MODULE 1- ANSWERS TOPIC: SIMULTENOUS LINEAR EQUATIONS 1. Calculate the values of m and n that satisfy the simultaneous linear equations: 4m + n = 2 and 2m – 3n = 8 [ 4 marks] 12m + 3n = 6 2m – 3n = 8 14m = 14 m=1
1 1 1
n = -2
1
2. Calculate the values of m and n that satisfy the simultaneous linear equations:
1 m - 3n = 10 2 5m + 6n = -8 m - 6n = 20 5m + 6n = -8 6m = 12 m=2 n =-2
[ 4 marks] 1 1 1 1
3. Calculate the values of m and n that satisfy the simultaneous linear equations: 2m – n = 7 m – 2n = 5 [ 4 marks] 2m – n = 7 2m – 4n = 10 3n = -3 n = -1 m =3
1 1 1 1
4. Calculate the values of p and q that satisfy the simultaneous linear equations: p + 2q = 6
3 p – q = -7 2 [ 4 marks] p + 2q = 6 3p – 2q = -14 4p= -8 p = -2 q =4
1 1 1 1
5. Calculate the values of m and n that satisfy the simultaneous linear equations: 4m - 3n = 7 and m + 6n = 4 [ 4 marks] 4m - 3n = 7 4m + 24n = 16 -27n = -9
1 1
1 3
1
m =2
1
n=
6. Calculate the values of p and q that satisfy the simultaneous linear equations: 2p - 3q = 13 4p + q = 5 [ 4 marks] 4p - 6q = 26 4p + q = 5 -7q = 21 q = -3
1
p =2
1
1 1
7. Calculate the values of p and q that satisfy the simultaneous linear equations:
1 p – 2q = 13 2 3p + 4q = -2
[ 4 marks]
p – 4q = 26 3p + 4q = -2 4p = 24 p=6
1
q = -5
1
1 1
8. Calculate the values of k and w that satisfy the simultaneous linear equations: 2k – 3w = 10 and 4k + w = -1 [ 4 marks] 4k – 6w = 20 4k + w = -1 -7w = 21 w = -3 k =
1 2
1 1 1 1
9. Calculate the values of m and n that satisfy the simultaneous linear equations: 2m - 5n = -12 and 3m + n = -1 [ 4 marks] 2m - 5n = -12 15m + 5n = -5 17m = 17 m = -1 n =2
1 1 1 1
10. Calculate the values of x and y that satisfy the simultaneous linear equations: x – 3y = 5 3x – y = 3 [ 4 marks] 3x – 9y = 15 3x – y = 3 -8y = 12
3 y=2 x=
1 2
1 1 1
1
11. Calculate the values of s and t that satisfy the simultaneous linear equations: 8s + 3t = 12 6s – 9t = 24 [ 4 marks] 24s + 9t = 36 6s – 9t = 24 30s = 60 s=2 t=-
4 3
1 1 1 1
12. Calculate the values of m and n that satisfy the simultaneous linear equations: m - 3n = 6 and 2m – n = 7 [ 4 marks] 2m - 6n = 12 2m - n = 7 -5n = 5 n = -1
1 1 1
m =3
1
13. Calculate the values of k and h that satisfy the simultaneous linear equations: 4k - 3h = 10 2k – 5h = 12 [ 4 marks] 4k - 3h = 10 4k – 10h = 24 -7h = -14 h=2 k=4
1 1 1 1
14. Calculate the values of m and n that satisfy the simultaneous linear equations: 2m + 3n = 9
1 m–n=2 3
[ 4 marks]
2m + 3n = 9 m – 3n = 6 3m = 15 m= 5 n =
1 1 1
1 3
1
15. Calculate the values of m and n that satisfy the simultaneous linear equations: 2m – n = 2 4m – 3n = 5 [ 4 marks] 6m – 3n = 6 4m – 3n = 5 2m = 1
1 1
1 2
1
n =1
1
m=
MODULE 2 – ANSWERS TOPIC : SOLID GEOMETRY
1. Volume of solid = Volume of cuboid + volume of half-cylinder 1 22 = 14 x 6 x 4 + x x 32 x 14 2 7 336 cm3
=
≈
+
197.92cm3
= 533.92 cm3 534 cm3
2. Volume of remaining solid = volume of big pyramid = = = =
1 ( x 152 x 18 ) 3 1 ( x 225 x 18 ) 3
-
(1350 - 48) 1302 cm3
3. Volume of solid = Volume of cone + Volume of hemisphere
1 2 1 4 πr h + × × πr 3 3 2 3 1 22 21 2 1 4 22 21 3 4042.5 = × × × h + × × × 3 7 2 2 3 7 2 =
4042.5 = 115.5 h + 2425.5 h = 14 cm 4. Volume of pyramid = volume of solid – volume of cuboid = 1100 cm3 − (10 ×10 × 8) = 1100 - 800 = 300 cm3 Volume of pyramid =
1 x Area of base x h 3
=
1 x (10 x 10) x h 3
=
100 xh 3
100 h = 300 3
volume of small pyramid
1 x 62 x 4 ) 3 1 ( x 36 x 4 ) 3 (
= 300 x
3 100
= 9 cm 5. Volume of cylinder = πr2h =
22 x 3.5 2 x 4 7
= 154 cm3 Volume of cone
Volume of solid 154 +
=
1 2 πr h 3
=
1 22 x x 3.5 2 x t 3 7
=
269.5 t cm3 21
= 231 cm3
269.5 t = 231 21 269.5 t = 1617 t=
1617 269.5
= 6 cm
6. Volume of remaining solid = Volume of cylinder – volume of cone = πr2h -
=[
1 2 πr h 3
22 1 22 x 7 x 7 x 20] – [ x x 7 x 7 x 9] 7 3 7
= 3080 – 462 = 2618 cm3
7. Volume of solid = Volume of half – cylinder + volume of prism Volume of half – cylinder =
1 x πr2h 2
Volume of prism = area of base x height Volume of solid = Volume of half – cylinder + volume of prism =[
1 22 14 2 1 x x( ) x 6] + [ x 14 x 8 x 6] 2 7 2 2
= 462 + 336 = 798 cm2
MODULE 3 - ANSWERS TOPIC: CIRCLE, AREA AND PERIMETER 1 (a)
90 22 120 22 × 2 × ×12 @ × 2× ×7 360 7 360 7 90 22 120 22 × 2 × × 12 + × 2 × × 7 + 12 + 5 360 7 360 7 57.53
K1 K1 N1
(b)
90 22 120 22 2 × × 12 2 @ × ×7 360 7 360 7
K1
90 22 120 22 1 × × 12 2 + × × 7 2 − × 7 × 12 360 7 360 7 2 122.48
K1 N1
2 (a)
∠FEC = 135
K2
135 22 × 2× ×7 360 7 16.5
K1 N1
(b)
135 22 × ×7 ×7 360 7
K1
1 Shaded area = (21 × 14) − × 14 × 14 − L3 2 = 138.25
K1
L3 =
N1 3 a)
b)
270 22 90 22 × × 2 × 21 atau × ×7×2 360 7 360 7
K1
270 22 90 22 × × 2 × 21 + × × 7 × 2 + 14 + 14 360 7 360 7
K1
= 138
N1
270 22 × × 21 × 21 atau 360 7
2×
90 22 × ×7×7 360 7
K1
270 22 90 22 × × 21 × 21 - 2 × × ×7×7 360 7 360 7
K1
= 962.5 cm2
N1
4 a)
60 22 × 2 × × 28 360 7
K1
60 22 × 2 × × 28 + 14 + 14 + 14 + 14 + 28 360 7 1 113 atau 113⋅33 3 b)
60 22 60 22 × × 28 × 28 atau × ×14 ×14 360 7 360 7 60 22 60 22 × × 28 × 28 − × ×14 ×14 + 14 × 14 360 7 360 7 504
K1 N1
K1 K1 N1
5 a)
120 22 240 22 × × 14 × 14 atau × ×7×7 360 7 360 7 120 22 240 22 × × 14 × 14 + × ×7×7 360 7 360 7 308
b)
K1 K1 N1
120 22 240 22 × 2 × × 14 atau × 2× × 7 360 7 360 7 120 22 240 22 × 2 × × 14 + × 2× × 7 + 7 + 7 360 7 360 7 2 72 3
K1 K1 N1
6 (a)
45 22 ×2× × 14 360 7
K1
22 45 ×2× × 14 + 14 + 14 + 14 + 14 360 7
K1
70
(b)
2 3
45 22 × × 14 × 14 360 7
N1 or
90 22 × × 14 × 14 360 7
K1
90 22 45 22 × × 14 × 14 + 2 14 × 14 − × × 14 × 14 360 7 360 7
K1
161
N1
7 (i)
(ii)
(iii)
210 22 × 2 × × 35 360 7 1 128 @ 128.33 3
K1 N1
210 22 210 22 × 2× ×7 : × 2 × × 35 360 7 360 7
K1
1: 5
N1
210 22 210 22 × × 35 2 or × × 72 360 7 360 7 210 22 210 22 × × 35 2 − × × 72 360 7 360 7 2156
K1 K1 N1
8 (a)
45 22 ×2× × 14 360 7
or
14 2 + 14 2 − 14
11 + 14 + 14 + 14 + 5.799 58.80 (2 d. p) (b)
45 22 × × 14 x 14 360 7 45 22 1 90 22 × 14 × 14 − × ×7 × 7 + × × 14 × 14 2 360 7 360 7
90 22 × ×7 × 7 360 7
or
136.5
K1 K1 N1 K1 K1 N1
9 (a)
(b)
90 22 60 22 × × 14 × 14 and A2 = × ×7×7 360 7 360 7 A1 – A2 1 128 3 90 22 180 22 × 2 × × 14 or P2 = ×2× ×7 P1 = 360 7 360 7 A1 =
P1 + P2 + 14 58
K1 K1 N1 K1 K1 N1
10 (a)
AB =
14 2 + 14 2 = 392 = 19.80 150 22 60 22 90 22 × 2 × × 14 atau × 2 × × 14 atau × 2 × × 14 360 7 360 7 360 7
Lengkok AC + 14 + 14 + 19.80 atau Lengkok AB + lengkok BC + 14 + 14 + 19.80 84.47 (b)
150 22 1 × × 14 2 atau × 14 × 14 360 7 2 150 22 1 × × 14 2 - × 14 × 14 atau 360 7 2 770 – 98 3 2 476 158 atau atau 158.67 3 3
K1 K1 K1 N1 K1 K1
N1
MODULE 4 - ANSWERS TOPIC: QUADRATIC EXPRESSIONS AND EQUATIONS. Answer:
(a)
3x(x− 1) 2
=x+6
3x2 –x – 12 = 0 ………..1 (3x+ 4)(x – 3) =0 ……….1
4 3
x=
x= 3 …………….1,1
(b) (w – 1)2 – 32 = 0 w2– 2w – 8= 0 …………..1 (w+2)(w–4)=0 …………..1 w=4
w= –2 ……………1,1
(c) 2a2 = 3(1 + a) + 2 2a2– 3a – 5 = 0 …………1 (a+1)(2a – 5) = 0………..1 a= –1 x =
5 …………..1,1 2
2
(d)
5p + 3p 1+ p
=4
5p2– p – 4 = 0 …………1 (5p– 4)(p+1) = 0…….....1 p=
4 5
p = – 1………..1,1
2
(e)
3t
2
= 7t – 4
3t2+ 14t – 8 = 0 ………..1 (3t – 2)(t – 4)=0 ………..1 t=
2 3
t = 4 …………1,1
(f) x2 – 2 =
11x− 5 4
4x2– 11x – 5 = 0 ………1 (4x+1)(x - 3) = 0 ………1
1 4
x=
(g)
x=3
2 m −6 5
=m
m2– 5m – 6 = 0 ………..1 (m - 6)(m + 1) = 0………1 m=6
m= -1 …………1,1
(h) (2x + 1)(x – 2)=7 2x2– 3x – 9 = 0 …………1 (x+3)(x - 3) = 0 …………1 x = -3 x = 3 ……………. 1,1 (i) p + 2 =
p+ 2 p− 3
p2 – 2p – 8 = 0 …………1 (p+2)(p– 4)=0 ………….1 p= –2
p = 4……………1,1
(j) 3x(2x – 1)+ 8x = 1 6x2+ 5x – 1 = 0 …………1 (x+1)(6x - 1) = 0 ………..1 x = -1 x =
1 …………..1,1 6
2 (k) 3y −2 = y
5
3y2 – 5y – 2 = 0………………1 (y+1)(y– 2)=0 ………………..1 y= -1
y = 2 …………………1,1
(l) (r –1)(r + 3) = 5(r + 3) r2 – 3yr– 18 = 0 ……………..1
(r+6)(r– 3)=0 ………………..1 y= -6
y = 3 ……………….1,1
(m) 7p – 2p2 = 2(1 + p) 2p2– 5p + 2 = 0 …………..1 (2p– 1)(2p+5) = 0 ………..1
1 2
p=
−5 …………1,1 2
p=
x 2 + 25 2
(n) 5x =
x2 – 10x + 25 = 0 …………1 (x-5)(x-5)=0……………….1 x=5 ………………………..1 2
(o)
p +5 6
=p
p2– 6p + 5 = 0 ………….1 (p– 1)(p+5) = 0 …………..1 p=1
p = -5……………..1,1
(p) 4(5x – 1) =
− 3(5x− 1) x
20x2– 11x -3 = 0 ……….1 (5x+ 1)(4x-3) = 0 ………..1 x=-
(q) d =
1 5
x=
1 ………….1,1 4
7 − 6d d
d2+ 6d -7 = 0 ………..1 (d– 1)(d+7) = 0 ………1 x=1 (r)
x = -7 ……….1,1
2 2m + 5m m+ 1
=2
2m2+ 3m -2 = 0 ……….1
(2m– 1)(m+1) = 0………1 x = -2
(s)
x=
3m(m− 1) m+ 1
1 ………….1,1 2
=2
3m2- 5m -2 = 0 …………..1 (3m+1)(m-2) = 0 ………….1 x=2
x=-
1 …………1,1 3
(t) y2 + 9y – 1 = 3(y – 2) y2+ 6y+5 = 0 ……………1 (y+1)(y+5) = 0 ………….1 x = -1
x = -5 ………….1,1
MODULE 5 – ANSWERS TOPIC: SETS 1 (a)
(b)
2 (a)
(b)
ξ
ξ
1
PQ
R
PQ
R
J ∩ L′
2
1 J
K
( K ∪ L) ∩ J ′ J
2
K
3
L
3 (a)
1
Q R
P
(b)
R
P
2 3
Q
4 (a)
5
1
(b)
30 –(5 + 6 + 2 + 1 ) 16
1 1
(c)
9
1 4
5 (a) (b)
{10,11,12,13 }
1
A = { 9,12,15 } B = { 7,9,11,13,15} A ∪ B = { 7,9,11,12,13,15}
1 1
N(AUB)=6
6 (a)
3
2
ξ
G
H
24 12
(b)
7
6
8
1
24
(a)
{4 , 8} Note:
(b)
6
3
1 Accept without bracket. 2
3
8
1
ξ P
R
3
Q
P Q
2
R
1.
(c)
MODULE 6 TOPIC : MATHEMATICAL REASONING (i) some 1m (ii) all 1m If x > 4 then x > 7 1m False. 1m P∩Q≠P 1m
(a) (b) (c)
Non-statement 1m 3 is a factor of 24 2m 3(2n) – n and n = 1,2,3,……
(a)
(i) True 1m (ii) False 1m The determinant of matrix a = 0 If A ⊂ B then A ∩ B = A If A ∩ B = 0 then A ⊂ B
(a) (b)
2.
3.
(b) (c)
4.
(a) (b) (c)
5.
(a) (b) (c)
6.
(a) (b) (c)
7.
(a)
(b) (c) 8.
9.
(a) (b)
True If p3= 8 then p = 2 If p = 2 then p3 = 8 If x = 9 then x = 3
2m
1m 1m 1m
1m 1m 1m 2m
(i) True 1m (ii) False 1m Premise 1 : If p = 7, then 6 x p = 42 1m 4n2 + 7, n = 1,2,3,4…. 2m (i) Statement. 1m (ii) Non-statement 1m Some 1m Premise 2 : p is a positive integer (i) False (ii) False t≠0 If x ± 3, then x2 = 9 True
2m
1m 1m 1m 1m 1m
(c)
Statement 1m If x is an even number then x can be divided by 2. If x can be divided by 2 then x is an even number. n2 + 2 , n = 0, 1, 2,……… 2m
(a)
(i)
True
1m
1m 1m
(ii) False 1m 2 If n = 2, then x + x is a quadratic expressions. If 1 – m > 2 then m < -1 If m < -1 then 1 – m > 2
(b) (c) 10.
(a) (b)
1m 1m 1m
It is a statement because it has a truth value which is false. 2m (i) True 1m (ii) False 1m y>3 1m
(c)
MODULE 7- ANSWERS TOPIC: THE STRAIGHT LINES
12 − 2 3 − (−2) 10 = 2
1. a) m =
b) y = 2x + c Point (5, 5),
= 2
5 = 2(5) + c
= 10 + c c = -5 y = 2x - 5 Equation of SRT is y = 2x
–5 c) x – intercept = - ﴾ =
5 2 2 − (−5) 4 − ( −1)
2. a) Gradient = =
−5 ﴿ 2
b) y – intercept = 5
7 5
Point E = (-5, -2), gradient =
5 7/5 − 25 = 7
x –intercept = -
7 5
y= mx + c -2 = mx + c -2 =
7 (−5) + c 5
c=5 y =
7 x+5 5
2− p 6−0 2− p = 6
3. a) The gradient = -3 -18
= 2–p p= 20 Coordinates of point T = (0 , 20)
b) y = mx + c m = -3, c = 20 y = -3x + 20
1 x + 18 3 1 x+9 y= 6
c) 2y =
The value of p = 9, gradient =
6−3 −1− 4 3 = 5
4. a) m =
1 6 b) m = -3 (4 – q) -12 + 3q
3 5
3 5
3−0 4−q
=
= 3(5) = 15 3q = 27 q = 9
c) D = (-1 , 0) , F = (4 , 3)
3−0 4 − (−1)
m =
3 5
=
0 − (−8) 0 − (−4) 8 = 4
5. a) Gradient =
= 6 = 6 = c= y =
b) x-intercept = -
10 2
= -5
2
y = mx + c 2(-2) + c -4 + c 10 2x + 10
3−0 5−0 3 = 5 3 = 5
5. a) Gradient =
z−4 10 5z - 20
= 30
5z
= 50
b) gradient =
3 , E = (-2 , 4) 5 y
= mx + c
4
=
-
c
=
26 5
6 + c 5
Equation of line EF is y =
26 3 x + 5 5
z
= 10
c) x – intercept of line EF = -
26 5 3 5
= −
26 3 b) x-intercept of HIJ = − (
7. a) F = (0,4) , G = (-4 , 0)
4−0 0 − (−4) 4 = 4
Gradient
=
=
m=
9 4
y = 5x - 3
9 ) 4
- 0
Q = (-5 ,
9 3 ), gradient M = 4 4
y = mx + c
9 4 3
c=6
9 1 x 4 3 3 = 4
=
c) R = (0, 6) , S = (6, 0)
0−6 6−0 −6 = 6
m=
= -1 9. a) i) Equation of LK is x = 7 ii)
b)
9 3 = (−5) + c 4 4 15 9 + c = 4 4
-5 – (- 8) =
3 5
c) y = mx + c
= 1
8. a) P = (-8, 0) , Q = (-5 ,
−3 ) 5
y = mx + c 8 = 2(-2) + c 8 = -4 + c 12 = c Equation of EFG is y = 2x + 12
y-intercept = 6
8 − (−4) −2−7 12 = − 9 4 − = 3
b) m =
y = mx + c 8= −
4 (−2) + c 3
16 =c 3 4 16 y= − x + 3 3 Coordinates of H = (0,
16 ), 3
Coordinates of J is (x, 0) ,
−
y= −
4 16 x+ 3 3
4 16 x+ = 0 3 3
-4x + 16 = 0 -4x = -16 X = 4 Therefore coordinates of J = (4, 0) 10 a). 3y – 6x = 3 -----------------(1) 4x = y – 7 y = 4x + 7 _________(2) Substitute (2) into (1) 3(4x + 7) - 6x = 3 12x + 21 - 6x = 3 6x = 3 – 21 6x = -18 x = -3 y = 4(-3) + 7 = -12 + 7 = -5 Point of intersection is (-3, -5)
2 x + 3 ---------------------(1) 3 4 y = x + 1 ---------------------(2) 3
b) y =
(1) to (2)
2 4 x + 3 = x +1 3 3 4 2 x − x = 3 −1 3 3
2 x=2 3 x=3 y =
2 (3) + 3 3
=2+ 3 =5 Point of intersection is (3, 5) MODULE 8 – ANSWERS TOPIC: STATISTICS 1) a) Body mass(kg) 15-19
Midpoint 17
Lower boundary 14.5
Upper boundary 19.5
Frequency 2
20-24
22
19.5
24.5
4
25-29
27
24.5
29.5
9
30-34
32
29.5
34.5
13
35-39
37
34.5
39.5
9
40-44
42
39.5
44.5
3
b)
i) Modal class 30-34 kg ii)9+3=12 iii)Mean= (17x2)+(22x4)+(27x9)+(32x13)+(37x9)+(42x3) 40 = 1240/40 = 31 kg c) graph d) graph 2) a) Marks 11-15
freq 1
Cumulative freq 1
16-20
3
4
21-25
6
10
26-30
10
20
31-35
11
31
36-40
7
38
41-45
2
40
b) c) 3) a)
graph i) upper quartile ¾ x 40 = 30 = 35 i) 30 students scored less than 35
Age 40-44 45-49 50-54 55-59 60-64 b) c) c)
Frequency 6 12 18 9 5
Midpoint 42 47 52 57 62
Mean age = 51.5 The modal age is 50-54 years old graph
4) a) Donation (RM) 10-19
Frequency 5
Cumulative frequency 5
20-29
8
13
30-39
11
24
40-49
13
37
50-59
3
40
c)
i) ii)
RM43.50 There are 10 persons who donated RM43,50 or more
b) graph 5) a)
b)
Mass(kg) 30-34
Frequency 2
Midpoint 32
35-39
10
37
40-44
12
42
45-49
8
47
50-54
5
52
55-59
3
57
i) ii)
40-44 kg (32x2)+(37x10)+(42x12)+(47x8)+(52x5)+(57x3) 40 = 1745/40 = 43.625 kg
c) graph
6) a) Pocket money(RM) 31-35
Frequency 3
Midpoint 33
36-40
5
38
41-45
6
43
46-50
9
48
51-55
8
53
56-60
6
58
61-65
3
63
b) i) 46-50 ii) mean = (33x3)+(38x5)+(43x6)+(48x9)+(53x8)+(58x6)+(63x3) 40 = 1940/40 = 48.5 c) graph
MODULE 9 - ANSWERS TOPIC: LINES AND PLANES IN 3-DIMENSIONS 1
Identify ∠PUQ @ ∠SCR tan ∠PUQ =
9 12
∠PUQ = 360 52’ @ 36.870
2
3
PRQ 12 tan PRQ 5 PRQ = 67.380 or 670 22’
Identify
Identify ∠VST tan ∠VST =
5 12
22.60 or 220 37’
4
Identify ∠VTU tan ∠VTU =
6 4
∠VTU = 56⋅31° or 56°18’ 5
Identify ∠ GSJ tan ∠ GSJ =
6 8
36.87° or 36° 52’ 6
Identify ∠PWS tan ∠PWS =
13 10 2 − 6 2
∠PWS = 58⋅39° or 58⋅4° or 58°24’ 7
Identify ∠ TRM Tan ∠ TRM =
5 82 + 62
∠ TRM = 26.57° or 8
26 ° 34 ′
Identify ∠PTQ or ∠QTP tan ∠PTQ =
9 12
∠PTQ = 36052’ or 36.90
9
a) b)
10 Identify ∠EPF 7 10
Tan ∠EPF =
10
c)
340 59’ ∠UQV
a)
13 cm
b)
Identify ∠SMW tan ∠SMW =
7 13
28.30 or 28018’
c)
∠RUQ or ∠QUR
MODULE 10 – ANSWERS TOPIC: GRAPHS OF FUNCTIONS 1.
a) x=-2 y=15
x=0.5 y= -5
x=3 y=0
b) graph
40
35
30
25
y(x) = 2⋅x2-5⋅x-3 20
20.5
15
y(x) = 3 ⋅x+4 10
5
-10
-5
-2.4
5
-0.75 -5
-10
c) i) ii)
x=-2.4 y= 20.5 when 2x2 – 5x – 3 = 0 y=0 Then the values of x is -0.5 and 3
b) y=2x2-5x-3 0=2x2-8x-7 (-) ----------------------Y= 3x + 4 X Y
0 4
3 13
From the graph x= -0.75 and 4.75
4.75
10
2.
a)x=2.5 y=-2.25
x=4 y=0
b)graph 2 c)
i) ii)
y=1.75 x=7.4
b) straight line y=2x+1 x=0.45 and 6.55 3.
a) x=-1 y=-5
x=2.5 y=2
b)graph 16
C 14
12
10
y(x) = 3⋅x
8
6
4
2
A -5
-4
-3
-2
-1
B
1 -2
y(x) =
5 x
-4
-6
-8
-10
-12
-14
c)
i) ii)
x=1.8 y= 2.8 y=-6 x=-0.8
b) The graph is y=3x X Y
0 2 0 6
2
3
4
5
The values of x= -1.3 and 1.3
4.
a)
x=-2 y=-1
x=2.5 y=0.8
b) graph c)
i) ii)
y=-1.3 x=1.7
b) The straight line is y=
3 x–2 4
The values of x = -0.75 and 3.45 5.
a) x=-3 y=30 b) graph
x=2 y=0 45
40
35
34
30
y=x^3-1 3x+18 25
20
y=-2x+20 15
10
5
3.85
-3.2 -6
c)
i)
-0.25
-4
x=-1.5 y=34 ii) y=25
-2
-5
x=3.85
b) y=x3-13x+18 0=x3-11x-2 (-) -------------------------Y= -2x+20 X 0 4 Y 20 12
2
3.35 4
6
X= -3.2, -0.25 and 3.35
6.
a)
x=-2 y=15
x=3 y=-5
b) graph 6 c)
i) ii)
y=10.75 x=-1.5
b)
y=-12x-5 x=-3.6, 0 and 2.75
JAWAPAN MODUL11 TOPIC : TRANSFORMATIONS 1 (a) (i) (ii)(a) (b) (b)(i)(a) (b) (ii)
2 (a)(i) (ii) (b)(i)(a) (b) (ii)
3 (a)(i) (ii) (b)(i)(a) (b) (ii)
4 (a)(i) (ii) (b)(i)(a) (b) (ii)
5 (a)(i) (ii) (b)(i)(a)
(0, -1) (-3, -4) (-1, -2)
1 1 1
M is a rotation of 90o clockwise about point (1,3) N is an enlargement with centre at (2,0) and a scale factor of 2 Area EFGH = k2(Area ABCD) = 22(25) = 100 unit2
3 3
(4, -2) (1, 0)
1 2
U is a rotation of 90o clockwise about the point (1, 1) V is an enlargement with centre at (4, 0) and scale factor of 2 Area OFJK = k2(Area ABCD) 120 + Area ABCD = 22(Area ABCD) Area ABCD = 40 unit2
3 3
(12, 7) (6, 7)
1 2
V is a rotation of 90o clockwise about point (7, 0) W is an enlargement with centre at (7, 3) and scale factor of 3 Area EFG = k2(Area PQR) 72 = 32(Area PQR) Area PQR = 8 unit2
3 3
(-3, 6) (6, 11)
1 2
− 8 3
U is a translation
3
3
3
1
V is an enlargement with centre at (-3, 8) and scale factor of 2. Area WXYS = k2(Area RSTU) 150 + RSTU = 22(Area RSTU) Area RSTU = 50 cm2
3
(-3, 0) (4, 4)
2 2
S is a reflection in the line x =1
2
4
Q is an enlargement with centre at (-11, 2) and scale factor of 2. Area ABCD + Area of shaded region= k2(Area ABCD) 64 + Area of shaded region = 22(64) Area of shaded region = (256 – 64) cm2 Area of the shaded region = 192 cm2
(ii)
MODULE 12 - ANSWERS TOPIC : MATRICES 1.
m= −
(a)
1 2
1m
n =2 (b) 3
5
1m
− 2 x 8 = − 4 y 13 x 1 − 4 = y 2 − 5 x=3 y= −
2.
(a)
2
1 2
1m 1m
3 p = 4 q
1 − 8
p=2 q = -3 (a)
(b)
5 3
A=
1m
1m
p 1 4 − 3 1 = q 14 − 2 5 − 8
3.
2 8 3 13
1m
n =4 m=5
(b) 5
1m
1m 1m 1m 1m
− 2 − 1
2m
−1 2 r − 4 = − 3 5 s − 9
1m
r 1 5 − 2 − 4 = s 1 3 − 1 − 9
1m
3 3
4.
(a)
5.
(a)
(b)
s = -3
1m 1m
1 8 − 5 2 − 6 4
1m
4 5 m 7 = 6 8 n 10
1m
m 1 8 − 5 7 = n 2 − 6 4 10
1m
m=3
1m
n = -1
1m
− 5 3 1m 1 − 20 − (−24) 8 4 1 − 5 3 1m = 4 8 4
P =
4 − 3 h − 7 = 8 − 5 k − 11 h 1 − 5 3 − 7 = k 8 4 − 11 2 =
6.
1m
1 8 − 5 32 − 30 − 6 4
P=
=
(b)
r = -2
1 2 2 − 100
1m 1m
h=1 k = -50
1m 1m
(a)
k = -12
1m
(b)
(i)
h = 26
1m
x 1 8 6 − 4 = y 26 5 7 1 1 − 26 = 26 − 13
(ii)
1m 1m
x = -1 y= − 7.
(a)
1m
1 2
- 4 – 5k = 0
1m 1m
5k = -4 k= − (b)
8.
4 5
1m
2 5 x 13 = 1 − 2 y − 7
1m
x 1 − 2 − 5 13 = − 9 − 1 2 − 7 y
1m
x = -1 y=3
1m 1m
1 0 0 1
(a)
M=
2m
(b)
x 1 3 − 4 6 = y 6 − 4 − 1 2 5
1m
1 3 − 4 6 2 − 1 2 5 1 − 2 = 2 4 =
1m
x = -1 y=2
9.
(a)
1 − 2 1 − 6 + 5 − 5 3
1m 1m
1m
=
1 − 2 1 − 1 − 5 3
1m
− 1 d 7 = 5 − 3 e 16 d 1 − 3 1 7 = e − 1 − 5 2 16
(b) 2
=
1m 1m
1 − 5 − 1 − 3
5 = 3 d=5 e=3 10.
(a)
5 2 1 5 − (−4) − 2 1 1 5 2 = 9 − 2 1 − 2 u 8 2 5 v = 7 u 1 5 2 8 = v 9 − 2 1 7
(b) 1
1m 1m
1m 1m
1m 1m
1 54 = 9 − 9 6 = − 1 u=6 v = −1
1m 1m
MODULE 13 - ANSWERS TOPIC : GRADIENT AND AREA UNDER A GRAPH 1 (a) (b)
20
1
23 − 5 0−6
1 1
−3 atau nyahpecutan 3 atau awapecutan 3 (c)
1 1 × 6( 23 + 5) + 4 × 5 + × 5( 5 + k ) = 139 2 2
2 1
k=9
2(a) (b)
(c)
2 saat
1
8−0 6−0 4 atau setara 3 1 × 8( 2 + 8) 2 1 × 8( 2 + 8) − 4 × 8 2
1 1 1 1 1
8 3 (a)
105 km
1
(b)
0800 a.m
1
(c)
105 – 60 = 45km
1 1
(d)
105 = 42km / j 2.5
1 1
6
6
4
(a)
0 − 20 30 − 25
1 1
− 4 ms −2
(b)
(c)
5s
1
1 1 × 10 × ( v + 20) + × 20 × (15 + 20 ) = 525 2 2 v = 12 ms
2
−1
1 6
. 5
(b)
15
1
(b)
20 − 0 25 − 30
1 1
−4 (c)
1 1 × (u + 20) × 10 + × 5 × 20 = 190 2 2
2
u=8
1 6
6 (a) (b)
20
23 − 5 0−6
−3 atau nyahpecutan 3 atau awapecutan 3 (c)
1 1 × 6( 23 + 5) + 4 × 5 + × 5( 5 + k ) = 139 2 2 k=9
1 1 1 2 1
7
(c)
(b)
(c)
45 20
= 135
1-1
km jam
60
3 9 minit @ jam @ 0.15 jam 20
120 95
= 75.79 km jam
1
2- 1
60 6
MODULE 8: ANSWERS TOPIC : PROBABILIty Answer: 1.
2.
(b)
5 1 = 15 3 5 5 4 4 3 6 = × + × + + 15 14 15 14 15 14 31 = 105
(a)
=
(a)
(b)
3.
(a) (b)
4.
(a) (b)
5.
(a)
(b)
=
17 16 136 × = 26 25 325 9 8 15 14 = × + × 24 23 24 23 47 = 92 5 4 4 5 5 = × + × = 9 8 9 8 9 7 6 5 4 = × + × 12 11 12 11 31 = 66 5 3 1 = × = 15 14 14 5 4 3 2 7 6 = × + × + × 15 14 15 14 15 14 34 = 105 5 4 = × 9 8 5 = 18 3 2 4 3 = × + × 7 6 7 6 3 = 7
6.
(a)
(b)
7.
(a)
(b)
8.
(a) (b)
9.
(a)
(b)
10.
(a)
(b)
8 7 × 12 11 14 = 33 3 7 7 3 3 2 = × + × + × 10 9 10 9 10 9 8 = 15 =
3 2 + 10 9 1 = 15 5 3 3 5 = × + + 10 9 10 9 1 = 3 =
1 12 1 2 = + 12 12 3 = 12 =
1 3 =1- + 6 4 1 = 12 1 2 3 1 1 1 = × + × + × 6 5 4 10 12 2 11 = 60 9 8 × 16 15 3 = 10 =
5 4 2 1 = × + × 16 15 16 15 11 = 120
MODULE 15 - ANSWERS TOPIC : PLAN AND ELEVATION
1.
8 cm
V/W
(a)
P/Q 2 cm
U
T 3 cm
Y/X
1.
S/R
V
(b) (i)
P
3 cm 6 cm
A/F/E
3 cm Y/U
S/T
2 cm 4 cm
C/D 1.
8 cm
B/X/W
R/Q P/V
(b) (ii)
3 cm A
F
5 cm
5 cm S/Y 2 cm
B/C
E
3 cm
R/X
3 cm T/U 5 cm
Q/W/D
2.
K/L
(a)
5 cm
B/A
4 cm
J/I
C/D 4 cm
H/G
2
E/F
P/Q
(b) (i)
J/K
N
C/B 6 cm
2 cm E/D
H/I 2 cm G/L
8 cm
P 2
F/A
5 cm
4 cm
M
N/Q
(b) (ii) 2 cm C/J
4 cm
4 cm
E/H
4 cm
D/I
B/K
4 cm
2 cm F/G
M/A/L
3.
C
(a)
H 3 cm
B
G
4 cm
4 cm
A/D 3.
F/E
(b) (i) C/K/D
4 cm
H/E
6 cm
M/B/A
G/F H/C
3.
1 cm
(b) (ii)
M
L
K
2 cm G/B 6 cm 4 cm
F/A
6 cm
E/D
4.
E
(a)
A
8 cm
F/D 4.
B/C
7 cm
(b) (i)
K/L
6 cm
N/M
4 cm 7 cm E/D
A/C 3 cm
6 cm J/P/G
F 4.
B
7 cm
(b) (ii)
I/H
I/J
7 cm
N/K
A/E 11 cm P
B/F
3 cm
8 cm
H/G 3 cm C/D 4 cm
M/L
5.
(a)
F/E
A/D 2 cm
G
B
5 cm
6 cm
H 5.
C
(b) (i)
L/R
M/N 3 cm G/F
B/S/A
9 cm
6 cm
H/E 5.
6 cm
(b) (ii) L/M
J/C/P/D
7 cm
6 cm
K/Q
R/N 3 cm 1 cm B/G S
A/F
6 cm
1 cm C/H K/J
D/E 6 cm
Q/P 1 cm
F/G 6.
A/H
(a)
4 cm
6 cm
E/M 3 cm D/L 3 cm 6 cm
B/J 6.
C/K
(b) (i)
A/P/B
H/J 3 cm
G/M
F/E
3 cm
10 cm
D/Q/C 6.
L/K
(b) (ii)
F
G 1 cm H
A
3 cm D/E
L/M Q/P
2 cm 3 cm
C/B
3 cm
10 cm
K/J
MODULE 16 - ANSWERS TOPIC: EARTH AS A SPHERE 1.
(a)
110 °W
(b)(i)
∠ HOK =
2m
=
4800 60
1m
80°
1m
Latitude of K = 80 – 50 = 30°N
1m
(ii) Distance F to H = ( 70 + 45 ) 60 cos 50° = 4435.23 n.m
2m 1m
(iii) Time = 4435.23 + 48003m
680
= 13.58 hrs
2.
1m
(a)
60°S
2m
(b)
Point H Point L L ( 60°N, 160°E )
1m 1m 1m
(c)
Distance H to south pole = 30 X 60 = 1800 n.m.
(d)
1m 1m
(i)
Distance = 450 x 8 1m = 3600 n.m. 1m
(ii)
∠ GOP =
3600 60 cos 60°
2m
= 120° Longitude = 120° - 20° = 100°E
1m
3.
(a)
Longitude of R = 95°E
2m
(b)
Distance PR = 40 x 60 = 2400 n.m.
1m 1m
(c)
Distance PQ = ( 85 – 30 ) 60 cos 70° = 1128.67 n.m.
3m 1m
(d)
Time =
160 × 60 600
3m
= 16 hrs
4.
1m
(a)
Longitude of S = 100° E
2m
(b)
∠ ROT = 3600
1m
60
= 60°
(c)
(e)
1m
Latitude of T = 60 – 40 = 20°S
1m 1m
Distance R to S = 100 x 60 = 6000 n.m.
1m 1m
Average speed = 180 × 60 × cos 40 + 3600
3m
20 8273.30 + 3600 = 20 = 593.66 n.m. 5.
1m
(a)
θ =170°E
2m
(b)
Point G Point H
2m 2m
(c)
Distance G to H = 50 x 60 = 3000 n.m
(d)
2m 1m
Time =
3000 375
2m
=
8 hrs
1m
6.
(a)
(i) Longitude of R = 140°E
2m
(ii) Distance PR via S : Distance PR via N 80x 60 : 280 x 60 2m 2 : 7 1m (iii) Distance P to Q = ( 40 + 90 ) 60 x cos 50° = 5013.74 n.m
(b)
∠ QOT =
3900 60
= 65° Latitude of T = 65º – 50º = 15°N
3m 1m
1m 1m 1m