABCD) Area ABCD = 40 unit2

3 3

(12, 7) (6, 7)

1 2

V is a rotation of 90o clockwise about point (7, 0) W is an enlargement with centre at (7, 3) and scale factor of 3 Area EFG = k2(Area PQR) 72 = 32(Area PQR) Area PQR = 8 unit2

3 3

(-3, 6) (6, 11)

1 2

 − 8   3 

U is a translation 

3

3

3

1

V is an enlargement with centre at (-3, 8) and scale factor of 2. Area WXYS = k2(Area RSTU) 150 + RSTU = 22(Area RSTU) Area RSTU = 50 cm2

3

(-3, 0) (4, 4)

2 2

S is a reflection in the line x =1

2

4

Q is an enlargement with centre at (-11, 2) and scale factor of 2. Area ABCD + Area of shaded region= k2(Area ABCD) 64 + Area of shaded region = 22(64) Area of shaded region = (256 – 64) cm2 Area of the shaded region = 192 cm2

(ii)

MODULE 12 - ANSWERS TOPIC : MATRICES 1.

m= −

(a)

1 2

1m

n =2 (b)  3

 5

1m

− 2  x  8    =   − 4   y  13   x  1 − 4   =   y 2 − 5 x=3 y= −

2.

(a)

 2

1 2

1m 1m

3  p    = 4  q 

 1     − 8

p=2 q = -3 (a)

(b)

5 3 

A=

1m

1m

 p  1  4 − 3  1    =     q  14  − 2 5  − 8 

3.

2  8    3 13 

1m

n =4 m=5

(b)  5

1m

1m 1m 1m 1m

− 2  − 1 

2m

 −1 2  r   − 4     =   − 3 5  s   − 9

1m

 r  1  5 − 2  − 4    =     s  1  3 − 1  − 9 

1m

3 3

4.

(a)

5.

(a)

(b)

s = -3

1m 1m

1  8 − 5   2  − 6 4 

1m

 4 5  m   7     =    6 8  n  10 

1m

 m  1  8 − 5  7    =     n  2  − 6 4 10 

1m

m=3

1m

n = -1

1m

 − 5 3  1m 1   − 20 − (−24)  8 4  1  − 5 3 1m  =  4  8 4 

P =

 4 − 3  h   − 7     =    8 − 5  k   − 11  h  1  − 5 3  − 7    =    k 8 4 − 11 2      =

6.

1m

1  8 − 5   32 − 30  − 6 4 

P=

=

(b)

r = -2

1 2    2  − 100 

1m 1m

h=1 k = -50

1m 1m

(a)

k = -12

1m

(b)

(i)

h = 26

1m

 x 1  8 6  − 4    =     y  26  5 7  1  1  − 26    = 26  − 13 

(ii)

1m 1m

x = -1 y= − 7.

(a)

1m

1 2

- 4 – 5k = 0

1m 1m

5k = -4 k= − (b)

8.

4 5

1m

 2 5  x   13     =    1 − 2  y   − 7 

1m

 x 1  − 2 − 5  13    = −    9  − 1 2  − 7   y

1m

x = -1 y=3

1m 1m

1 0  0 1

(a)

M=  

2m

(b)

 x 1  3 − 4  6    =     y  6 − 4  − 1 2  5 

1m

1  3 − 4  6     2  − 1 2  5  1  − 2 =   2 4  =

1m

x = -1 y=2

9.

(a)

1  − 2 1   − 6 + 5  − 5 3 

1m 1m

1m

=

1  − 2 1   − 1  − 5 3 

1m

− 1  d   7     =   5 − 3   e  16   d  1  − 3 1  7    =     e  − 1  − 5 2 16 

(b) 2

=

1m 1m

1  − 5   − 1  − 3 

5 =    3 d=5 e=3 10.

(a)

 5 2 1   5 − (−4)  − 2 1  1  5 2  =  9  − 2 1  − 2  u   8   2 5  v  =  7        u  1  5 2  8    =     v  9  − 2 1  7 

(b)  1

1m 1m

1m 1m

1m 1m

1  54  =   9  − 9 6 =    − 1 u=6 v = −1

1m 1m

MODULE 13 - ANSWERS TOPIC : GRADIENT AND AREA UNDER A GRAPH 1 (a) (b)

20

1

23 − 5 0−6

1 1

−3 atau nyahpecutan 3 atau awapecutan 3 (c)

1 1 × 6( 23 + 5) + 4 × 5 + × 5( 5 + k ) = 139 2 2

2 1

k=9

2(a) (b)

(c)

2 saat

1

8−0 6−0 4 atau setara 3 1 × 8( 2 + 8) 2 1 × 8( 2 + 8) − 4 × 8 2

1 1 1 1 1

8 3 (a)

105 km

1

(b)

0800 a.m

1

(c)

105 – 60 = 45km

1 1

(d)

105 = 42km / j 2.5

1 1

6

6

4

(a)

0 − 20 30 − 25

1 1

− 4 ms −2

(b)

(c)

5s

1

1 1 × 10 × ( v + 20) + × 20 × (15 + 20 ) = 525 2 2 v = 12 ms

2

−1

1 6

. 5

(b)

15

1

(b)

20 − 0 25 − 30

1 1

−4 (c)

1 1 × (u + 20) × 10 + × 5 × 20 = 190 2 2

2

u=8

1 6

6 (a) (b)

20

23 − 5 0−6

−3 atau nyahpecutan 3 atau awapecutan 3 (c)

1 1 × 6( 23 + 5) + 4 × 5 + × 5( 5 + k ) = 139 2 2 k=9

1 1 1 2 1

7

(c)

(b)

(c)

45 20

= 135

1-1

km jam

60

3 9 minit @ jam @ 0.15 jam 20

120 95

= 75.79 km jam

1

2- 1

60 6

MODULE 8: ANSWERS TOPIC : PROBABILIty Answer: 1.

2.

(b)

5 1 = 15 3 5 5 4 4 3 6 = ×  +  ×  +  +   15 14   15 14   15 14  31 = 105

(a)

=

(a)

(b)

3.

(a) (b)

4.

(a) (b)

5.

(a)

(b)

=

17 16 136 × = 26 25 325  9 8   15 14  = ×  +  ×   24 23   24 23  47 = 92 5 4  4 5 5 = ×  +  ×  = 9 8 9 8 9 7 6 5 4 = ×  +  ×   12 11   12 11  31 = 66 5 3 1 = ×  =  15 14  14 5 4 3 2 7 6 = ×  +  ×  +  ×   15 14   15 14   15 14  34 = 105 5 4 = × 9 8 5 = 18  3 2  4 3 = ×  +  ×  7 6 7 6 3 = 7

6.

(a)

(b)

7.

(a)

(b)

8.

(a) (b)

9.

(a)

(b)

10.

(a)

(b)

8 7 × 12 11 14 = 33  3 7  7 3  3 2 = ×  +  ×  +  ×   10 9   10 9   10 9  8 = 15 =

3 2 + 10 9 1 = 15  5 3  3 5 = ×  +  +   10 9   10 9  1 = 3 =

1 12 1 2 = + 12 12 3 = 12 =

1 3 =1-  +  6 4 1 = 12 1 2 3 1   1 1 = ×  +  ×  +  ×   6 5   4 10   12 2  11 = 60 9 8 × 16 15 3 = 10 =

5 4 2 1 = ×  +  ×   16 15   16 15  11 = 120

MODULE 15 - ANSWERS TOPIC : PLAN AND ELEVATION

1.

8 cm

V/W

(a)

P/Q 2 cm

U

T 3 cm

Y/X

1.

S/R

V

(b) (i)

P

3 cm 6 cm

A/F/E

3 cm Y/U

S/T

2 cm 4 cm

C/D 1.

8 cm

B/X/W

R/Q P/V

(b) (ii)

3 cm A

F

5 cm

5 cm S/Y 2 cm

B/C

E

3 cm

R/X

3 cm T/U 5 cm

Q/W/D

2.

K/L

(a)

5 cm

B/A

4 cm

J/I

C/D 4 cm

H/G

2

E/F

P/Q

(b) (i)

J/K

N

C/B 6 cm

2 cm E/D

H/I 2 cm G/L

8 cm

P 2

F/A

5 cm

4 cm

M

N/Q

(b) (ii) 2 cm C/J

4 cm

4 cm

E/H

4 cm

D/I

B/K

4 cm

2 cm F/G

M/A/L

3.

C

(a)

H 3 cm

B

G

4 cm

4 cm

A/D 3.

F/E

(b) (i) C/K/D

4 cm

H/E

6 cm

M/B/A

G/F H/C

3.

1 cm

(b) (ii)

M

L

K

2 cm G/B 6 cm 4 cm

F/A

6 cm

E/D

4.

E

(a)

A

8 cm

F/D 4.

B/C

7 cm

(b) (i)

K/L

6 cm

N/M

4 cm 7 cm E/D

A/C 3 cm

6 cm J/P/G

F 4.

B

7 cm

(b) (ii)

I/H

I/J

7 cm

N/K

A/E 11 cm P

B/F

3 cm

8 cm

H/G 3 cm C/D 4 cm

M/L

5.

(a)

F/E

A/D 2 cm

G

B

5 cm

6 cm

H 5.

C

(b) (i)

L/R

M/N 3 cm G/F

B/S/A

9 cm

6 cm

H/E 5.

6 cm

(b) (ii) L/M

J/C/P/D

7 cm

6 cm

K/Q

R/N 3 cm 1 cm B/G S

A/F

6 cm

1 cm C/H K/J

D/E 6 cm

Q/P 1 cm

F/G 6.

A/H

(a)

4 cm

6 cm

E/M 3 cm D/L 3 cm 6 cm

B/J 6.

C/K

(b) (i)

A/P/B

H/J 3 cm

G/M

F/E

3 cm

10 cm

D/Q/C 6.

L/K

(b) (ii)

F

G 1 cm H

A

3 cm D/E

L/M Q/P

2 cm 3 cm

C/B

3 cm

10 cm

K/J

MODULE 16 - ANSWERS TOPIC: EARTH AS A SPHERE 1.

(a)

110 °W

(b)(i)

∠ HOK =

2m

=

4800 60

1m

80°

1m

Latitude of K = 80 – 50 = 30°N

1m

(ii) Distance F to H = ( 70 + 45 ) 60 cos 50° = 4435.23 n.m

2m 1m

(iii) Time = 4435.23 + 48003m

680

= 13.58 hrs

2.

1m

(a)

60°S

2m

(b)

Point H Point L L ( 60°N, 160°E )

1m 1m 1m

(c)

Distance H to south pole = 30 X 60 = 1800 n.m.

(d)

1m 1m

(i)

Distance = 450 x 8 1m = 3600 n.m. 1m

(ii)

∠ GOP =

3600 60 cos 60°

2m

= 120° Longitude = 120° - 20° = 100°E

1m

3.

(a)

Longitude of R = 95°E

2m

(b)

Distance PR = 40 x 60 = 2400 n.m.

1m 1m

(c)

Distance PQ = ( 85 – 30 ) 60 cos 70° = 1128.67 n.m.

3m 1m

(d)

Time =

160 × 60 600

3m

= 16 hrs

4.

1m

(a)

Longitude of S = 100° E

2m

(b)

∠ ROT = 3600

1m

60

= 60°

(c)

(e)

1m

Latitude of T = 60 – 40 = 20°S

1m 1m

Distance R to S = 100 x 60 = 6000 n.m.

1m 1m

Average speed = 180 × 60 × cos 40 + 3600

3m

20 8273.30 + 3600 = 20 = 593.66 n.m. 5.

1m

(a)

θ =170°E

2m

(b)

Point G Point H

2m 2m

(c)

Distance G to H = 50 x 60 = 3000 n.m

(d)

2m 1m

Time =

3000 375

2m

=

8 hrs

1m

6.

(a)

(i) Longitude of R = 140°E

2m

(ii) Distance PR via S : Distance PR via N 80x 60 : 280 x 60 2m 2 : 7 1m (iii) Distance P to Q = ( 40 + 90 ) 60 x cos 50° = 5013.74 n.m

(b)

∠ QOT =

3900 60

= 65° Latitude of T = 65º – 50º = 15°N

3m 1m

1m 1m 1m

Related Documents

Answers
April 2020 22
Answers
April 2020 24
Answers
November 2019 52
Answers
December 2019 28
Answers
July 2020 12
Answers
June 2020 11

More Documents from ""

Answers
October 2019 39
August 2019 26
Penyelesaian Masalah
August 2019 41
Seven Vetrumai
August 2019 36
August 2019 26
Sijil
August 2019 32