Answer Key (finals - Math 17)

  • Uploaded by: Arlan Rodrigo
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Answer Key (finals - Math 17) as PDF for free.

More details

  • Words: 851
  • Pages: 2
MATHEMATICS 17:ANSWER KEY I. TRUE or FALSE 1. 2. 3. 4. 5.

(1 PT EACH)

FALSE FALSE FALSE TRUE TRUE

1.

II. Fill in the blanks. 1.

III. Do as indicated.

(2 PTS EACH)

Solution: π‘š=

π‘˜π‘›2 3

⇔

𝑙

3

π‘˜π‘›2 𝑙= π‘š

𝑙

=

𝑙𝑛𝑒𝑀

=

π‘˜ 2𝑛 2π‘š

=

π‘˜π‘›2 8 π‘š

=

πŸ–(𝒍𝒐𝒍𝒅 )

2.

𝑦 = 3π‘₯ 2 βˆ’ 6π‘₯ + 4 vertex : (𝟏, 𝟏)

3.

Solution:

=

π’‡βˆ’πŸ (𝒙)

=

2π‘₯ + 7 7π‘₯ + 2 πŸ• βˆ’ πŸπ’™ πŸ•π’™ βˆ’ 𝟐 Rng𝒇 = ℝ βˆ’ {𝟐/πŸ•}

2𝑐𝑖𝑠 37.5Β°

4

βˆ’1 + 𝑖 3

4𝑐𝑖𝑠 150Β°

=

βˆ’π‘–(βˆ’1 + 𝑖 3)

=

4𝑐𝑖𝑠 150Β° 2𝑐𝑖𝑠 30Β°

=

2𝑐𝑖𝑠 120Β°

=

βˆ’πŸ + π’Š πŸ‘

2 3

3

3.

Solution: RHS: cos πœƒ sec πœƒ βˆ’ tan πœƒ

=

cos πœƒ sec πœƒ + tan πœƒ β‹… sec πœƒ βˆ’ tan πœƒ sec πœƒ + tan πœƒ

=

1 + sin πœƒ



IV. Find the solution set. log 4.5

4.

𝑓(π‘₯)

Solution:

𝑖 βˆ’99

Then 𝑙 is multiplied by eight times. 2.

Solution:

Dom𝒇 = ℝ βˆ’ {βˆ’πŸ/πŸ•}

3

π‘˜π‘›2 π‘š

(3 - 4 – 3 PTS)

Let sin 𝛼 =

βˆ’3 5

=

32 log 2

=

2 log 3 βˆ’ log 2

=

πŸπ’ƒ βˆ’ 𝒂

, 𝛼 ∈ (πœ‹,

3πœ‹ 2

)

By Pythagorean Identity, cos 𝛼 = tan

𝛼 2

1.

=

sin 𝛼 1 + cos 𝛼

=

βˆ’3 5 βˆ’4 1+ 5

=

βˆ’πŸ‘

βˆ’4 5

.

(5 PTS EACH)

Solution: CASE 1: C.N. = -6,-4 π‘₯ π‘₯+4 π‘₯ βˆ’ 3(π‘₯ + 4) π‘₯+4 βˆ’2(π‘₯ + 6) π‘₯+4

≀

3

≀

0

≀

0

By interval table, we have βˆ’βˆž

βˆ’6 βˆ’ βˆ’ βˆ’ βˆ’

βˆ’2 π‘₯+6 π‘₯+4

βˆ’4 βˆ’ + βˆ’ +

+∞ βˆ’ + + βˆ’

βˆ’3 βˆ’ βˆ’ + +

+∞ βˆ’ + + βˆ’

𝑆𝑆1 = βˆ’βˆž, βˆ’6 βˆͺ (βˆ’4, +∞). 5.

Let 𝛼 = π΄π‘Ÿπ‘π‘ π‘–π‘› 8 cos 2π΄π‘Ÿπ‘π‘ π‘–π‘› 15

8 15

, then sin 𝛼 = =

8 15

.

cos 2𝛼

=

1βˆ’

=

97 225

2 sin2

𝛼

CASE 2: C.N. = -4, -3 βˆ’π‘₯ π‘₯+4 βˆ’π‘₯ βˆ’ 3(π‘₯ + 4) π‘₯+4 βˆ’4(π‘₯ + 3) π‘₯+4

≀

3

≀

0

≀

0

By interval table, we have βˆ’βˆž βˆ’4 π‘₯+3 π‘₯+4

βˆ’4 βˆ’ βˆ’ βˆ’ βˆ’

𝑆𝑆2 = βˆ’βˆž, βˆ’4 βˆͺ [βˆ’3, +∞).

2.

π‘Ίπ‘ΊπŸ ∩ π‘Ίπ‘ΊπŸ = (βˆ’βˆž, βˆ’πŸ”] βˆͺ [βˆ’πŸ‘, +∞). 2.

Solution: Let π‘š = 2 π‘₯ , then 22π‘₯+1 βˆ’ 5 β‹… 2 π‘₯ = 2

3

2π‘š βˆ’ 5π‘š βˆ’ 3

=

0

2π‘š + 1 (π‘š βˆ’ 3)

=

0

Then, 2π‘š + 1 = 0 or 2 π‘₯ = βˆ’1/2. (no solution) Also, π‘š βˆ’ 3 = 0 or 2 π‘₯ = 3 or 𝒙 = π₯𝐨𝐠 𝟐 πŸ‘. 3.

log

4.

3

=

4 + log 3 (π‘₯ + 6)

4π‘₯ + 55 βˆ’ log 3 (π‘₯ + 6)

=

4

4π‘₯ + 55 π‘₯+6

=

9

𝒙

=

𝟏 πŸ“

Solution:

3 sin π‘₯ + cos 2π‘₯ 3 sin π‘₯ + (1 βˆ’ 2 sin2 π‘₯) 2 sin2 π‘₯ βˆ’ 3 sin π‘₯ βˆ’ 2 2 sin π‘₯ + 1 (sin π‘₯ βˆ’ 2)

= = = =

= βˆ’8𝑖 3 Then 𝑧 = βˆ’8𝑖, π‘Ž = 0, 𝑏 = βˆ’8, π‘Ÿ = 8 and πœƒ = 3πœ‹/2. By De Moivre’s Theorem,

𝑧

=

3

8𝑐𝑖𝑠

For π‘˜ = 0,1,2, 3

3

3

𝑧

𝑧

𝑧

3πœ‹ + 2πœ‹π‘˜ 2 3

2𝑐𝑖𝑠

=

πŸπ’Š

=

2𝑐𝑖𝑠

=

βˆ’ πŸ‘βˆ’π’Š

=

2𝑐𝑖𝑠

7πœ‹ 6

0

=

𝑛2 + 9𝑛 βˆ’ 1240

0

=

𝑛 βˆ’ 31 (𝑛 + 40)

Let π‘₯1 be the horizontal distance from the helicopter to the headquarters. Let π‘₯2 be the horizontal distance from the helicopter to the evacuation site.

π‘₯2

11πœ‹ 6

=

600 tan 75Β°

=

600(2 βˆ’ 3)

=

1200 βˆ’ 600 3 𝑓𝑑

=

600 tan 60Β°

=

200 3 𝑓𝑑

Thus the distance from the headquarters to the evacuation site is π’™πŸ + π’™πŸ = 𝟏𝟐𝟎𝟎 βˆ’ πŸ’πŸŽπŸŽ πŸ‘ ft.

πŸ‘βˆ’π’Š (5 PTS EACH)

rate 30 π‘Ÿ

=

π‘₯1

Let π‘Ÿ be Sarah’s rate. Let 𝑑 be the time in hours when Sarah and Chuck met (prior to Sarah).

Chuck Sarah

1240

Then, we have two right triangles with equations:

V. Problem Solving 1.

=

πœ‹ 2

=

=

1240

𝑛 2π‘Ž1 + (𝑛 βˆ’ 1)𝑑 2 𝑛 [2 10 + (𝑛 βˆ’ 1)2] 2 2 𝑛 + 9𝑛

βˆ’1 βˆ’1 0 0

𝑧3

3

=

3.

Then sin π‘₯ = βˆ’1/2 or 𝒙 = πŸ•π…/πŸ” and πŸπŸπ…/πŸ”. Also, sin π‘₯ = 2 or π‘₯ = arcsin 2. (no solution) 5.

𝑆𝑛

Then 𝒏 = πŸ‘πŸdays, and Bella started saving money on September 30.

Solution: log 3 (4π‘₯ + 55)

The saving follows an arithmetic sequence with π‘Ž1 = 10 𝑑=2 𝑆𝑛 = 1240.

time 𝑑 + 1/2 𝑑

From Chuck’s equation for distance, 30 𝑑 +

distance 105 105 1 2

= 105km.

Thus, 𝑑 = 3hrs. From Sarah’s equation of distance, π‘Ÿπ‘‘ = 105km. Then since 𝑑 = 3hrs, 𝒓 = πŸ‘πŸ“kph.

Related Documents

Answer Key
June 2020 11
Answer Key
August 2019 41
Math 060 Quiz 3 Answer Key
November 2019 15

More Documents from ""